首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The regulated binding of effector proteins to the nucleosome plays a central role in the activation and silencing of eukaryotic genes. How this binding changes the properties of chromatin to mediate gene activation or silencing is not fully understood. Here we provide evidence that association of the budding yeast silent information regulator 3 (Sir3) silencing protein with the nucleosome induces a conformational change in the amino terminus of histone H4 that promotes interactions between the conserved H4 arginines 17 and 19 (R17 and R19) and nucleosomal DNA. Substitutions of H4R17 and R19 with alanine abolish silencing in vivo, but have little or no effect on binding of Sir3 to nucleosomes or histone H4 peptides in vitro. Furthermore, in both the previously reported crystal structure of the Sir3-bromo adjacent homology (BAH) domain bound to the Xenopus laevis nucleosome core particle and the crystal structure of the Sir3-BAH domain bound to the yeast nucleosome core particle described here, H4R17 and R19 make contacts with nucleosomal DNA rather than with Sir3. These results suggest that Sir3 binding generates a more stable nucleosome by clamping H4R17 and R19 to nucleosomal DNA, and raise the possibility that such induced changes in histone–DNA contacts play major roles in the regulation of chromatin structure.  相似文献   

3.
4.
REPRESSOR OF SILENCING 1 (ROS1) is a DNA demethylation enzyme that was previously identified during a genetic screen for the silencing of both RD29A-LUC and 35S-NPTII transgenes on a T-DNA construct. Here we performed a genetic screen to identify additional mutants in which the 35S-NPTII transgene is silenced. We identified several alleles of ros1 and of the following components of the RNA-directed DNA methylation (RdDM) pathway: NRPD1 (the largest subunit of polymerase IV), RDR2, NRPE1 (the largest subunit of polymerase V), NRPD2, AGO4, and DMS3. Our results show that the silencing of 35S-NPTII in the RdDM pathway mutants is due to the reduced expression of ROS1 in the mutants. We also identified a putative histone acetyltransferase (ROS4) from the genetic screen. The acetyltransferase contains a PHD-finger domain that binds to unmethylated histone H3K4. The mutation in ROS4 led to reduction of H3K18 and H3K23 acetylation levels. We show that the silencing of 35S-NPTII and some transposable element genes was released by the ddm1 mutation but that this also required ROS4. Our study identifies a unique antisilencing factor, and reveals that the RdDM pathway has an antisilencing function due to its role in maintaining ROS1 expression.  相似文献   

5.
6.
7.
The FACT complex is a conserved cofactor for RNA polymerase II elongation through nucleosomes. FACT bears histone chaperone activity and contributes to chromatin integrity. However, the molecular mechanisms behind FACT function remain elusive. Here we report biochemical, structural, and mutational analyses that identify the peptidase homology domain of the Schizosaccharomyces pombe FACT large subunit Spt16 (Spt16-N) as a binding module for histones H3 and H4. The 2.1-A crystal structure of Spt16-N reveals an aminopeptidase P fold whose enzymatic activity has been lost. Instead, the highly conserved fold directly binds histones H3-H4 through a tight interaction with their globular core domains, as well as with their N-terminal tails. Mutations within a conserved surface pocket in Spt16-N or posttranslational modification of the histone H4 tail reduce interaction in vitro, whereas the globular domains of H3-H4 and the H3 tail bind distinct Spt16-N surfaces. Our analysis suggests that the N-terminal domain of Spt16 may add to the known H2A-H2B chaperone activity of FACT by including a H3-H4 tail and H3-H4 core binding function mediated by the N terminus of Spt16. We suggest that these interactions may aid FACT-mediated nucleosome reorganization events.  相似文献   

8.
9.
Dynamic changes in histone modification are critical for regulating DNA double-strand break (DSB) repair. Activation of the Tip60 acetyltransferase by DSBs requires interaction of Tip60 with histone H3 methylated on lysine 9 (H3K9me3). However, how H3K9 methylation is regulated during DSB repair is not known. Here, we demonstrate that a complex containing kap-1, HP1, and the H3K9 methyltransferase suv39h1 is rapidly loaded onto the chromatin at DSBs. Suv39h1 methylates H3K9, facilitating loading of additional kap-1/HP1/suv39h1 through binding of HP1’s chromodomain to the nascent H3K9me3. This process initiates cycles of kap-1/HP1/suv39h1 loading and H3K9 methylation that facilitate spreading of H3K9me3 and kap-1/HP1/suv39h1 complexes for tens of kilobases away from the DSB. These domains of H3K9me3 function to activate the Tip60 acetyltransferase, allowing Tip60 to acetylate both ataxia telangiectasia-mutated (ATM) kinase and histone H4. Consequently, cells lacking suv39h1 display defective activation of Tip60 and ATM, decreased DSB repair, and increased radiosensitivity. Importantly, activated ATM rapidly phosphorylates kap-1, leading to release of the repressive kap-1/HP1/suv39h1 complex from the chromatin. ATM activation therefore functions as a negative feedback loop to remove repressive suv39h1 complexes at DSBs, which may limit DSB repair. Recruitment of kap-1/HP1/suv39h1 to DSBs therefore provides a mechanism for transiently increasing the levels of H3K9me3 in open chromatin domains that lack H3K9me3 and thereby promoting efficient activation of Tip60 and ATM in these regions. Further, transient formation of repressive chromatin may be critical for stabilizing the damaged chromatin and for remodeling the chromatin to create an efficient template for the DNA repair machinery.DNA double-strand breaks (DSBs) are toxic and must be repaired to maintain genomic stability. Detection of DSBs requires recruitment of the mre11–rad50–nbs1 (MRN) complex to the DNA ends (1). MRN then recruits and activates the ataxia telangiectasia-mutated (ATM) kinase (2, 3) through a mechanism that also requires the Tip60 acetyltransferase (3). Tip60 directly acetylates and activates ATM’s kinase activity (46) and functions, in combination with MRN, to promote ATM-dependent phosphorylation of DSB repair proteins (3), including histone H2AX. This process creates domains of phosphorylated H2AX (γH2AX) extending for hundreds of kilobases along the chromatin (7, 8). Mdc1 then binds to γH2AX, providing a landing pad for other DSB repair proteins, including the RNF8/RNF168 ubiquitin ligases (1, 3, 9, 10). Tip60 also plays a critical role in regulating chromatin structure at DSBs as part of the NuA4–Tip60 complex (11). NuA4-Tip60 catalyzes histone exchange (via the p400 ATPase subunit) and acetylation of histone H4 (by Tip60) at DSBs (1215), leading to the formation of open, flexible chromatin domains adjacent to the break (12, 13). These open chromatin structures then facilitate histone ubiquitination, the loading of brca1 and 53BP1, and repair of the DSB (13, 16). The ordered acetylation and ubiquitination of the chromatin and loading of DNA repair proteins is therefore critical for DSB repair.Activation of Tip60’s acetyltransferase activity requires interaction between Tip60’s chromodomain and histone H3 methylated on lysine 9 (H3K9me3) on nucleosomes at the break (4, 6). This interaction, in combination with tyrosine phosphorylation of Tip60 (17), increases Tip60’s acetyltransferase activity and promotes acetylation of both the ATM kinase and histone H4 (46, 17). Consequently, loss of H3K9me2/3 leads to failure to activate the ATM signaling pathway, loss of H4 acetylation during DSB repair, disruption of heterochromatin, genomic instability, and defective DSB repair (4, 1719). H3K9me3s therefore play a critical role in linking chromatin structure at DSBs to the activation of DSB signaling proteins such as Tip60 and ATM.How Tip60 gains access to H3K9me3 and how H3K9me3 levels at DSBs are regulated is not known. H3K9me3 is concentrated in heterochromatin domains, where it recruits HP1, kap-1, and H3K9 methyltransferases (20, 21) to maintain the silent, compact conformation of heterochromatin (20). This implies that Tip60’s acetyltransferase activity can only be activated at DSBs in regions of high H3K9me3 density, such as heterochromatin. Alternatively, H3K9 methylation may be actively increased at DSBs in regions of low H3K9me3 density to allow for Tip60 activation and efficient DSB repair in euchromatin. Understanding the dynamics of H3K9 methylation at DSBs is therefore critical to understanding how Tip60 activity is regulated by the local chromatin architecture. Here, we show that the suv39h1 methyltransferase is recruited to DSBs in euchromatin as part of a larger kap-1/HP1/suv39h1 complex. Suv39h1 increases H3K9me3 at DSBs, activating Tip60’s acetyltransferase activity and promoting the subsequent acetylation and activation of ATM. Further, loss of inducible H3K9me3 at DSBs leads to defective repair and increased radiosensitivity. Finally, loading of the kap-1/HP1/suv39h1 complex is transient, and the complex is rapidly released from the chromatin through a negative feedback loop driven by ATM-dependent phosphorylation of the kap-1 protein.  相似文献   

10.
The hippocampus is a highly plastic brain region particularly susceptible to the effects of environmental stress; it also shows dynamic changes in epigenetic marks in response to stress and learning. We have previously shown that, in the rat, acute (30 min) restraint stress induces a substantial, regionally specific, increase in hippocampal levels of the repressive histone H3 lysine 9 trimethylation (H3K9me3). Because of the large magnitude of this effect and the fact that stress can induce the expression of endogenous retroviruses and transposable elements in many systems, we hypothesized that the H3K9me3 response was targeted to these elements as a means of containing potential genomic instability. We used ChIP coupled with next generation sequencing (ChIP-Seq) to determine the genomic localization of the H3K9me3 response. Although there was a general increase in this response across the genome, our results validated this hypothesis by demonstrating that stress increases H3K9me3 enrichment at transposable element loci and, using RT-PCR, we demonstrate that this effect represses expression of intracisternal-A particle endogenous retrovirus elements and B2 short interspersed elements, but it does not appear to have a repressive effect on long interspersed element RNA. In addition, we present data showing that the histone H3K9-specific methyltransferases Suv39h2 is up-regulated by acute stress in the hippocampus, and that this may explain the hippocampal specificity we observe. These results are a unique demonstration of the regulatory effect of environmental stress, via an epigenetic mark, on the vast genomic terra incognita represented by transposable elements.  相似文献   

11.
12.
13.
Set1 is a conserved histone H3 lysine 4 (H3K4) methyltransferase that exists as a multisubunit complex. Although H3K4 methylation is located on many actively transcribed genes, few studies have established a direct connection showing that loss of Set1 and H3K4 methylation results in a phenotype caused by disruption of gene expression. In this study, we determined that cells lacking Set1 or Set1 complex members that disrupt H3K4 methylation have a growth defect when grown in the presence of the antifungal drug Brefeldin A (BFA), indicating that H3K4 methylation is needed for BFA resistance. To determine the role of Set1 in BFA resistance, we discovered that Set1 is important for the expression of genes in the ergosterol biosynthetic pathway, including the rate-limiting enzyme HMG-CoA reductase. Consequently, deletion of SET1 leads to a reduction in HMG-CoA reductase protein and total cellular ergosterol. In addition, the lack of Set1 results in an increase in the expression of DAN1 and PDR11, two genes involved in ergosterol uptake. The increase in expression of uptake genes in set1Δ cells allows sterols such as cholesterol and ergosterol to be actively taken up under aerobic conditions. Interestingly, when grown in the presence of ergosterol set1Δ cells become resistant to BFA, indicating that proper ergosterol levels are needed for antifungal drug resistance. These data show that H3K4 methylation impacts gene expression and output of a biologically and medically relevant pathway and determines why cells lacking H3K4 methylation have antifungal drug sensitivity.  相似文献   

14.
The elongating, hyperphosphorylated form of RNA polymerase II is associated with the Elongator complex, which has the histone acetyltransferase (HAT) Elp3 as a subunit. Here we show that, in contrast to the isolated Elp3 subunit, the activity of intact Elongator complex is directed specifically toward the amino-terminal tails of histone H3 and H4, and that Elongator can acetylate both core histones and nucleosomal substrates. The predominant acetylation sites are lysine-14 of histone H3 and lysine-8 of histone H4. The three smallest Elongator subunits--Elp4, Elp5, and Elp6--are required for HAT activity, and Elongator binds to both naked and nucleosomal DNA. By using chromatin immunoprecipitation, we show that the levels of multiply acetylated histone H3 and H4 in chromatin are decreased in vivo in yeast cells lacking ELP3.  相似文献   

15.
The histone variant H3.3 is implicated in the formation and maintenance of specialized chromatin structure in metazoan cells. H3.3-containing nucleosomes are assembled in a replication-independent manner by means of dedicated chaperone proteins. We previously identified the death domain associated protein (Daxx) and the α-thalassemia X-linked mental retardation protein (ATRX) as H3.3-associated proteins. Here, we report that the highly conserved N terminus of Daxx interacts directly with variant-specific residues in the H3.3 core. Recombinant Daxx assembles H3.3/H4 tetramers on DNA templates, and the ATRX–Daxx complex catalyzes the deposition and remodeling of H3.3-containing nucleosomes. We find that the ATRX–Daxx complex is bound to telomeric chromatin, and that both components of this complex are required for H3.3 deposition at telomeres in murine embryonic stem cells (ESCs). These data demonstrate that Daxx functions as an H3.3-specific chaperone and facilitates the deposition of H3.3 at heterochromatin loci in the context of the ATRX–Daxx complex.  相似文献   

16.
17.
18.
19.
Altered expression of histone deacetylases (HDACs) is a common feature in several human malignancies and may represent an interesting target for cancer treatment, including haematological malignancies. We evaluated the mRNA gene expression profile of 12 HDAC genes by quantitative real‐time polymerase chain reaction in 94 consecutive childhood acute lymphoblastic leukaemia (ALL) samples and its association with clinical/biological features and survival. ALL samples showed higher expression levels of HDAC2, HDAC3, HDAC8, HDAC6 and HDAC7 when compared to normal bone marrow samples. HDAC1 and HDAC4 showed high expression in T‐ALL and HDAC5 was highly expressed in B‐lineage ALL. Higher than median expression levels of HDAC3 were associated with a significantly lower 5‐year event‐free survival (EFS) in the overall group of patients (P = 0·03) and in T‐ALL patients (P = 0·01). HDAC7 and HADC9 expression levels higher than median were associated with a lower 5‐year EFS in the overall group (P = 0·04 and P = 0·003, respectively) and in B‐lineage CD10‐positive patients (P = 0·009 and P = 0·005, respectively). Our data suggest that higher expression of HDAC7 and HDAC9 is associated with poor prognosis in childhood ALL and could be promising therapeutic targets for the treatment of refractory childhood ALL.  相似文献   

20.
Mitogen-activated protein kinases (MAP kinases) are activated by dual tyrosine and threonine phosphorylations in response to various stimuli, including phorbol esters. To define the mechanism of activation, recombinant wild-type 42-kDa MAP kinase (p42mapk) and a kinase-defective mutant of p42mapk (K52R) were used to assay both activator activity for p42mapk and kinase activity toward K52R in stimulated EL4.I12 mouse thymoma cells. Phorbol 12,13-dibutyrate (10 min, 650 nM) stimulated a single peak of MAP kinase activator that was coeluted from Mono Q at pH 7.5 and 8.9 with K52R kinase activity. Both activities were inactivated by the serine/threonine-specific phosphatase 2A but not by the tyrosine-specific phosphatase CD45. Phosphorylation of K52R occurred specifically on Thr-183 and Tyr-185, as determined by tryptic phosphopeptide mapping in comparison with synthetic marker phosphopeptides. These findings indicate that phorbol ester-stimulated MAP kinase kinase can activate p42mapk by threonine and tyrosine phosphorylations, and that p42mapk thus does not require an autophosphorylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号