首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of glucose on insulin gene expression and proinsulin biosynthesis, processing, and secretion were studied in mouse beta TC3 cells, an established insulinoma cell line derived from transgenic mice carrying a hybrid insulin promotor-simian virus-40 tumor antigen. The level of insulin mRNA was maintained at high levels by culture in 11 mM glucose, but essentially disappeared after 48 h of culture without glucose. The rate of insulin biosynthesis in beta TC3 cells was also dependent on glucose concentration over periods of 24 or 48 h (but not during 3 h) of stimulation. Insulin biosynthesis decreased about 50% after 24 h and about 85% after 48 h of incubation without glucose. When beta TC3 cells were incubated without glucose for 48 h, the rate of conversion of proinsulin to insulin was decreased compared to that at 11 mM glucose. Insulin secretion was sustained by medium glucose and also exhibited a much lower threshold for maximal stimulation; 2-deoxyglucose uptake decreased about 50% after 48 h of incubation without glucose. Studies on the secretion of newly synthesized proinsulin/insulin revealed that up to 80% of the total cellular pool of labeled proinsulin was released during a 60-min chase compared to only 10% of labeled insulin. The release of immunoreactive insulin (IRI) during the chase period was stimulated by forskolin and phorbol-12-myristate-13-acetate 1.6- and 10-fold, respectively. However, the release of newly synthesized proinsulin was insensitive to these secretagogues. It is concluded that 1) as in normal islets, glucose influences the steady state levels of proinsulin mRNA in beta TC3 cells; 2) the rate of proinsulin biosynthesis reflects only the level of insulin mRNA; translational control is absent; 3) cellular conversion of proinsulin to insulin is up-regulated by glucose as in normal rat islets; 4) newly synthesized proinsulin is released predominantly via a constitutive, rather than a regulated pathway, in contrast to normal beta-cells.  相似文献   

2.
3.
4.
Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.  相似文献   

5.
The disproportionate hyperproinsulinemia in type 2 diabetes has been attributed to either a primary beta-cell defect or a secondary dysregulation of beta cells under sustained hyperglycemia. This study examines the effect of a 10- to 13-day exposure to 20 mmol/L glucose on subsequent proinsulin and insulin release by human islets isolated from nondiabetic donors. Compared to control preparations kept at 6 mmol/L glucose, the high glucose cultured beta-cells released more proinsulin and less insulin during perifusion at 5, 10, or 20 mmol/L glucose. The lower amounts of secreted insulin resulted from a marked reduction in cellular insulin content (5-fold lower than in controls). The higher amount of secreted proinsulin is attributed to the sustained state of cellular activation that is known to occur after prolonged exposure to high glucose levels. This activated state of the beta-cell population is also held responsible for its higher secretory responsiveness to 5 mmol/L arginine at a submaximal (5 mmol/L) glucose concentration (8-fold higher proinsulin levels than in the control population). It results, together with the reduction in cellular insulin content, in 7- to 10-fold higher proinsulin over insulin ratios in the medium; at 5 mmol/L glucose, this extracellular ratio is similar to that in the cells. These data add direct support to the view that a disproportionate hyperproinsulinemia can result from a sustained activation of human beta-cells after prolonged exposure to elevated glucose levels.  相似文献   

6.
Effects of rat islet amyloid polypeptide (IAPP) on insulin biosynthesis and secretion were examined in isolated rat islets and mouse beta TC3 cells. Culture of islets or mouse beta TC3 cells for 24 h in the presence of 10(-6) M IAPP and 5.5 mM glucose had no effect on insulin mRNA levels. The rates of proinsulin biosynthesis were not altered in islets incubated in 10(-4)-10(-9) M IAPP. In beta TC3 cells, proinsulin biosynthesis was stimulated by glucose, though no effects of IAPP were shown. Addition of 10(-5) M IAPP to islets incubated in 11 mM glucose decreased the fractional insulin secretion rates; however, the secretion of insulin from beta TC3 cells was not affected by 10(-5) M IAPP. On the other hand, mouse beta TC3 cells expressed the elevated level of IAPP mRNA. Metabolic labeling of beta TC3 cells revealed the synthesis of both proIAPP and mature IAPP. In pulse chase experiments, proIAPP was processed to IAPP in a manner similar to proinsulin. These data indicate that IAPP is a possible polypeptide hormone synthesized in pancreatic beta cells though it is unlikely that IAPP is a physiologically relevant modulator of insulin biosynthesis or secretion.  相似文献   

7.
D Bosco  P Meda 《Endocrinology》1991,129(6):3157-3166
To establish whether the heterogeneous secretion of glucose-stimulated beta-cells correlates with a different biosynthetic activity, we have studied the secretion and biosynthesis of the very same beta-cells by combining a hemolytic plaque assay with autoradiography. After a 10-min incubation in 2.8 mM glucose, 52 +/- 2% of dispersed rat beta-cells incorporated [3H] leucine into newly synthesized proteins, as revealed by autoradiographic labeling. When the incubation was performed in 16.7 mM glucose, larger (P less than 0.02) proportions (92 +/- 4%) of plaque-forming, i.e. insulin-secreting, and nonplaque-forming beta-cells (74 +/- 4%) were autoradiographically labeled. Labeled and unlabeled beta-cells were stimulated to secrete insulin during a 30-min incubation in 16.7 mM glucose, as revealed by the larger (P less than 0.001) formation of hemolytic plaques. Under these conditions, autoradiographically labeled beta-cells were recruited preferentially (P less than 0.01) and secreted more (P less than 0.04) than unlabeled beta-cells. Analogous observations were made with beta-cell pairs. Under glucose stimulation, pairs comprising two autoradiographically labeled beta-cells secreted more (P less than 0.004) than pairs comprising one or no labeled beta-cells. The data indicate that under glucose stimulation, 1) secreting and nonsecreting beta-cells increase protein biosynthesis; 2) biosynthetically active and inactive beta-cells increase insulin secretion; 3) beta-cells synthesizing new proteins release insulin preferentially; and 4) contact decreases the biosynthetic and secretory heterogeneity of beta-cells.  相似文献   

8.
Summary The insulin resistance produced by the recessive db mutation has led to more severe diabetes in C57BL/KsJ mice relative to that in C57BL/6J mice, suggesting genetic differences between the two strains affecting insulin production or insulin action. To assess these parameters blood glucose, serum insulin, pancreatic insulin, and proinsulin mRNA were measured in both normal and diabetic (db/db) KsJ and 6J strains. The mice were compared at 5 weeks of age, prior to the development of insulin lack known to occur with age in KsJ db/db mice. As a further provocation to insulin production, another group of the normal and db/db mice were given dexamethasone for 4 days. In normal mice there were no strain differences in blood glucose, serum insulin, pancreatic insulin, or proinsulin mRNA. Dexamethasone, presumably by augmenting insulin resistance, induced increases in serum insulin and proinsulin mRNA to the same extent in KsJ and 6J mice. In db/db mice, while blood glucose, serum insulin, and proinsulin mRNA were considerably higher than in normal mice, there were no strain differences observed. After dexamethasone the db/db mice exhibited strain differences which included higher blood glucose and higher serum insulin levels in KsJ mice. These findings were compatible with greater insulin resistance in KsJ than in 6J db/db mice. While dexamethasone treatment increased serum insulin in KsJ db/db mice, there was no augmentation of proinsulin mRNA in either strain, suggesting a limit to the insulin synthesis. Analysis of serum insulin/glucose and proinsulin mRNA/glucose ratios demonstrated a dexamethasone-induced increase in serum insulin/glucose in normal and diabetic mice of both strains. An increase in dexamethasone induced proinsulin mRNA/glucose ratio was observed in all but the KsJ db/db mice. This analysis suggested that although insulin secretion in KsJ db/db mice was augmented, the capacity for insulin synthesis had been exceeded. A limitation of insulin production at the level of insulin synthesis might explain the enhanced diabetes susceptibility of this strain.  相似文献   

9.
A clonal hamster beta cell line (HIT) was established by simian virus 40 transformation of Syrian hamster pancreatic islet cells. Cytoplasmic insulin was detected in all cells by indirect fluorescent antibody staining, and membrane-bound secretory granules were observed ultrastructurally. Acidified-ethanol extracts of HIT cell cultures contained hamster insulin as determined by radioimmunoassay, radioreceptor assay, and bioassay. One subclone at passage 39 contained 2.6 micrograms of insulin per mg of cell protein. [3H]Leucine-labeled HIT insulin and proinsulin were identical to islet-derived proteins when compared by NaDodSO4/polyacrylamide gel electrophoresis of immunoprecipitates. HIT cell insulin secretion was stimulated by glucose, glucagon, and 3-isobutyl-1-methylxanthine. Insulin secretion at optimal glucose concentration (7.5 mM) was 2.4 milliunits per 10(6) cells per hr. Somatostatin and dexamethasone markedly inhibited HIT insulin secretion. The HIT cell line represents a unique in vitro system for studying beta cell metabolism and insulin biosynthesis.  相似文献   

10.
Summary We have evaluated the potential of the clonal insulin-secretory cell line HIT-T15 as a model system for investigating stimulus-secretion coupling in pancreatic B cells. In contrast to other cell lines, HIT cell insulin secretion was consistently stimulated 2- to 3-fold by D-glucose. The maximally effective concentration of glucose was 10 mmol/1; between 2 and 10 mmol/l glucose the increase in insulin release was paralleled by an increased rate of glucose oxidation. The main characteristics of glucose-stimulated insulin release by HIT cells were essentially similar to those of normal islets. Thus, the response was (1) specific for metabolizable sugars (D-mannose and D-glyceraldehyde stimulated insulin release but L-glucose and D-galactose were ineffective); (2) markedly dependent on extracellular Ca2+ concentration; (3) potentiated by forskolin, glucagon, acetylcholine and 12-0-tetradecanoyl phorbol 13-acetate; (4) inhibited by adrenaline or somatostatin; (5) showed a biphasic pattern of release in perifusion experiments, with both phases being potentiated by forskolin. The secretory response of the HIT cells to amino acids was also similar to that of normal islets. Thus, L-leucine and its deamination product 2-ketoisocaproate were effective stimuli, whereas L-isoleucine and L-glutamine were ineffective. Insulin release from HIT cells could also be evoked by the sulphonylureas glibenclamide and tolbutamide and by an increase in concentration of extracellular K+ to 40 mmol/1. The content of cyclic AMP in HIT cells was increased modestly by glucose but not by an increase in extracellular K+. Forskolin elicited a 4-fold increase in cyclic AMP content. We conclude that HIT cells retain the essential features of the insulin secretory response of normal B cells and represent an important tool for further biochemical characterisation of the secretory system.  相似文献   

11.
Pancreatic β cells, stimulated by glucose, are known to synthesize and secrete insulin. As liver diseases are reported to cause diabetes mellitus, studies were conducted to determine the possibility of glucose-induced insulin synthesis in the liver cells. The glucose-induced insulin synthesis was determined by in vitro translation of mRNA from the hepatocytes. The cDNA from mRNA was prepared and sequence analysis was performed. Incubation of hepatocytes from the liver of adult mice (n=10) with glucose (0.02 M) resulted in the insulin synthesis [0.03 (mean)±0.006 (S.D.) μunits/mg/h] compared to the pancreatic β cells [0.04±0.004 μunits/mg/h]. Immunohistochemical study also demonstrated the glucose-induced synthesis of insulin in liver cells. Incubation of the mice hepatocytes with glucose resulted in the synthesis of insulin mRNA. The purified mRNA which was used to prepare cDNA resulted in the formation of proinsulin I and proinsulin II genes corresponding to 182 and 188 base pairs, respectively. Sequence analysis of the cDNA indicated that proinsulin I as well as proinsulin II gene could be involved in the synthesis of insulin by hepatocytes. These results suggested that insulin synthesis in both hepatic and pancreatic cells could be involved in the control of diabetes mellitus.  相似文献   

12.
Expression of major histocompatibility complex (MHC) class II protein in islet beta-cells of transgenic mice causes severe diabetes without an attendant autoimmune component. Little is known of the aberrant beta-cell function and site of biological lesions responsible for the diabetic state. Therefore, changes in (pro)insulin production, processing, sorting, storage, and secretion were evaluated using the in vitro perfused pancreas from male hyperglycemic BALB/cBYJ Tg (O pinsproA alpha d pinsproA beta d) mice and a RIA capable of detecting mouse insulin or proinsulin with quantitative equivalency. Results were compared to control pancreases from normal BALB/cBYJ mice. Extractable pancreatic insulin plus proinsulin content in the transgenics was 4% of normal. Normal pancreases responded characteristically with a diphasic insulin release during 30-min stimulation by glucose, a response that was enhanced by subsequent forskolin. In contrast, hormone release from transgenic pancreases was undetectable; based on the sensitivity of the immunoassay, fractional secretion of the residual pancreatic hormone content from the transgenic pancreases was less than 25% of normal. Proinsulin or insulin constitutive release was also not detected in the absence or presence of glucose-containing stimuli even when experiments were extended to 3 h. In contrast, fractional secretion in response to nonglucose stimuli (carbachol-leucine and arginine-leucine) was greater than normal from the transgenic diabetic pancreases. Responses to glucose stimuli did not normalize even after 90 min in the absence of glucose. In other experiments, pancreases were stimulated with carbachol/leucine/forskolin for 90 min, and the proportion of proinsulin to insulin released by the regulated pathway was determined after Sep-Pak and HPLC separation of combined eluates. Proinsulin was undetectable (and, therefore, accounted for less than 10% of the total hormone secretion). It is concluded from the observations of hyperglycemia, low pancreatic insulin content, and impaired release that insulin production in the pancreas of the MHC diabetic transgenic is severely depressed. The limited insulin production and chronic hyperglycemia do not (as speculated) cause missorting to a constitutive pathway or impaired conversion of proinsulin to insulin, since a proportionately increased proinsulin release does not occur. Although the response of the secretory process to glucose-containing stimuli is almost completely destroyed, fractional secretion in response to nonglucose stimuli is enhanced. The possible contribution of hyperglycemia-induced beta-cell desensitization or specific lesions in the glucose recognition signals induced by MHC expression are discussed. Results suggest that expression of MHC class II protein causes highly specific beta-cell lesions which, in themselves, could be a contributing factor in human insulin-dependent diabetes.  相似文献   

13.
In order to elucidate a possible relationship between beta-cell function and conversion of proinsulin to insulin, isolated rat pancreatic islets were maintained in tissue culture for 1 week at various glucose concentrations (5 x 6-56 mM). Studies were also conducted on islets cultured for 48 h with interleukin-1beta (IL-1beta). By pulse-chase labelling and immunoprecipitation, the relative contents of newly synthesized proinsulin and insulin were determined. ELISA was used to analyse insulin and proinsulin content in medium and within islets. Using real-time PCR, the mRNA levels of proinsulin converting enzymes (PC1 and PC2) were studied. Islets cultured at 56 mM glucose had an increased proportion of newly synthesized proinsulin when compared with islets cultured at 5 x 6 mM glucose after a 90-min chase periods, however, no difference was observed after culture at 11 and 28 mM glucose. ELISA measurements revealed that culture at increased glucose concentrations as well as islet exposure to IL-1beta increased proinsulin accumulation in the culture media. The mRNA expression of PC1 was increased after culture at 11 and 28 mM glucose. Treatment for 48 h with IL-1beta increased the proportion of proinsulin both at 45 and 90 min when compared with control islets. These islets also displayed a decreased mRNA level of PC1 as well as PC2. Calculations of the half-time for proinsulin demonstrated a significant prolongation after treatment with IL-1beta. We conclude that a sustained functional stimulation by glucose of islets is coupled to a decreased conversion of proinsulin which is also true for islets treated with IL-1beta. This may contribute to the elevated levels of proinsulin found both at the onset of type 1 diabetes as well as in type 2 diabetes.  相似文献   

14.
Summary Glucose and insulin are generally considered to express opposite effects on insulin synthesis and secretion from pancreatic islets. For the most part this generalization has arisen from short-term experiments. Our studies focused on the chronic, long-term effects of variable insulin concentrations on insulin gene expression and secretion in cultures of HIT-T15 cells. From passage 70, HIT cells were split and passed weekly for 25 weeks in media containing either (A) 11.1 mmol/l glucose with no insulin added; (B) 11.1 mmol/l glucose with insulin added to maintain a level of approximately 4,000 U/ml; (C) 0.8 mmol/l glucose with no insulin added; (D) 0.8 mmol/l glucose with insulin added to maintain a level of approximately 4,000 U/ml; and (E) 0.8 mmol/l glucose with progressively less insulin added over time to mimic the gradual decrease in media insulin levels found in condition A. Our data indicate that during chronic passing of HIT cells, addition of exogenous insulin led to preserved levels of insulin mRNA, insulin content and insulin secretion in cells cultured in media containing 11.1 mmol/l glucose concentration. However, in media containing 0.8 mmol/l glucose concentration, addition of insulin diminished the levels of insulin mRNA, insulin content and insulin secretion. Nonetheless, in all cases exogenously added insulin sustained greater levels of insulin mRNA, insulin content and insulin secretion than the instance wherein media containing a high concentration of glucose only was used. These results indicate that short-term experiments assessing the effects of insulin on beta-cell function do not necessarily apply to chronic, more long-term experiments in which insulin can have variable time- and concentration-dependent effects on insulin gene expression and secretion.Abbreviations HIT Hamster insulin-secreting tumour  相似文献   

15.
Summary In normal fasting dog serum, the insulin: proinsulin molar proportion was 71:29%. In response to glucose infusion, the proinsulin proportion decreased. In the pancreas, the proinsulin proportion was lower than in serum. Growth hormone treatment for one day increased serum insulin sevenfold and proinsulin 18-fold. The proinsulin proportion increased to 49%. The growth hormone injections magnified the response to glucose infusion. The rise in serum insulin was 16 times the normal, proinsulin also rose but its proportion decreased. Growth hormone treatment for 6 days decreased pancreatic insulin to 5% and proinsulin to 46% of normal. In the permanent (metasomatotrophic) diabetes produced by the prolonged administration of growth hormone, serum insulin decreased and the proinsulin proportion increased. No rises in serum insulin nor proinsulin occurred following glucose infusion. In the pancreas, insulin and proinsulin were reduced to 1.6% and 8% of normal. The reduction in the immunoreactive insulin of the pancreas was more pronounced in the tail than in the head and body regions. The results indicate that in the state of augmented insulin secretion and hyperinsulinaemia produced by growth hormone and in the reduced insulin secretion and hypoinsulinaemia of metasomatotrophic diabetes, the proportion of proinsulin in serum is increased due to beta cell secretion containing a higher proportion of proinsulin than normal.  相似文献   

16.
We have examined the effect of secretagogues on cytosolic free Ca2+ (Cai) in the hamster clonal beta-cell line HIT-T15 using the Ca2+-binding fluorescent indicator Quin 2. Stimulation of HIT cells by glucose increased Cai in a dose-dependent manner; raising the medium glucose concentration from zero to 2 mM increased Cai by 36%, from 89 +/- 4 to 121 +/- 6 nM (mean +/- S.E.M., n = 23). Further raising the medium glucose concentration to 10 mM increased Cai to 139 +/- 6 nM. Cai was maximum and plateaued at 4 min after each addition of glucose. Addition of 40 mM K+ to the medium rapidly depolarized the HIT cells and increased Cai to 407 +/- 48 nM. The increases in Cai in response to glucose of K+ were blocked by the simultaneous presence of verapamil (50 microM). Stimulation by glucose or K+ also increased insulin release in parallel incubations of Quin 2-loaded HIT cells. Carbamylcholine chloride, forskolin or the phorbol ester 12-O-tetradecanoylphorbol acetate had no significant effect on Cai in glucose-stimulated HIT cells monitored 5 min after the addition of each test agent, despite increasing insulin release by 241, 239 and 216% respectively. These data support the hypothesis that potentiators of insulin release which activate cAMP-dependent protein kinase or protein kinase C do not increase Cai but sensitize the secretory mechanism to Ca2+.  相似文献   

17.
A negative 72-h fast is usually considered to preclude the diagnosis of insulinoma. The aim of this study was to describe the functional and morphological properties of two exceptional patients with an insulinoma who had exhibited pre-operatively a negative 72-h fast. Despite the ability of tumor cells to turn off insulin secretion in response to low plasma glucose during 72 h of fasting, hyperinsulinemic hypoglycemia occurred in both patients in response to stimulation by classical secretagogues. Pre-operatively, both patients underwent oral and iv glucose challenge tests and iv glucagon stimulation test. Insulin secretion was rapidly stimulated by these secretagogues to an exaggerated extent and thereby caused hypoglycemia due to an insulin mass effect. In contrast to the common functional features during suppression and stimulation tests, the tumors differed widely with regard to insulin and proinsulin response to calcium during ASVS tests and morphological properties. In patient 1, the immunohistochemical proinsulin distribution pattern resembled that of normal beta-cells, i.e. the staining was restricted to the perinuclear area; insulin and proinsulin were not stimulated by calcium during the ASVS test. In patient 2, the proinsulin staining pattern was abnormal, i.e. proinsulin was also found in the periphery of tumor cells; insulin and proinsulin were stimulated by calcium. We conclude that normal or exaggerated rather than defective glucose sensing may explain hypoglycemia in these exceptional insulinoma patients. Different functional characteristics of these tumors can be correlated with distinct morphological properties.  相似文献   

18.
19.
We have studied the effects of vasopressin and tetradecanoyl phorbol acetate (TPA) on cytosolic free Ca2+ ([Ca2+]i) and insulin release in HIT-T15 beta-cells. Saturable binding of [3H] [Arg8]-vasopressin to HIT cell microsomes indicated a single class of receptors with a dissociation constant (Kd) of 2.5 nM and a total number of binding sites (Bmax) equal to 120 fmol/mg protein. [Arg8]-vasopressin (0.1-100 nM) elicited dose-dependent insulin release from HIT cells by up to 25-fold. This increase was dependent on the presence of extracellular glucose and was blocked by omission of extracellular Ca2+ or addition of verapamil. The stimulation was biphasic; a rapid but short-lived large increase in release was followed by a smaller sustained rise. Vasopressin also evoked a marked, concentration-dependent increase in [Ca2+]i which was also biphasic; an initial spike was followed by a sustained elevation. This increase also required glucose and was blocked by the absence of extracellular Ca2+ or the addition of verapamil. Pretreatment of the cells with TPA overnight to deplete protein kinase C activity did not affect the [Ca2+]i or insulin responses to vasopressin. However, short-term exposure to TPA markedly reduced glucose-induced steady-state [Ca2+]i, despite potentiating glucose-stimulated insulin release sevenfold, and blocked the [Ca2+]i increase induced by vasopressin. These inhibitory effects of TPA were absent in protein kinase C-depleted cells and were prevented by staurosporine. TPA had no significant effect on vasopressin-induced insulin release. Vasopressin did not modify the activity of ATP-sensitive K+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have studied the effect of lactate on a number of intracellular events which may be important in controlling the secretion of insulin by the hamster beta-cell line HIT-T15. Using the fluorescent dye Oxonol V, as well as intracellular recording techniques to measure changes in membrane potential, we found that lactate, glucose, K+ and tolbutamide caused depolarization of HIT cells, while valinomycin resulted in hyperpolarization. Consistent with these findings was the observation that 10 mM lactate caused an increase of 69.0 +/- 18.4% (S.E.M., n = 6) in the level of free cytosolic Ca2+ within HIT cells (assessed by fluorescence of quin 2). This was probably due to influx of Ca2+ through voltage-sensitive calcium channels, since it was dependent upon the concentration of extracellular Ca2+ and inhibited by verapamil. Lactate also caused cytosolic acidification in HIT cells and increased the secretion of insulin. These findings are consistent with the view that the electrogenic efflux of lactate could be a determinant in the activation of HIT cells by lactate and possibly by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号