共查询到20条相似文献,搜索用时 15 毫秒
1.
Sedeek MH Llinas MT Drummond H Fortepiani L Abram SR Alexander BT Reckelhoff JF Granger JP 《Hypertension》2003,42(4):806-810
Recent reports have indicated that endothelin-induced vasoconstriction in isolated aortic vascular rings may be mediated by the production of superoxide anion. The purpose of this study was to determine the role of superoxide anion in mediating the chronic renal and hypertensive actions of endothelin. Endothelin-1 (5 pmol/kg per minute) was chronically infused into the jugular vein by use of mini-osmotic pump for 9 days in male Sprague-Dawley rats and in rats treated with the superoxide anion scavenger tempol (30 mg/kg per day). Mean arterial pressure in the endothelin-1-treated rats was 141+/-3 mm Hg, compared with 125+/-2 mm Hg in control rats. Endothelin-1 increased renal vascular resistance (15.3+/-2.5 versus 10+/-1.3 mm Hg/mL per minute) and decreased renal plasma flow (6.5+/-0.9 versus 8.7+/-0.7 mL/min) in control rats. Endothelin-1 also significantly increased TBARS in the kidney and urinary 8-isoprostaglandin F2alpha excretion. The increase in arterial pressure in response to endothelin-1 was completely abolished by tempol (127+/-4 versus 127+/-4 mm Hg). Tempol also markedly attenuated the renal plasma flow and renal vascular resistance response to endothelin-1. Tempol also significantly decreased the level of 8-isoprostaglandin F2alpha in the endothelin-1-treated rats. Tempol had no effect on arterial pressure or renal hemodynamics in control rats. These data indicate that formation of reactive oxygen species may play an important role in mediating hypertension induced by chronic elevations in endothelin. 相似文献
2.
Nishiyama A Kobori H Fukui T Zhang GX Yao L Rahman M Hitomi H Kiyomoto H Shokoji T Kimura S Kohno M Abe Y 《Hypertension》2003,42(4):754-760
Treatment with cyclosporine A (CysA), a potent immunosuppressive agent, is associated with systemic and renal vasoconstriction, leading to hypertension. The present study was conducted to elucidate the contribution of angiotensin II (Ang II) to CysA-induced hypertension and reactive oxygen species (ROS) generation. CysA (30 mg/kg per day SC), given for 3 weeks in rats, increased systolic blood pressure (SBP) from 119+/-2 to 145+/-3 mm Hg (n=7). Plasma and kidney Ang II levels were significantly higher in CysA-treated rats (136+/-10 fmol/mL and 516+/-70 fmol/g) than in vehicle-treated (1 mL olive oil) rats (76+/-10 fmol/mL and 222+/-21 fmol/g, n=7). CysA treatment increased AT1 receptor protein expression in the aorta (by 251+/-35%), whereas it was reduced in the kidney (by -32+/-4%). Superoxide anion production in aortic segments and kidney thiobarbituric acid-reactive substance (TBARS) contents were higher in CysA-treated rats (26+/-2 counts/min per milligram and 37+/-3 nmol/g) than in vehicle-treated rats (17+/-1 counts/min per milligram and 24+/-3 nmol/g). Concurrent administration of an AT1 receptor antagonist, valsartan (30 mg/kg per day, in drinking water), to CysA-treated rats (n=7) significantly decreased SBP (113+/-4 mm Hg) and prevented increases in vascular superoxide (16+/-2 counts/min per milligram) and kidney TBARS contents (21+/-3 nmol/g). Similarly, treatment with a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (Tempol; 3 mmol/L in drinking water, n=7), prevented CysA-induced increases in SBP (115+/-3 mm Hg), vascular superoxide (16+/-1 counts/min per milligram), and kidney TBARS contents (19+/-2 nmol/g). These data suggest that ROS generation induced by augmented Ang II levels contributes to the development of CysA-induced hypertension. 相似文献
3.
4.
Circulating coupling factor 6 in human hypertension: role of reactive oxygen species 总被引:7,自引:0,他引:7
Osanai T Sasaki S Kamada T Fujiwara N Nakano T Tomita H Matsunaga T Magota K Okumura K 《Journal of hypertension》2003,21(12):2323-2328
OBJECTIVE: Coupling factor 6 is an endogenous inhibitor of prostacyclin synthesis and might function as an endogenous vasoconstrictor in the fashion of a circulating hormone in rats. We investigated the role of coupling factor 6 in human hypertension. METHODS AND RESULTS: The patients with essential hypertension (EH) (n = 30) received a series of normal salt diet (12 g salt/day) for 3 days, low salt diet (2 g salt/day) for 7 days, and high salt diet (20-23 g salt/day) for 7 days. Normotensive control subjects (n = 27) received normal and low salt diets. The plasma level of coupling factor 6, measured by radioimmunoassay, during normal salt diet was higher in patients with EH than in normotensive subjects (17.6 +/- 1.7 versus 12.8 +/- 0.5 ng/ml, P < 0.01). Whereas the plasma level of coupling factor 6 was unchanged after salt restriction in normotensive subjects, it was decreased after salt restriction (from 12 g/day to 2 g/day) and was increased after salt loading (from 2 g/day to 20-23 g/day) in patients with EH. This increase in plasma level of coupling factor 6 was abolished by oral administration of ascorbic acid, but the level of blood pressure was unaffected. The percentage changes in plasma coupling factor 6 level after salt restriction and loading were positively correlated with those in mean blood pressure (r = 0.57, P < 0.01), and negatively correlated with those in plasma nitric oxide level (r = -0.51, P < 0.05). CONCLUSION: These indicate that circulating coupling factor 6 is elevated in human hypertension and modulated by salt intake presumably via reactive oxygen species. 相似文献
5.
6.
7.
8.
Nitric oxide,angiotensin II,and reactive oxygen species in hypertension and atherogenesis 总被引:2,自引:0,他引:2
A balance among nitric oxide (NO), angiotensin II (Ang II), and reactive oxygen species (ROS) in the endothelium is necessary
for maintaining the homeostasis of the vascular wall. Oxidative stress has been shown to play a critical role in the development
of hypertension and atherosclerosis. Although there is overwhelming evidence that hypertension promotes atherosclerosis, the
relative contribution and/or interaction of hemodynamic and oxidative stress remains undefined. NO is synthesized in the endothelium
by NO synthase and antagonizes the vasoconstrictive and proatherosclerotic effects of Ang II. On the other hand, Ang II decreases
NO bioavailability by promoting oxidative stress. A better understanding of the pathophysiologic mechanisms involved in the
link between hypertension and atherosclerosis may aid in developing therapeutic interventions. We propose that those antihypertensive
agents that lower blood pressure and concomitantly restore the homeostatic balance of vasoactive agents in the endothelium
would be more effective in preventing or arresting atherosclerosis. 相似文献
9.
Yasunari K Matsui T Maeda K Nakamura M Watanabe T Kiriike N 《American journal of hypertension》2006,19(6):573-578
BACKGROUND: An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. METHODS: In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. RESULTS: In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P < .01); plasma norepinephrine and ROS formation by MNC (r = 0.36, P < .01); and plasma norepinephrine and systolic, diastolic, and mean BP (r = 0.17, P = .04; r = 0.26, P = .02; r = 0.23, P < .01, respectively). In Protocol 2, subtherapeutic doxazosin treatment (1 mg/day) had no significant effect on BP. However doxazosin significantly decreased ROS formation by MNC compared with placebo (P < .01). CONCLUSION: Trait anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients. 相似文献
10.
Reactive oxygen species (ROS) are produced in many normal and abnormal processes in humans, including atheroma, asthma, joint diseases, cancer, and aging. Basal levels of ROS production in cells could be related to several physiological functions including cell proliferation, apoptosis and homeostasis. However, excessive ROS production above basal levels would impair and oxidize DNA, lipids, sugars and proteins and consequently result in dysfunction of these molecules within cells and finally cell death. A leading theory of the cause of aging indicates that free radical damage and oxidative stress play a major role in the pathogenesis of Alzheimer disease (AD). Because the brain utilizes 20% more oxygen than other tissues that also undergo mitochondrial respiration, the potential for ROS exposure increases. In fact, AD has been demonstrated to be highly associated with cellular oxidative stress, including augmentation of protein oxidation, protein nitration, glycoloxidation and lipid peroxidation as well as accumulation of Amyloid β (Aβ). The treatment with anti-oxidant compounds can provide protection against oxidative stress and Aβ toxicity. In this review, our aim was to clarify the role of ROS in pathogenesis of AD and will discuss therapeutic efficacy of some antioxidants studies in recent years in this disease. 相似文献
11.
目的:以往研究显示,硝酸酯类药物和衰老都会引发体内活性氧介质(ROS)和活性氮介质(RNS)的增加,本研究旨在探讨年龄是否会影响硝酸酯类药物的这种促进作用。方法:75例不稳定心绞痛患者,分成32例中年组和43例老年两组。所有患者均给予硝酸酯类药物(50μg/min)48h。在试验开始时和用药48小时时,获取血样标本,对血样中的ROS[丙二醛(MDA),髓过氧化物酶(MPO)和还原性谷胱甘肽(GSH)]和RNS(硝基、亚硝基,NOX;过氧亚硝酸阴离子,ONOO-)]的水平进行检测。结果:硝酸酯类药物的使用,引起中年组血浆MDA水平[用药前(1.22±0.37)nmol/m L,用药后(1.61±0.47)nmol/m L,P0.05]增加60%;老年组MDA水平[用药前(2.07±0.77)nmol/m L,用药后(4.05±0.80)nmol/m L,P0.05],增加140%;GSH两组分别减少了9%和48%;硝酸酯类药物使用前,老年组血浆硝基化酪氨酸(398.29±117.0)nmol/L水平为仅为中年组(296.57±120.48)nmol/L的105%,药物使用48h后,老年组血浆硝基化酪氨酸水平(1 182.30±295.01)nmol/L增高到中年组(610.82±217.36)nmol/L,增高210%。结论:在硝酸酯类药物的使用过程中,除了药物本身增加机体内ROS和RNS,年龄增加能够促进硝酸酯类药物的这种作用。 相似文献
12.
13.
Anti-aging medicine and reactive oxygen species 总被引:1,自引:0,他引:1
Yoshikawa T Ichikawa H 《Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics》2008,45(2):149-151
14.
15.
The generation of superoxide anion radicals (O . - 2 ) and the other reactive oxygen species (ROS) was estimated by means of cytochrome c reduction and chemiluminescence, as well in resting blood platelets and in platelets stimulated by thrombin in the presence or absence of some inhibitors of pathways involved in platelet activation. We used allopurinol (xanthine oxidase inhibitor), wortmannin (PI 3-kinase inhibitor) and staurosporine (protein kinase C inhibitor). To determine the involvement of the glutathione in ROS generation, we used L-buthionine sulfoximine (BSO) which blocks GSH synthesis. Our results confirmed that thrombin stimulates the production of ROS concomitant with metabolism of arachidonate and production of malonyldialdehyde (MDA) in blood platelets ( P < 0.05) and showed that, in the presence of inhibitors, the generation of ROS in platelets (resting and stimulated) was reduced. This indicates that xanthine oxidase, PI 3-kinase or protein kinase C take part in the formation of ROS in blood platelets. Moreover, adhesion of platelets to fibrinogen and secretion of adenine nucleotides from platelets after wortmannin and staurosporine action was also inhibited. BSO not only decreased GSH level, but also reduced the amount of ROS; a correlation between the depletion of GSH and the decrease of ROS was observed ( R = -0.987; P < 0.02). It is concluded that in blood platelets, ROS are produced in the receptor-mediated signaling pathways and platelet activation (arachidonic acid metabolism, the glutathione cycle, metabolism of phosphoinositoides and due to xanthine oxidase). Our results support the importance of ROS in platelet function. 相似文献
16.
The generation of superoxide anion radicals (O2*-) and the other reactive oxygen species (ROS) was estimated by means of cytochrome c reduction and chemiluminescence, as well in resting blood platelets and in platelets stimulated by thrombin in the presence or absence of some inhibitors of pathways involved in platelet activation. We used allopurinol (xanthine oxidase inhibitor), wortmannin (PI 3-kinase inhibitor) and staurosporine (protein kinase C inhibitor). To determine the involvement of the glutathione in ROS generation, we used L-buthionine sulfoximine (BSO) which blocks GSH synthesis. Our results confirmed that thrombin stimulates the production of ROS concomitant with metabolism of arachidonate and production of malonyldialdehyde (MDA) in blood platelets (P < 0.05) and showed that, in the presence of inhibitors, the generation of ROS in platelets (resting and stimulated) was reduced. This indicates that xanthine oxidase, PI 3-kinase or protein kinase C take part in the formation of ROS in blood platelets. Moreover, adhesion of platelets to fibrinogen and secretion of adenine nucleotides from platelets after wortmannin and staurosporine action was also inhibited. BSO not only decreased GSH level, but also reduced the amount of ROS; a correlation between the depletion of GSH and the decrease of ROS was observed (R = -0.987; P < 0.02). It is concluded that in blood platelets, ROS are produced in the receptor-mediated signaling pathways and platelet activation (arachidonic acid metabolism, the glutathione cycle, metabolism of phosphoinositoides and due to xanthine oxidase). Our results support the importance of ROS in platelet function. 相似文献
17.
Role of reactive oxygen species in myocardial remodeling 总被引:2,自引:0,他引:2
Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying
cardiac remodeling are multifactorial, a significant body of evidence points to the crucial roles of increased reactive oxygen
species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species
(namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac
remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox
pathways for the prevention and treatment of adverse cardiac remodeling. 相似文献
18.
Matsunaga T Nakajima T Miyazaki T Koyama I Hokari S Inoue I Kawai S Shimomura H Katayama S Hara A Komoda T 《Metabolism: clinical and experimental》2003,52(1):42-49
Nonenzymatic glycosylation of plasma proteins may contribute to the excess risk of developing atherosclerosis in patients with diabetes mellitus. Although it is believed that high-density lipoprotein (HDL) is glycosylated at an increased level in diabetic individuals, little is known about a possible linkage between glycated HDL and endothelial dysfunction in diabetes. To clarify whether glucose-modified HDL affects the function of endothelial cells, we first examined herein the level of H(2)O(2) generation from cultured human aortic endothelial cells (HAECs) exposed to a glycated oxidized HDL (gly-ox-HDL) prepared in vitro. Incubation for 48 hours with 100 microg/mL of gly-ox-HDL induced significant release of H(2)O(2) from cells and gly-ox-HDL-induced H(2)O(2) formation was inhibited in the presence of diphenyleneiodonium, an inhibitor of NADPH oxidase. In addition, stimulation of HAECs with gly-ox-HDL for 48 hours elicited a marked downregulation of catalase and Cu(2+), Zn(2+)-superoxide dismutase (CuZn-SOD), suggesting H(2)O(2) formation by gly-ox-HDL to be due to a disturbance involving oxidant and antioxidant enzymes in the cells. Treatment of HAECs with gly-ox-HDL attenuated the expression of endothelial nitric oxide synthase (eNOS), but not inducible nitric oxide synthase (iNOS), and this was followed by decreased production of nitric oxide (NO) by the cells. Furthermore, in vitro experiments with glycated HDL (gly-HDL) in the presence of 2 mmol/L EDTA and Cu(2+)-oxidized HDL suggested the effect of gly-HDL on endothelial function to be possibly potentiated by additional oxidative modification. Taking all of the above findings together, gly-ox-HDL may lead to the deterioration of vascular function through altered production of reactive oxygen species and reactive nitrogen species in endothelial cells. 相似文献
19.
Varzian Ali Kesha Haydek John Zabihi Ramin Doria Manuel D'Astice Michael Sorenson John R. J. 《Digestive diseases and sciences》1992,37(12):1866-1873
Reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, hydroxyl radical, and hypochlorous acid have been implicated in the pathogenesis of inflammation and tissue injury in colitis. To determine whether or not anti-ROS agents can decrease the severity of colitis, we evaluated the effects of three known anti-ROS agents: catalase, WR-2721, and Cu(II)2(3,5-DIPS)4 on acetic acid-induced colonic inflammation in rats. Histologically, all three compounds significantly decreased the severity of colonic inflammation. The anti-ROS activity of these compounds was also tested using the luminol-enhanced chemiluminescence assay. Catalase, WR-2721, or Cu(II)2(3,5-DIPS)4 significantly inhibited luminol-enhanced chemiluminescence produced by inflamed colonic mucosa. These findings suggest that ROS, and in particular superoxide, hydrogen peroxide, and/or one of its secondarily derived species, may play an important role in acetic acid-induced colitis. Further studies are needed to determine the potential effectiveness of these compounds in human colitis. 相似文献