首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2–5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p < 0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units.  相似文献   

2.
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.  相似文献   

3.
We hypothesized that considerable force reserve exists for the diaphragm muscle (DIAm) to generate transdiaphragmatic pressures (Pdi) necessary to sustain ventilation. In rats, we measured Pdi and DIAm EMG activity during different ventilatory (eupnea and hypoxia (10% O2)–hypercapnia (5% CO2)) and non-ventilatory (airway occlusion and sneezing induced by intranasal capsaicin) behaviors. Compared to maximum Pdi (Pdimax generated by bilateral phrenic nerve stimulation), the Pdi generated during eupnea (21 ± 2%) and hypoxia–hypercapnia (28 ± 4%) were significantly less (p < 0.0001) than that generated during airway occlusion (63 ± 4%) and sneezing (94 ± 5%). The Pdi generated during spontaneous sighs was 62 ± 5% of Pdimax. Relative DIAm EMG activity (root mean square [RMS] amplitude) paralleled the changes in Pdi during different ventilatory and non-ventilatory behaviors (r2 = 0.78; p < 0.0001). These results support our hypothesis of a considerable force reserve for the DIAm to accomplish ventilatory behaviors. A model for DIAm motor unit recruitment predicted that ventilatory behaviors would require activation of only fatigue resistant units.  相似文献   

4.
Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing.  相似文献   

5.
6.
Prolonged and weak isometric contractions can result in neuromuscular fatigue. Alternation of discharge of motor units with similar thresholds (termed rotation) could be useful to minimize neuromuscular fatigue by providing periods for metabolic recovery of the contractile elements. In the present study, we investigated the prevalence of motoneuron rotation during prolonged contractions of distal limb muscles. Electromyographic (EMG; needle and surface) was recorded from muscles of the forearm and distal leg. The subject made a slowly increasing isometric contraction to recruit and discharge a motor unit (1) for a prolonged period of time (> 30 min). Sometimes an additional motor unit (2) was recruited in which case the subject relaxed the contraction slightly so that only one motor unit remained tonic. Often it was this newly recruited motor unit (i.e., unit 2) that continued discharging, while motor unit 1 fell silent. Continued contraction would then lead to the resumption of tonic discharge of unit 1 and silence of unit 2. This would complete a rotation between motor units 1 and 2. During prolonged contractions, rotation was observed in approximately 80% of the motor-unit pairs examined. There was no difference in rotation incidence by muscle type. For the unit pairs showing rotation, surface EMG values were significantly higher immediately prior to rotation than after rotation had occurred. Our findings show that rotation of motor units with similar recruitment thresholds during such contractions is common in distal muscles of the arm and leg and may help offset neuromuscular fatigue.  相似文献   

7.
Drive to the human respiratory muscles   总被引:1,自引:0,他引:1  
The motor control of the respiratory muscles differs in some ways from that of the limb muscles. Effectively, the respiratory muscles are controlled by at least two descending pathways: from the medulla during normal quiet breathing and from the motor cortex during behavioural or voluntary breathing. Neurophysiological studies of single motor unit activity in human subjects during normal and voluntary breathing indicate that the neural drive is not uniform to all muscles. The distribution of neural drive depends on a principle of neuromechanical matching. Those motoneurones that innervate intercostal muscles with greater mechanical advantage are active earlier in the breath and to a greater extent. Inspiratory drive is also distributed differently across different inspiratory muscles, possibly also according to their mechanical effectiveness in developing airway negative pressure. Genioglossus, a muscle of the upper airway, receives various types of neural drive (inspiratory, expiratory and tonic) distributed differentially across the hypoglossal motoneurone pool. The integration of the different inputs results in the overall activity in the muscle to keep the upper airway patent throughout respiration. Integration of respiratory and non-respiratory postural drive can be demonstrated in respiratory muscles, and respiratory drive can even be observed in limb muscles under certain circumstances. Recordings of motor unit activity from the human diaphragm during voluntary respiratory tasks have shown that depending on the task there can be large changes in recruitment threshold and recruitment order of motor units. This suggests that descending drive across the phrenic motoneurone pool is not necessarily consistent. Understanding the integration and distribution of drive to respiratory muscles in automatic breathing and voluntary tasks may have implications for limb motor control.  相似文献   

8.
The diaphragm muscle (DIAm) is responsible for breathing and determines the ability to generate both ventilatory and non-ventilatory behaviors. Size limitations of the mouse make transdiaphragmatic pressure (Pdi) measurement using a dual balloon system untenable. Adult C57BL/6J mice (n = 8) and C57BL/6 × 129 (n = 9), underwent Pdi measurements using solid-state pressure catheters spanning the thoracic and abdominal surfaces of the DIAm. Measurements were conducted during eupnea, hypoxia (10% O2)–hypercapnia (5% CO2), chemical airway stimulation (i.e., sneezing), spontaneously occurring deep breaths, sustained tracheal occlusion, and bilateral phrenic nerve stimulation. There was a difference in the Pdi generated across the range of ventilatory and non-ventilatory behaviors (p = 0.001). No difference in Pdi across behaviors was evident between mouse strains (p = 0.161). This study establishes a novel method to determine Pdi across a range of DIAm behaviors in mice that may be useful in evaluating conditions associated with reduced ability to perform expulsive, non-ventilatory behaviors.  相似文献   

9.
Clinical electromyographic (EMG) biofeedback was an outgrowth of diagnostic electromyography and research on the fine control of motor units. In rehabilitation, EMG biofeedback has gained a firm place in the treatment of upper motor neuron lesions, particularly in retraining muscles and inducing relaxation of spastic muscles of stroke patients. In cerebral palsy and musculoskeletal disturbances, additional feedback transducers (e.g., electrogoniometers, pressure-sensitive and position-sensing devices) are gaining wider use. Spasmodic torticollis has proved to be particularly suitable for behavioral methods of treatment, including EMG feedback.  相似文献   

10.
1. Rat plantaris muscles were subjected to chronic overload by the surgical removal of the soleus and most of the gastrocnemius muscles. Twelve to 16 wk later whole muscle and motor unit (ventral root dissection technique) contractile properties as well as histochemistry were determined. 2. Motor units were categorized as fast, fatigable (FF), fast, intermediate fatigue-resistant (FI), fast, fatigue-resistant (FR), and slow (S) based on contractile characteristics. Muscle fibers were identified as type I and type II according to myofibrillar ATPase staining. 3. Whole muscles demonstrated increases in wet weight, tetanic force, proportion of type I fibers, and mean cross-sectional areas of both type I and II fibers, as a result of chronic overload. 4. Tetanic tension increased by the same relative magnitude in all motor units whereas twitch tension remained unchanged. A significant change in the proportions of the motor unit types occurred in overloaded muscles, such that the latter contained higher proportions of FF and S units, and lower proportions of FI and FR units, than normal muscles. 5. The fatigue profile of a composite constructed from a summation of motor unit responses revealed that the overloaded plantaris displayed fatigue resistance similar to that of the normal plantaris for a given absolute force output. 6. Glycogen-depleted fibers of hypertrophied single motor units demonstrated uniform myofibrillar ATPase and SDH staining characteristics suggesting that metabolic adaptations among fibers of the same unit were similar after 12-16 wk of overload. 7. The finding that overload caused a uniform increase in the tetanic strength of all motor units, whereas alterations in fatigue resistance varied in degree and direction among unit types, demonstrate that these two properties are not controlled in parallel in this model. The smallest units maintain or even increase their fatigue resistance during the hypertrophic process, whereas high threshold units actually decrease in fatigue resistance.  相似文献   

11.
The changes of motor unit size following partial denervation of the extensor digitorum longus muscles in rat neonates (at five to six days) and later in development (at 18-20 days) were studied. Extensor digitorum longus muscle is innervated mainly by axons from L4 ventral ramus and to a lesser extent by axons from L5 ventral ramus. In neonates the motor units in extensor digitorum longus are large, and they become restricted to their adult size during the first two weeks of life. Six to 10 weeks after removing the major input to extensor digitorum longus, i.e. L4 ventral ramus at five to six days, the motor unit sizes of axons in the remaining L5 ventral ramus decrease from their expanded neonatal territory to their adult smaller size. In spite of partial denervation the motor units remain small throughout the animal's life and the denervated muscle fibres do not become "occupied" by sprouts from the remaining axons of L5 ventral ramus motor nerves. Partial denervation of extensor digitorum longus muscles at 18-20 days by section of the L4 ventral ramus leads to the expected two- to three-fold increase in the size of motor units of L5 ventral ramus. These results are taken to show that fast motor units of neonatal rats are unable to maintain their enlarged peripheral field, while later in development their axons can sprout and occupy an expanded peripheral field.  相似文献   

12.
The output from human inspiratory motoneurone pools   总被引:2,自引:1,他引:1  
Survival requires adequate pulmonary ventilation which, in turn, depends on adequate contraction of muscles acting on the chest wall in the presence of a patent upper airway. Bulbospinal outputs projecting directly and indirectly to 'obligatory' respiratory motoneurone pools generate the required muscle contractions. Recent studies of the phasic inspiratory output of populations of single motor units to five muscles acting on the chest wall (including the diaphragm) reveal that the time of onset, the progressive recruitment, and the amount of motoneuronal drive (expressed as firing frequency) differ among the muscles. Tonic firing with an inspiratory modulation of firing rate is common in low intercostal spaces of the parasternal and external intercostal muscles but rare in the diaphragm. A new time and frequency plot has been developed to depict the behaviour of the motoneurone populations. The magnitude of inspiratory firing of motor unit populations is linearly correlated to the mechanical advantage of the intercostal muscle region at which the motor unit activity is recorded. This represents a 'neuromechanical' principle by which the CNS controls motoneuronal output according to mechanical advantage, presumably in addition to the Henneman's size principle of motoneurone recruitment. Studies of the genioglossus, an obligatory upper airway muscle that helps maintain airway patency, reveal that it receives simultaneous inspiratory, expiratory and tonic drives even during quiet breathing. There is much to be learned about the neural drive to pools of human inspiratory and expiratory muscles, not only during respiratory tasks but also in automatic and volitional tasks, and in diseases that alter the required drive.  相似文献   

13.
The physiological characteristics of single motor units in rat plantaris muscles were determined in situ, for young adult (3 months) and very old (30–34 months) Fischer 344 rats. Old muscles generated 43% less tetanic force (P0) per gram. Motor units classified as “slow”, using criteria of fatigue resistance and “sag” during unfused tetani, had a mean P0 which was 255% of that in young muscles, while fast motor units were similar in P0 in the two groups. Estimates were made of motor unit numbers using whole muscle and mean motor unit P0 values. The typical young plantaris contained 48 units, of which 5–6 were slow, while old plantaris contained 29 units, of which 11 were slow. In spite of this large increase in slow motor unit presence (increased mean motor unit P0, plus increased number) in old muscles, a comparatively modest (72%) increase occurred in the muscle cross-section occupied by histochemically demonstrated slow fibres. During senescence, there occurs a loss in muscle tetanic force capability which is accompanied by a loss of motor units and a reorganization of the remaining motor unit profile. An increase in slow motor unit number and size with advancing age can evidently occur without concomitant histochemical changes. Motor units do not “dedifferentiate”, but maintain their physiological distinctiveness into very old age.  相似文献   

14.
Unlike upper limb muscles, it remains undocumented as to how motor units in the soleus muscle are organised in terms of recruitment range and discharge rates with respect to their recruitment and de-recruitment thresholds. The possible influence of neuromodulation, such as persistent inward currents (PICs) on lower limb motor unit recruitment and discharge rates has also yet to be reported. To address these issues, electromyographic (EMG) activities from the soleus muscle were recorded using selective branched-wire intramuscular electrodes during ramp-and-hold contractions with intensities up to maximal voluntary contraction (MVC). The multiple single motor unit activities were then derived using a decomposition technique. The onset–offset hysteresis of motor unit discharge, i.e. a difference between recruitment and de-recruitment thresholds, as well as PIC magnitude calculated by a paired motor unit analysis were used to examine the neuromodulatory effects on discharge behaviours, such as minimum firing rate, peak firing rate and degree of increase in firing rate. Forty-two clearly identified motor units from five subjects revealed that soleus motor units are recruited progressively from rest to contraction strengths close to 95% of MVC, with low-threshold motor units discharging action potentials slower at their recruitment and with a lower peak rate than later recruited high-threshold units. This observation is in contrast to the 'onion skin phenomenon' often reported for the upper limb muscles. Based on positive correlations of the peak discharge rates, initial rates and recruitment order of the units with the magnitude of the onset–offset hysteresis and not PIC contribution, we conclude that discharge behaviours among motor units appear to be related to a variation in an intrinsic property other than PICs.  相似文献   

15.
The tongue plays a key role in various volitional and automatic functions such as swallowing, maintenance of airway patency, and speech. Precisely how hypoglossal motor neurons, which control the tongue, receive and process their often concurrent input drives is a subject of ongoing research. We investigated common synaptic input to the hypoglossal motor nucleus by measuring the coordination of spike timing, firing rate, and oscillatory activity across motor units recorded from unilateral (i.e., within a belly) or bilateral (i.e., across both bellies) locations within the genioglossus (GG), the primary protruder muscle of the tongue. Simultaneously recorded pairs of motor units were obtained from 14 healthy adult volunteers using tungsten microelectrodes inserted percutaneously into the GG while the subjects were engaged in volitional tongue protrusion or rest breathing. Bilateral motor unit pairs showed concurrent low frequency alterations in firing rate (common drive) with no significant difference between tasks. Unilateral motor unit pairs showed significantly stronger common drive in the protrusion task compared with rest breathing, as well as higher indices of synchronous spiking (short-term synchrony). Common oscillatory input was assessed using coherence analysis and was observed in all conditions for frequencies up to ~ 5 Hz. Coherence at frequencies up to ~ 10 Hz was strongest in motor unit pairs recorded from the same GG belly in tongue protrusion. Taken together, our results suggest that cortical drive increases motor unit coordination within but not across GG bellies, while input drive during rest breathing is distributed uniformly to both bellies of the muscle.  相似文献   

16.
1. Isometric contractions of tenotomized rabbit solei have been compared with a group of unoperated control muscles. A large decrease in the tension developed by the tenotomized muscle was accompanied by a slight shortening of the twitch contraction time, and a larger, progressive, reduction in the time to half relaxation.

2. A comparison of motor units obtained from muscles which had been tenotomized for six weeks with those of the control muscles showed a large reduction in the range of contraction and half relaxation times of the units from the tenotomized muscles.

3. The mean motor unit tension (expressed as a percentage of the whole muscle tension) was similar for both those units from the control muscles and those from muscles which had been tenotomized for six weeks, indicating a uniform atrophy of motor units within the tenotomized muscles.

4. It was concluded that the change in the pattern of motor unit contraction times was not the result of a process of differential atrophy favouring the preservation of the faster contracting motor units.

5. A correlation between axon conduction velocity and both the speed of contraction and the size (tension) of the motor units was demonstrated in the control muscles. Following tenotomy the relationship between axon conduction velocity and motor unit tension was lost.

  相似文献   

17.
During standing posture, the soleus muscles acts to control sway in the anteroposterior (AP) direction. The soleus muscles bilaterally share a common function during standing tasks. We sought to determine whether common descending inputs, as evidenced by the synchronization of bilateral motor unit pairs, were employed as a strategy to control this common function. Single motor units were recorded from the soleus muscles in subjects who stood on adjacent force platforms for 5 min with their eyes open or closed. While standing with the eyes open, only 4/39 bilateral motor unit pairs showed significant synchronization. Similarly, only 3/36 motor unit pairs were significantly synchronized during the eyes closed task. The low incidence of synchronization was observed despite a high correlation in the amount of sway in the AP direction between legs in both the eyes open and eyes closed tasks (rho = 0.80 and rho = 0.83, respectively). When the extent of synchronization was assessed between pairs of motor units within the same leg with the eyes open, 10/12 pairs were synchronized. Furthermore, when pairs of soleus motor units were recorded both bilaterally and unilaterally during voluntary isometric ankle plantarflexion, only 4/30 bilateral pairs showed significant synchronization, whereas 19/24 unilateral pairs had significant synchronization. In this study, there was little evidence of the existence of synchronization between bilateral soleus motor unit pairs in either postural tasks or voluntary isometric contractions. In cases in which bilateral synchronization was observed, it was considerably weaker than the synchronization of motor units within a single soleus muscle. The results of this study reveal that it is rather uncommon for bilateral soleus motoneurons to receive common descending synaptic inputs, whereas two motoneurons within a single soleus muscle do.  相似文献   

18.
1. The relationships between maximum tetanic tension (P0), endurance time, and axonal conduction velocity (CV) were investigated in fast-twitch motor units of the cat flexor carpi radialis (FCR) and medial gastrocnemius (MG) muscles, and in one flexor digitorum longus (FDL) muscle. Endurance time was the length of time that a unit could maintain 25% of its maximum tetanic tension during a sustained contraction. Motor-unit tension was "clamped" at 25% of maximum by altering the stimulation rate of a unit's motor axon through computer feedback control. 2. In individual experiments, including the one investigated FDL muscle, an inverse relation was consistently found between maximum tension and endurance time. Pooled data from the FCR and MG muscles also resulted in significant correlations between maximum tetanic tension and endurance time. 3. Following the force-clamp contraction, some motor units were subjected to the standard fatigue test of Burke and colleagues (6). Motor units were classified as type FR (fast twitch, fatigue resistant) or type FF* (fast twitch, fast fatiguing after the force-clamp contraction). For both type FR and FF* units, maximum tetanic tension and endurance time were found to be inversely related. However, no correlation was found between maximum tetanic tension and fatigue index for type FR units. Only when all type F (FR + FF*) units were considered as a population was there a significant correlation between these two properties. 4. Other investigators have shown that maximum tetanic tension and axonal conduction velocity are highly correlated with the recruitment order of motoneurons (e.g., Refs. 2, 26). Endurance time was found to be more tightly coupled with contraction strength than with conduction velocity. In 12 of 14 experiments, significant Spearman rank correlation coefficients were found between endurance time and tension, whereas significant correlations were found in only 3 of 14 experiments for endurance time and conduction velocity. 5. Pairs of motor units isolated from the same muscle were formed to see if the unit with the smaller tension had the slower conduction velocity and the longer endurance time. Across all muscles, the probability that the unit with the smallest tension had the greatest endurance time was 0.91 (441 of 487 pairs). By contrast, the probability that the least forceful unit of the pair had the slowest conduction velocity was 0.61. 6. In four experiments, pairs of type-identified units were examined. Among FR-FR pairs, the least forceful unit had the greatest endurance time in 88% of 43 pairs. For FF*-FF* pairs, the percentage was somewhat lower, 72% of 29 pairs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Discharge patterns of human genioglossus motor units during sleep onset   总被引:1,自引:0,他引:1  
STUDY OBJECTIVES: Multiunit electromyogram recordings of genioglossus have demonstrated an abrupt reduction in the muscle's activity at sleep onset. Recent evidence from single motor unit recordings indicates that the human genioglossus muscle consists of motor units with a variety of discharge patterns. The aim of the present study was to determine the effect of sleep onset on the activity of individual motor units as a function of their particular discharge pattern. DESIGN: Genioglossus activity was assessed using intramuscular fine-wire electrodes via a percutaneous approach. Sleep onsets (alpha-to-theta transitions) were identified and the genioglossus electromyogram recordings analyzed for single motor unit activity. SETTING: Sleep research laboratory. PARTICIPANTS: Sleep and respiratory data were collected in 8 healthy subjects (6 men). MEASUREMENTS AND RESULTS: One hundred twenty-seven motor units were identified: 23% inspiratory phasic, 45% inspiratory tonic, 4% expiratory phasic, 9% expiratory tonic, 16% tonic, and 3% other. Approximately 50% of inspiratory units (phasic and tonic) ceased activity entirely at sleep onset, whereas those inspiratory units that continued to be active showed a reduction in the proportion of each breath over which they were active. However, the rate of discharge of inspiratory units during the period they did fire was not altered. In contrast, tonic and expiratory units were unaffected by sleep onset, maintaining their discharge pattern over the alpha-to-theta transition. CONCLUSIONS: Central control of inspiratory motoneuron output differs from that of tonic and expiratory units during sleep onset, suggesting that the maintenance of airway patency during sleep may become more reliant on the stiffening properties of tonic and expiratory modulated motor units.  相似文献   

20.
We have introduced an in-situ preparation to induce motor unit activity by stimulating a sensory-CNS circuit, using the third instar larvae of Drosophila melanogaster. Discrete identifiable motor units that are well defined in anatomic and physiologic function can be recruited selectively and driven depending on the sensory stimulus intensity, duration, and frequency. Since the peripheral nervous system is bilaterally symmetric to coordinate bilateral symmetric segmental musculature patterns, fictive forms of locomotion are able to be induced. Monitoring the excitatory postsynaptic potentials (EPSP) on the prominent ventral longitudinal body wall muscles, such as m6 and m12, provides additional insight into how the selective motor units might be recruited within intact animals. We also introduce the actions of the neuromodulators (serotonin, octopamine (OA) and dopamine (DA)) on the inducible patterns of activity within the sensory-motor circuit. The powerful genetic manipulation in Drosophila opens many avenues for further investigations into the circuitry and cellular aspects of pattern generation and developmental issues of circuitry formation and maintenance in the model organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号