首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
DFF45 has essential functions in the final stage of apoptosis by acting both as a folding chaperone and a DNase inhibitor of DFF40. The gene encoding DFF45 (DFFA) maps to the consensus deleted region in primary neuroblastoma (NB; 1p36.2-3) and within the homozygously deleted region in an NB cell line (1p36.2). DFF45 is therefore an attractive candidate NB tumor suppressor. In a previous study we found a rare allele variant, causing a non-polar to a polar amino acid exchange (Ile69Thr) in a preserved hydrophobic patch of DFF45, and we also found DFFA to be preferentially expressed in favorable NB tumors. We have extended the previous study and performed mutation analyses in another 56 NB tumors (100 in total) as well as a set of other tumors for coding mutations in DFFA. We have also performed studies of the DFFA expression in tumors using real-time PCR. We found a missense mutation (Ile15Met) in the remaining allele of a teratoma with heterozygous deletion of 1p, and a three base-pair deletion in an NB of unknown stage causing a deletion of amino acid 37 in DFF45. The one-base substitution detected in the teratoma was not present in the patients constitutional DNA, i.e. it is a true mutation present in the tumor DNA only. In conclusion, three different coding alterations have been found in the region encoding the N-terminal regulatory domain of DFF45, responsible for binding and achieving its chaperone and inhibitor functions on other proteins. Moreover, by real-time RT-PCR expression study, we found the mRNA level of DFFA to be significantly (p=0.038) reduced by a factor of 1.7 times in NB tumors of unfavorable outcome.  相似文献   

2.
We have previously defined a homozygously deleted region at chromosome 1p36.2-p36.3 in human neuroblastoma cell lines, NB-1 and NB-C201, and identified six genes including DFF45/ICAD within this region. In this study, we found that NB-C201 cells are much more resistant to various genotoxic stresses such as cisplatin (CDDP) than CHP134 and SH-SY5Y cells that do not have the homozygous deletion. To examine a role(s) of DFF45 in the regulation of apoptosis in response to CDDP, we have established stably DFF45-expressing NB-C201 cell clones (DFF45-1 and DFF45-3) and a control cell clone (NB-C201-C) using a retrovirus-mediated gene transfer. In contrast to NB-C201-C cells, DFF45-3 cells displayed apoptotic nuclear fragmentation in response to CDDP. Although CDDP-induced proteolytic cleavage of procaspase-3 and DFF45 in DFF45-3 cells, we could not detect a typical apoptotic DNA fragmentation. Additionally, deletion analysis revealed that C-terminal region of DFF45 is required for inducing nuclear fragmentation. Unexpectedly, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays demonstrated that DFF45 has undetectable effect on CDDP sensitivity of NB-C201 cells. Taken together, our present results suggest that DFF45/DFF40 system may be sufficient for CDDP-induced nuclear fragmentation but not DNA cleavage.  相似文献   

3.
4.
Caspase-3及其底物DFF45在人肺癌组织中的表达及意义   总被引:4,自引:0,他引:4  
目的:检测Caspase-3、DNA裂解因子(DFF45)在肺癌组织中的表达及与临床病理特征的关系.方法:在57例肺癌组织中应用免疫组织化学SP法、Western blot检测Caspase-3、DFF45蛋白的表达.结果:Western blot实验结果与免疫组化基本相符.57例肺癌组织中Caspase-3、DFF45蛋白表达阳性率分别为66.67%,29.82%.Caspase-3和DFF45蛋白的阳性表达率与组织学类型无关(P>0.05),与肺癌的分化程度和淋巴结转移显著相关(P<0.05).在肺癌组织中,Caspase-3与DFF45的表达具有显著正相关性(P=0.024).结论:Caspase-3和DFF45蛋白的低表达,促进了肺癌细胞的生长和淋巴结的转移.  相似文献   

5.

Background  

MicroRNA-145 (miR-145) is considered to play key roles in many cellular processes, such as proliferation, differentiation and apoptosis, by inhibiting target gene expression. DNA Fragmentation Factor-45 (DFF45) has been found to be the substrate of Caspase-3, and the cleavage of DFF45 by caspase-3 during apoptosis releases DFF40 that degrades chromosomal DNA into nucleosomal fragments. There are currently no in-depth studies on the relationship between miR-145 and the DFF45 gene.  相似文献   

6.
Neuroblastomas are biologically and clinically heterogeneous tumours that most often occur sporadically in children at median age of 2 years. The PHOX2B gene is implicated in the development of the autonomic nervous system and has been found to be infrequently mutated in sporadic neuroblastoma tumours and in some patients with hereditary neuroblastoma. We have screened a selected series of 36 paediatric tumours with presumed genetic predisposition, 34 of them neuroblastomas, for mutations in PHOX2B. A constitutional heterozygous missense mutation was found in a boy who developed bilateral adrenal tumours and stage 4 disease during infancy. The second allele of the PHOX2B locus was lost in the tumour DNA. Histopathological evaluation of the tumours suggested growth of two primary tumours, one with diploid DNA content and the other with tetraploid DNA content, i.e. a case of neuroblastoma stage 4M (multifocal tumour). However, array CGH (comparative genomic hybridization) data performed on both tumour masses from the patient instead supported a model where a common malignant precursor gave rise to the diploid tumour and subsequently the tetraploid tumour have progressed from the common precursor or by metastasis from the diploid tumour with additional genetic changes. The whole genome dosage analysis showed that the remaining alleles of PHOX2B had been lost in both tumours together with a specific 17q gain pattern. The tetraploid tumour had these features together with additional whole chromosomal loss of chromosomes 3, 9, 14 and 15. Based on the data presented here we suggest that loss of PHOX2B and 17q gain are early events in neuroblastoma tumourigenesis. We also propose investigators to re-analyze the rare cases of multifocal neuroblastomas with the array CGH technique for better understanding of the origin of these tumours.  相似文献   

7.
Alteration of the PATCHED locus in superficial bladder cancer   总被引:3,自引:0,他引:3  
Chromosome 9 alterations are the most frequently encountered cytologic anomalies in urothelial carcinoma (UC). We previously screened 139 low-stage UCs for loss of heterozygosity on chromosome 9, and identified five distinct regions likely to harbour tumour-suppressor genes. The present study focused on deletion mapping in the 9q22 region with 11 additional microsatellite markers. New deletions in the 9q22 region were found in five tumours. Deletion mapping allowed us to identify a 0.5 CM common minimal region of deletion between markers D9S280 and D9S1809, encompassing PATCHED (PTC), a gene identified as a tumour suppressor in basal cell carcinoma and in medulloblastoma. A marker located in the first intron of this gene showed the highest percentage of deletion (45%). cDNA sequencing in 15 tumours with deletion of PTC showed no mutation in the remaining allele. However, average expression of PTC mRNA measured by semiquantitative RT-PCR was significantly decreased in tumours with LOH in the 9q22 region, compared to normal urothelium (P=0.04), while it showed marked fluctuations in tumours without deletion. Our results suggest that the PTC gene is a putative suppressor at the 9q22 locus and that haploinsufficiency of this gene may be an early event in the development of papillary bladder tumours.  相似文献   

8.
Deletions of chromosome 3p are frequent in many types of neoplasia including neural crest tumours such as neuroblastoma (NB) and phaeochromocytoma. Recently we isolated several candidate tumour suppressor genes (TSGs) from a 120 kb critical interval at 3p21.3 defined by overlapping homozygous deletions in lung and breast tumour lines. Although mutation analysis of candidate TSGs in lung and breast cancers revealed only rare mutations, expression of one of the genes (RASSF1A) was absent in the majority of lung tumour cell lines analysed. Subsequently methylation of a CpG island in the promoter region of RASSF1A was demonstrated in a majority of small cell lung carcinomas and to a lesser extent in non-small cell lung carcinomas. To investigate the role of 3p TSGs in neural crest tumours, we (a) analysed phaeochromocytomas for 3p allele loss (n=41) and RASSF1A methylation (n=23) and (b) investigated 67 neuroblastomas for RASSF1A inactivation. 46% of phaeochromocytomas showed 3p allele loss (38.5% at 3p21.3). RASSF1A promoter region hypermethylation was found in 22% (5/23) of sporadic phaeochromocytomas and in 55% (37/67) of neuroblastomas analysed but RASSF1A mutations were not identified. In two neuroblastoma cell lines, methylation of RASSF1A correlated with loss of RASSF1A expression and RASSF1A expression was restored after treatment with the demethylating agent 5-azacytidine. As frequent methylation of the CASP8 gene has also been reported in neuroblastoma, we investigated whether RASSF1A and CASP8 methylation were independent or related events. CASP8 methylation was detected in 56% of neuroblastomas with RASSF1A methylation and 17% without RASSF1A methylation (P=0.0031). These results indicate that (a) RASSF1A inactivation by hypermethylation is a frequent event in neural crest tumorigenesis, particularly neuroblastoma, and that RASSF1A is a candidate 3p21.3 neuroblastoma TSG and (b) a subset of neuroblastomas may be characterized by a CpG island methylator phenotype.  相似文献   

9.
Although neuroblastoma is the most common extracranial solid tumour of childhood, little is known about its aetiology. Together with MYCN amplification and chromosome 17q gain, chromosome 1p deletion is one of the most frequently occurring genetic abnormalities in neuroblastoma. Based upon mapping of deletion breakpoints, putative tumour suppressor gene loci have been assigned to the distal part of the short arm of chromosome 1. Recently, the EXTL1 gene was suggested as a candidate neuroblastoma-suppressor gene and to evaluate this hypothesis, we performed 1p deletion analysis and mutation screening of the EXTL1-coding region on DNA from 22 primary neuroblastomas and 21 neuroblastoma cell lines. Deletions of the chromosome region 1p36.1, including the EXTL1 gene, were detected in several neuroblastoma cell lines and primary tumours. EXTL1 mutation screening resulted in the detection of one unclassified variant (Ser28Cys) but could not provide additional evidence of EXTL1 being involved in the aetiology of neuroblastoma.  相似文献   

10.
A number of distinct subtypes of neuroblastoma exist with different genetic abnormalities that are predicative of outcome. Whole chromosome gains are usually associated with low stage disease and favourable outcome, whereas loss of 1p, 3p and 11q, unbalanced gain of 17q and MYCN amplification (MNA) are indicative of high stage disease and unfavourable prognosis. Although MNA and loss of 11q appear to represent two distinct genetic subtypes of advanced stage neuroblastoma, a detailed understanding of how these subtypes differ in terms of global gene expression is still lacking. We have used metaphase comparative genomic hybridization (CGH) analysis in combination with oligonucleotide technology to identify patterns of gene expression that correlate with specific genomic imbalances found in primary neuroblastic tumours and cell lines. The tumours analysed in this manner included a ganglioneuroma, along with various ganglioneuroblastoma and neuroblastoma of different stages and histopathological classifications. Oligonucleotide microarray-based gene expression profile analysis was performed with Affymetrix HU133A arrays representing approximately 14 500 unique genes. The oligonucleotide microarray results were subsequently validated by quantitative real-time PCR, immunohistochemical staining, and by comparison of specific gene expression patterns with published results. Hierarchical clustering of gene expression data distinguished tumours on the basis of stage, differentiation and genetic abnormalities. A number of genes were identified whose patterns of expression were highly correlated with 11q loss; supporting the concept that loss of 11q represents a distinct genetic subtype of neuroblastoma. The implications of these results in the process of neuroblastoma development and progression are discussed.  相似文献   

11.
12.
The p16 (CDKN2/MTS-1/INK4A) gene is one of several tumour-suppressor genes that have been shown to be inactivated by DNA methylation in various human cancers including breast tumours. We have used bisulphite genomic sequencing to examine the detailed sequence specificity of DNA methylation in the CpG island promoter/exon 1 region in the p16 gene in DNA from a series of human breast cancer specimens and normal human breast tissue (from reductive mammaplasty). The p16 region examined was unmethylated in the four normal human breast specimens and in four out of nine breast tumours. In the other five independent breast tumour specimens, a uniform pattern of DNA methylation was observed. Of the nine major sites of DNA methylation in the amplified region from these tumour DNAs, four were in non-CG sequences. This unusual concentration of non-CG methylation sites was not a general phenomenon present throughout the genome of these tumour cells because the methylated CpG island regions of interspersed L1 repeats had a pattern of (almost exclusively) CG methylation similar to that found in normal breast tissue DNA and in DNA from tumours with unmethylated p16 genes. These data suggest that DNA methylation of the p16 gene in some breast tumours could be the result of an active process that generates a discrete methylation pattern and, hence, could ultimately be amenable to theraputic manipulation. © 1999 Cancer Research Campaign  相似文献   

13.
14.
Loss of heterozygosity of the distal region of chromosome 1p where tumor suppressor gene(s) might harbor is frequently observed in many human cancers including neuroblastoma (NBL) with MYCN amplification and poor prognosis. We have identified for the first time a homozygously deleted region at the marker D1S244 within the smallest region of overlap at 1p36.2-p36.3 in two NBL cell lines, NB-1 and NB-C201 (MASS-NB-SCH1), although our genotyping has suggested the possibility that both lines are derived from the same origin. The 800-kb PAC contig covering the entire region of homozygous deletion was made and partially sequenced (about 60%). The estimated length of the deleted region was 500 kb. We have, thus far, identified six genes within the region which include three known genes (DFF45, PGD, and CORT) as well as three other genes which have been reported during processing our present project for the last 3(1/2) years (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14). They include the genes related to apoptosis, glucose metabolism, ubiquitin-proteasome pathway, a neuronal microtubule-associated motor molecule and biogenesis of peroxisome. At least three genes (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14) were differentially expressed at high levels in favorable and at low levels in unfavorable subsets of primary neuroblastoma. Since the 1p distal region is reported to be imprinted, those differentially expressed genes could be the new members of the candidate NBL suppressor, although RT-PCR-SSCP analysis has demonstrated infrequent mutation of the genes so far identified. Full-sequencing and gene prediction for the region of homozygous deletion would elucidate more detailed structure of this region and might lead to discovery of additional candidate genes. Oncogene (2000) 19, 4302 - 4307  相似文献   

15.
16.
The clinical aggressiveness of neuroblastoma, a childhood embryonal tumour of neuroectodermal cells derived from the neural crest, is considered to be dictated by the competitive interactions between cell proliferation, differentiation and apoptosis. Caspase-9 is a central effector enzyme in the apoptotic mechanism. Recent studies with caspase-9 (CASP9) knockout mice indicate a primary defect in the brain caused by decreased apoptosis during the early stages of nervous system development. It is our hypothesis that silencing of CASP9 through genetic mutations may promote neuroblastoma tumorigenesis. Here, we report the outcome of screening neuroblastoma tumours for silencing mutations in CASP9. cDNA prepared from RNA isolated from 22 neuroblastoma tumours representing the full range of neuroblastoma clinicopathological disease stages was sequenced. Single nucleotide changes were detected in all neuroblastoma tumours, but were found not to represent silencing mutations, but rather sequence polymorphisms. These polymorphisms did not associate with the clinicopathological stages of disease or the predicted clinical outcomes of the patients. Silencing mutations of CASP9 are therefore unlikely to be causal to neuroblastoma tumorigenesis.  相似文献   

17.
Mutation analysis of P73 and TP53 in Merkel cell carcinoma   总被引:15,自引:0,他引:15  
The p73 gene has been mapped to 1p36.33, a region which is frequently deleted in a wide variety of neoplasms including tumours of neuroectodermal origin. The p73 protein shows structural and functional homology to p53. For these reasons, p73 was considered as a positional and functional candidate tumour suppressor gene. Thus far, mutation analysis has provided no evidence for involvement of p73 in oligodendrogliomas, lung carcinoma, oesophageal carcinoma, prostatic carcinoma and hepatocellular carcinoma. In neuroblastoma, two mutations have been observed in a series of 140 tumours. In view of the occurrence of 1p deletions in Merkel cell carcinoma (MCC) and the location of p73 we decided to search for mutations in the p73 gene in five MCC cell lines and ten MCC tumours to test potential tumour suppressor function for this gene in MCC. In view of the possible complementary functions of p73 and TP53 we also examined the status of the TP53 gene. Sequence analysis of the entire coding region of the p73 gene revealed previously reported polymorphisms in four MCCs. In one MCC tumour, a mis-sense mutation located in the NH2-terminal transactivation region of the p73 gene was found. These results show that p73, analogous to neuroblastoma, is infrequently mutated in MCC. This is also the first report in which the role of TP53 in MCC has been investigated by sequencing the entire coding region of TP53. TP53 mis-sense mutations and one non-sense mutation were detected in three of 15 examined MCCs, suggesting that TP53 mutations may play a role in the pathogenesis or progression of a subset of MCCs. Moreover, typical UVB induced C to T mutations were found in one MCC cell line thus providing further evidence for sun-exposure in the aetiology of this rare skin cancer.  相似文献   

18.
Somatic mutations in the transforming growth factor beta receptor type II (TGF-beta RII) gene have been observed in various human cancers showing microsatellite instability. Most of the mutations observed were additions or deletions of the mononucleotide repeat sequence present in TGF-beta RII coding region, suggesting that the TGF-beta RII may be a target gene of genomic instability in tumorigenesis. Recently, we reported germ-line frameshift mutations in the mononucleotide repeat sequence of the hMSH6 gene, which is believed to be one of the target genes of genomic instability in tumorigenesis, suggesting the possibility of germ-line mutation in mononucleotide repeat sequences. Moreover, one case of germ-line mutation in the TGF-beta RII gene was identified in a hereditary nonpolyposis colorectal cancer (HNPCC) kindred, indicating the involvement of TGF-beta RII inactivation in tumorigenesis of HNPCC. However, germ-line mutation analysis of all of the coding sequences and the mononucleotide repeat sequence of the TGF-beta RII in HNPCC patients has not yet been fully elucidated. Therefore, to further investigate the presence of germ-line mutations, we screened all of the coding region sequences and mononucleotide repeat sequence of TGF-beta RII from 35 HNPCC, 44 suspected HNPCC, and 45 sporadic early-onset colorectal cancer patients. However, no pathogenic mutations other than silent mutations, introgenic mutation, and polymorphisms were identified. Two silent mutations at codons 309 (ACG to ACA) and 340 (CAT to CAC) in the kinase domain located in exon 4 were detected. A 1-bp cytidine deletion was observed 6 bases from the 3' end of intron. Two polymorphisms were identified at codon 389 (AAC to AAT) and at the fourth-to-last base in intron 3. The polymorphism at codon 389 was more frequent in HNPCC (20%; 7 of 35) and suspected HNPCC patients (18%; 8 of 44) than in nonmalignant control group (10%; 5 of 50). Moreover, the frequency was significantly higher in early-onset colorectal cancer patients (31%; 14 of 45). This is the first report of a different frequency of polymorphism in HNPCC, suspected HNPCC, early-onset colorectal cancer patients, and healthy normal individuals. This result suggests that: (a) germ-line mutation of the TGF-beta RII gene may be a rare event during tumorigenesis in HNPCC and sporadic early-onset colorectal cancer; (b) the mononucleotide repeat sequence of the TGF-beta RII gene is an apparent target of genomic instability but not of germ-line mutation; and (c) the polymorphism of codon 389 (AAC to AAT) is frequent, especially in early-onset colorectal cancer patients, in which it is more frequent than in control group.  相似文献   

19.
A G to C polymorphism (rs2910164) is located within the sequence of miR-146a precursor, which leads to a change from a G:U pair to a C:U mismatch in its stem region. The predicted miR-146a target genes include BRCA1 and BRCA2, which are key breast and ovarian cancer genes. To examine whether rs2910164 plays any role in breast and/or ovarian cancer, we studied associations between this polymorphism and age of diagnosis in 42 patients with familial breast cancer and 82 patients with familial ovarian cancer. Breast cancer patients who had at least one miR-146a variant allele were diagnosed at an earlier age than with no variant alleles (median age 45 versus 56, P = 0.029) and ovarian cancer patients who had at least one miR-146a variant allele were diagnosed younger than women without any variant allele (median age 45 versus 50, P = 0.014). In further functional analysis, we found that the variant allele displayed increased production of mature miR-146a from the precursor microRNA compared with the common allele. Consistent with the target prediction, in a target in vitro assay, we observed that miR-146a could bind to the 3' untranslated regions (UTRs) of BRCA1 and BRCA2 messenger RNAs (mRNAs) and potentially modulate their mRNA expression. Intriguingly, the binding capacity between the 3' UTR of BRCA1 and miR-146a was statistically significantly stronger in variant C allele than those in common G allele (P = 0.046). Taken together, our data suggest that breast/ovarian cancer patients with variant C allele miR-146a may have high levels of mature miR-146 and that these variants predispose them to an earlier age of onset of familial breast and ovarian cancers.  相似文献   

20.

Background  

A common feature of neuroblastoma tumours are partial deletions of the short arm of chromosome 1 (1p-deletions). This is indicative of a neuroblastoma tumour suppressor gene being located in the region. Several groups including our have been studying candidate neuroblastoma genes in the region, but no gene/genes have yet been found that fulfil the criteria for being a neuroblastoma tumour suppressor. Since frequent mutations have not been detected, we have now analyzed the expression and promoter CpG island methylation status of the genes UBE4B, KIF1B, PGD, APITD1, DFFA and PEX14 in the 1p36.22 region in order to find an explanation for a possible down-regulation of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号