首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In order to investigate the role of Na+,K(+)-ATPase in the development of neuronal necrosis following cerebral ischemia, ischemia was induced in gerbils by occluding the common carotid artery unilaterally for 10 min. A time-course analysis revealed that significant reductions of the Na+,K(+)-ATPase activity in the cerebral cortex and hippocampus were manifested at 15 min, 30 min, and 1 h, and returned to the control level one day following recirculation. No apparent alterations of the Mg(2+)-ATPase activity, on the other hand, were obtained throughout the experimental period. Furthermore, Scatchard analyses of [3H]ouabain binding to the cerebral cortex membranes disclosed that the Bmax values invariably decreased without any change of Kd values following ischemia. It has also been shown that treatment of the animals with an agent known to mitigate ischemic neuronal necrosis, i.e. BY-1949, significantly reversed such derangements. These results suggest that the recovery of decreased Na+,K(+)-ATPase activity shortly after ischemia exerts a protective effect against ischemic brain damage.  相似文献   

2.
The effects of dexamethasone on adenosine 5'-triphosphatase (ATPase) activity and the intracellular Ca(2+) concentration ([Ca(2+)](i)) were investigated in acidotic mouse brain. Dexamethasone (3 mg/kg, i.p.) or vehicle was administered 3 h before decapitation ischemia, and the brain concentration of adenosine 5'-triphosphate (ATP) was determined 0.5-2 min after ischemia. The effects of dexamethasone (0.3-3 mg/kg, i.p.) on Na(+),K(+)-activated ATPase (Na(+),K(+)-ATPase) and Ca(2+)-ATPase activities were evaluated at pH 7.4 and 6.8. Changes in [Ca(2+)](i) in an acidic medium were determined in hippocampal slices by microfluorometry using rhod-2 acetoxymethyl ester as a Ca(2+) marker, and the effects of dexamethasone (240 microg/l) was evaluated. Decapitation ischemia for 0.5 and 1 min reduced the brain ATP contents to 32% and 16% of the basal level, respectively. Dexamethasone slightly suppressed the extent of the decrease in the ATP level. Although dexamethasone did not affect Na(+),K(+)-ATPase activity at pH 7.4, the activity was suppressed by dexamethasone (3 mg/kg) to 68% at pH 6.8. The activity of Ca(2+)-ATPase was not affected by dexamethasone at either pH 7.4 or pH 6.8. When the pH of the medium of the brain slices was changed from 7.4 to 6.8, almost no increase in [Ca(2+)](i) was observed in the control group. The dexamethasone treatment increased [Ca(2+)](i) in the CA1 field and dentate gyrus immediately after induction of the acidic medium, the effect being significant after 150 s. Because anaerobic glucose metabolism in the early stage of ischemia enhances intracellular lactic acidosis, the findings may suggest a mechanism for the aggravation of ischemic neuronal damage by glucocorticoids.  相似文献   

3.
The effect of ischemia on the reactive expression of ecto-5′-nucleotidase in rat brain was studied 6 h and 1, 2 and 7 days after permanent middle cerebral artery occlusion (MCAO). The distribution of 5′-nucleotidase in the infarcted brain was compared to markers for astrocytes (glial fibrillary acidic protein (GFAP)) and microglia (complement receptor type 3, antibody OX42) using histological staining or immunohistochemistry. 5′-Nucleotidase could be associated with reactive astrocytes by immunohistochemistry and with reactive microglia by enzyme histochemistry. In the untreated control 5′-nucleotidase was associated with astrocytes only in the hippocampus and the submeningeal space. After ischemia the enzyme was expressed on reactive astrocytes in the tissue surrounding the volume of infarction. Individual reactive astrocytes were observed 6 h after MCAO and the astrocytic expression became continuously enhanced during the following days. An enzyme histochemical analysis of 5′-nucleotidase activity revealed a postischemic increase in reaction product around the infarcted tissue. Seven days after MCAO a discrete band (0.2–0.4 mm) of reaction product characterized the rim of the infarcted area. This band of activity of 5′-nucleotidase colocalized with a band of immunoreactivity for OX42, indicative of an intense accumulation of 5′-nucleotidase expressing microglia. Our results suggest that ischemia following permanent MCAO results in an upregulation of the capacity for the hydrolysis of nucleotides within the tissue adjacent to the infarcted volume. Nucleotides released from the damaged cells can be hydrolyzed and the adenosine eventually formed may exert neuroprotective functions limiting the extent of damage.  相似文献   

4.
Although cytosolic Ca2+ accumulation plays a pivotal role in delayed neuronal death, there have been no investigations on the role of the cellular Ca2+ export system in this novel phenomenon. To clarify the function of the Ca2+-pump in delayed neuronal death, the plasma membrane Ca2+-ATPase activity of CA1 pyramidal neurons was investigated ultracytochemically in normal and ischemic gerbil hippocampus. To correlate enzyme activity with delayed neuronal death, histochemical detection was performed at various recirculation times after 5 min of ischemia produced by occlusion of the bilateral carotid arteries. At 10 min after ischemia, CA1 pyramidal neurons showed weak Ca2+-ATPase activity. Although enzyme activity had almost fully recovered 2 h after ischemia, it was reduced again 6 h after ischemia. Thereafter, Ca2+-ATPase activity on the plasma membrance of CA1 pyramidal neurons decreased progressively, losing its localization on day 3. On day 4 following ischemia, reaction products were diffusely scattered throughout the whole cell body. Our results indicate that, after once having recovered from ischemic damage, severe disturbance of the membrane Ca2+ export system proceeds from the early stage of delayed neuronal death and disturbs the re-export of accumulated cytosolic Ca2+, which might contribute to delayed neuronal death. Occult disruption of Ca2+ homeostasis seems to occur from an extremely early stage of delayed neuronal death in CA1 pyramidal cells.  相似文献   

5.
Reactive oxygen species play a role in neuronal damage following cerebral ischemia-reperfusion. We tested whether activity of the superoxide-generating enzyme, NADPH-oxidase, is enhanced in cerebral arteries within, adjacent and distant from the ischemic core. The right middle cerebral artery (MCA) of conscious rats was temporarily occluded by perivascular injection of endothelin-1 to induce stroke (ET-1; n=19). Control rats were injected with saline (n=9). At 24 h or 72 h post-administration of ET-1, the MCA and its branches within the ipsilateral penumbra and infarcted core, corresponding arteries in the contralateral hemisphere, and basilar artery were excised. Anatomically similar arteries were excised from saline-injected rats. At 24 h after stroke, NADPH-stimulated superoxide production by arteries from the infarcted core did not differ from levels generated by arteries from control rats, whereas levels were significantly lower 72 h after stroke. However, at both time points after stroke, superoxide production by arteries from the ischemic penumbra was 8-fold greater than levels generated by arteries from control rats. Surprisingly, even in the non-ischemic arteries from the contralateral hemisphere and in the basilar artery, superoxide production was increased approximately 4- to 6-fold at 24 h, but had returned to normal 72 h after stroke. The NADPH-oxidase inhibitor, diphenyleneiodonium, virtually abolished superoxide production by all arteries. Thus, the activity of NADPH-oxidase is enhanced in cerebral arteries from the ischemic penumbra at 24 h and 72 h following cerebral ischemia. Additionally, NADPH-oxidase activity is temporarily enhanced after cerebral ischemia within arteries from non-ischemic parts of the brain.  相似文献   

6.
BACKGROUND AND PURPOSE: The purpose of this study was (1) to examine the contribution of microglia and macrophages with their interleukin-1beta production and (2) to assess the vulnerability and response of oligodendrocytes in cerebral infarction. METHODS: Male Wistar rats were subjected to permanent occlusion of the left middle cerebral artery. Expansion of ischemic infarction and response of oligodendrocytes were investigated together with accumulation of inflammatory cells, production of interleukin-1beta, and disruption of the blood-brain barrier. Apoptotic cell death was inferred from fragmented DNA and the expression of proapoptotic Bax protein. RESULTS: During expansion of infarction, amoeboid microglia and extravasation of serum albumin were observed not only in the infarcted area but also in the adjacent surviving area, whereas macrophages accumulated along the boundary and granulocytes migrated into the center of the infarction. Both amoeboid microglia and macrophages produced interleukin-1beta, an inflammatory cytokine, during an early ischemic period. Furthermore, macrophages within the infarcted tissue expressed Bax protein and subsequently showed fragmented nuclear DNA. Oligodendrocytes were detected in the infarcted area even after 24 hours following middle cerebral artery occlusion, but they subsequently developed fragmented DNA. A week after onset of ischemia, oligodendrocytes were found to be accumulated in the intact area bordered with the infarct together with reactive astrocytes. CONCLUSIONS: Our results suggest the importance of amoeboid microglia, macrophages, and their interleukin-1beta production in gradual expansion of cerebral infarction. Resident oligodendrocytes may be resistant to ischemic insults, and oligodendrocytes accumulated at the border of the infarction may participate in tissue repair after cerebral infarction.  相似文献   

7.
The effects of hyperbaric oxygen (HBO) treatment on the Na+,K+ -ATPase and superoxide dismutase (SOD) activities were examined in the optic nerves of the rats exposed to global cerebral ischemia. Animals were exposed to global cerebral ischemia of 20-min duration and were either sacrificed or exposed to the first HBO treatment immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na+,K+ -ATPase activities measurement) or 2, 24, 48 or 168 h after ischemia (for SOD activities measurement). HBO procedure was repeated for 7 consecutive days. It was found that global cerebral ischemia induced a statistically significant decrease in the Na+,K+ -ATPase activity of the optic nerves, starting from 0.5 to 168 h of reperfusion. Maximal enzymatic inhibition was registered 24 h after the ischemic damage. The decline in the Na+,K+ -ATPase activity was prevented in the animals exposed to HBO treatment within the first 6 h of reperfusion. The results of the presented experiments demonstrated also a statistically significant increase in the SOD activity after 24, 48 and 168 h of reperfusion in the optic nerves of non-HBO-treated ischemic animals as well as in the ischemic animals treated with HBO. Our results indicate that global cerebral ischemia induced a significant alterations in the Na+,K+ -ATPase and SOD activities in the optic nerves during different periods of reperfusion. HBO treatment, started within the first 6 h of reperfusion, prevented ischemia-induced changes in the Na+,K+ -ATPase activity, while the level of the SOD activity in the ischemic animals was not changed after HBO administration.  相似文献   

8.
Namba C  Adachi N  Liu K  Yorozuya T  Arai T 《Brain research》2002,957(2):271-277
The effects of dexamethasone on adenosine 5'-triphosphatase (ATPase) activity and the intracellular Ca(2+) concentration ([Ca(2+)](i)) were investigated in acidotic mouse brain. Dexamethasone (3 mg/kg, i.p.) or vehicle was administered 3 h before decapitation ischemia, and the brain concentration of adenosine 5'-triphosphate (ATP) was determined 0.5-2 min after ischemia. The effects of dexamethasone (0.3-3 mg/kg, i.p.) on Na(+),K(+)-activated ATPase (Na(+),K(+)-ATPase) and Ca(2+)-ATPase activities were evaluated at pH 7.4 and 6.8. Changes in [Ca(2+)](i) in an acidic medium were determined in hippocampal slices by microfluorometry using rhod-2 acetoxymethyl ester as a Ca(2+) marker, and the effects of dexamethasone (240 microg/l) was evaluated. Decapitation ischemia for 0.5 and 1 min reduced the brain ATP contents to 32% and 16% of the basal level, respectively. Dexamethasone slightly suppressed the extent of the decrease in the ATP level. Although dexamethasone did not affect Na(+),K(+)-ATPase activity at pH 7.4, the activity was suppressed by dexamethasone (3 mg/kg) to 68% at pH 6.8. The activity of Ca(2+)-ATPase was not affected by dexamethasone at either pH 7.4 or pH 6.8. When the pH of the medium of the brain slices was changed from 7.4 to 6.8, almost no increase in [Ca(2+)](i) was observed in the control group. The dexamethasone treatment increased [Ca(2+)](i) in the CA1 field and dentate gyrus immediately after induction of the acidic medium, the effect being significant after 150 s. Because anaerobic glucose metabolism in the early stage of ischemia enhances intracellular lactic acidosis, the findings may suggest a mechanism for the aggravation of ischemic neuronal damage by glucocorticoids.  相似文献   

9.
High affinity [3H]ouabain binding was examined in the hippocampal CA1 region and frontal cortex of rats subjected to 5 min complete cerebral ischemia in a clinical death model, and to subsequent resuscitation. A decrease of Bmax directly after ischemia and its further gradual decrease during 120 min of reperfusion were noted in the ischemia-vulnerable CA1 region, whereas no change of Bmax was observed in frontal cortex. The apparent Kd constant showed insignificant fluctuations in either of the two brain regions. Since ouabain binds with high affinity to the neuronal (alpha +)-form of Na+/K+-ATPase, the results indicate a rapid enzyme loss in CA1 neurons. The high affinity ouabain binding test proved to be a sensitive detector of premorphological changes in nerve cell membranes in ischemia.  相似文献   

10.
NS-7 is a novel, voltage-dependent Na(+) and Ca(2+) channel blocker. This study evaluated the in vivo neuroprotective effect of NS-7 in a rat transient focal ischemic model when administered during occlusion. Left middle cerebral artery occlusion was induced in adult male Sprague-Dawley rats for 120 min using an intraluminal thread method. The rats received a single intravenous injection of NS-7 or saline (control group) just after the onset of ischemia, and at 30, 60 and 120 min after ischemia. Their brains were removed after 48 h reperfusion, sectioned, and stained with hematoxylin and eosin. Animals were evaluated by neurological examination at 120 min ischemia and 48 h reperfusion. Infarcted cortex and striatum were measured quantitatively and infarction volumes were calculated. Cortical infarction volumes were 128+/-74 (NS-7) and 214+/-64 mm(3) (control) immediately after the ischemia group, 155+/-48 (NS-7) and 225+/-12 mm(3) (control) after the 30 min group, 160+/-54 (NS-7) and 225+/-48 mm(3) (control) after the 60 min group, and 176+/-43 (NS-7) and 223+/-38 mm(3) (control) after the 120 min group. Cortices in NS-7-treated groups were significantly less infarcted than in control groups at all treatment times. There was no significant difference in the striatal infarction volume between the treatment and control groups. Neurological examination showed that hemiparesis and abnormal posture of the NS-7 groups were significantly more improved at 48 h reperfusion than those of the control groups without posture examination in the 120 min group. These observations suggest that NS-7 may be a new potential therapeutic agent for the acute phase of cerebral infarction.  相似文献   

11.
Alterations in cellular membrane structure and the subsequent failure of its function after CNS ischemia were monitored by analyzing changes in the plasma membrane marker enzyme (Na(+) + K(+)-ATPase. The levels of two isozymes of (Na(+) + K(+)-ATPase, alpha+ and alpha, which have distinct cellular and anatomical distributions, were studied to determine if differential cellular damage occurs in primary and peri-ischemic injury areas. The efficacy of monosialoganglioside (GM1) treatment was assessed, since this glycosphingolipid has been shown to reduce ischemic injury by protecting cell membrane structure/function. Using a rat model of cortical focal ischemia, levels of both ATPase isozyme activities were assayed in total membrane fractions from primary ischemic tissue (parietal cortex) and three peri-ischemic tissue areas (frontal, occipital, and temporal cortex) at 1, 3, 5, 7, and 14 days after ischemia. No significant loss of either isozyme's activity occurred in any tissue area at 1 day after ischemia. At 5 days, in the primary ischemic area, both isozyme activity levels decreased by 70-75%. The alpha+ enzyme activity loss persisted up to 14 days, while a 17% recovery in alpha activity occurred. In the three peri-ischemic tissue areas, enzyme activity losses ranged from 42%-59% at 3 days after ischemia. A complete restoration of both isozyme activities was seen at 14 days. After three days of GM1 ganglioside treatment there was no loss of total (Na*+) + K(+)-ATPase activity in the three peri-ischemic areas, and a significantly reduced loss in the primary infarct tissue. An autoradiographic analysis of brain coronal sections using 3H-ouabain supports the enzymatic data and GM1 effects. Reductions in 3H-ouabain binding in all cortical layers at 3 days after ischemia were visualized. GM1 treatment significantly reduced these 3H-ouabain binding losses. In summary, time-dependent quantitative changes in activity levels of ATPase isozymes (alpha+ and alpha) reflect the different degree of membrane damage that occurs in primary vs. peri-ischemic tissues (e.g., irreversible vs. reversible membrane damage), and that ischemia affects cell membranes of all neural elements in a largely similar fashion. GM1 ganglioside was found to reduce plasma membrane damage in all CNS cell types.  相似文献   

12.
Microglial response factor-1 is a newly isolated microglial gene, which encodes a Ca(2+) binding protein MRF-1 expressed in microglia and macrophages. We induced 1 h of focal cerebral ischemia or 10 min of global cerebral ischemia in the rat, and investigated the expression of MRF-1 immunoreactivity following ischemia. MRF-1 was present in resting microglia and was upregulated in response to microglial activation. MRF-1 was localized to all the cells of the mononuclear phagocyte system (microglia, monocytes, and perivascular cells) that appeared in the ischemic brain.  相似文献   

13.
神经节苷脂(GM1)对局灶脑缺血的保护作用   总被引:2,自引:0,他引:2  
在建立兔大脑中动脉阻断(MCAO)局灶脑缺血模型基础上,观察了神经节苷脂(GM_i)对脑缺血后1h,2h,4h脑片细胞内Ca~(2 )([Ca~(2 )]_i),Na~ ,K~ -ATPase,Ca~(2 ),Mg~(2 )-ATPase活性及脑水肿的影响。结果显示GM_1能降低[Ca~(2 )]_i含量,恢复两种ATPase活性及减轻脑水肿。这为应用GM_i治疗临床脑缺血脑水肿提供了实验依据。  相似文献   

14.
Adenosine 5'-triphosphate outflow increases after an ischemic insult in the brain and may induce the expression of P2X7 receptors in resting microglia, determining its modification into an activated state. To assess the effects of P2X7 receptor blockade in preventing microglia activation and ameliorating brain damage and neurological impairment, we delivered the P2 unselective antagonist Reactive Blue 2 to rats after middle cerebral artery occlusion. In sham-operated animals, devoid of brain damage, double immunofluorescence verified the absence of P2X7 immunoreactivity on resting microglia, astrocytes, and neurons, identified, respectively, by OX-42, glial fibrillary acid protein, and neuronal nuclei (NeuN) immunoreactivity. After ischemia, vehicle-treated rats showed monolateral sensorimotor deficit and tissue damage in striatum and frontoparietal cortex. Moreover, P2X7 immunoreactivity was de novo expressed on activated microglia in infarcted and surrounding areas, as well as on a reactive form of microglia, resting in shape but P2X7 immunoreactive, present in ipsi- and contralateral cingulate and medial frontal cortex. Reactive Blue 2 improved sensorimotor deficit and restricted the volume of infarction, without preventing the expression of P2X7, but inducing it in the microglia of contralateral frontal and parietal cortex and striatum, which had lost reciprocal connections with the remote infarct area. De novo expression of P2X7 occurred in both activated and reactive microglia, suggesting their differentiated roles in the area of infarct and in remote regions. Reactive Blue 2 reduced ischemic brain damage, likely blocking the function of activated microglia in the infarct area, but in the remote brain regions promoted the expression of P2X7 on reactive microglia, developing defense and reparative processes.  相似文献   

15.
兔脑缺血后脑微血管和突触膜Na^+,K^+—ATP酶活性变化   总被引:1,自引:0,他引:1  
建立兔大脑中动脉阻断(MCAO)局灶脑缺血实验模型。通过不连续梯度超速离心脑微血管(CMV)和突触膜(SPM),用生化法分别测其Na~ ,K~ -ATP 酶活性。结果发现CMV Na~ ,K~ -ATP酶活性在MCAO后先升后降,而SPM的Na~ ,K~ -ATP酶活性则随时相递降,且两者与脑水含量变化均有密切关系,提示CMV和SPM Na~ ,K~ -ATP酶活性变化参与了脑缺血后早期脑水肿的发生发展。  相似文献   

16.
We investigated the temporal course of microglia activation in different brain regions after permanent middle cerebral artery (MCA) occlusion in mice and compared this microglia response with the appearance of apoptotic cells, Microglia activation and morphological changes of microglial cells were visualized using an immunohistochemical method with a polyclonal antibody recognizing the mouse CR3 complement receptor. Cells showing morphological and biochemical features of apoptosis were identified using the terminal deoxynucleotidyl transferase nick end-labeling (TUNEL) method and light microscopy. As early as 30 min after onset of MCA occlusion activated microglia with hypertrophic cell bodies and stout processes were detected in the periphery of the ischemic lesion as identified by diffusion-weighted magnetic resonance imaging. A wider distribution and a progressive increase in the number of activated microglia was found with increasing time. Only few TUNEL-positive cells with apoptotic features were observed within the lesion area at 6 h after onset of cerebral ischemia. From 12 h after MCA occlusion onward a tremendous increase in the number of TUNEL-positive cells was found. Within the thalamus from 24 h onward microglia cells with few processes, irregular morphology and fragmented appearance were detected. Microglia activation in the thalamus progressed up to 4 weeks after MCA occlusion, but had declined after 90 days. Neuronal degeneration in the thalamus as determined by anti-neuronal nuclei immunohistochemistry progressed from 6 days after MCA occlusion onward. Only a few TUNEL-positive cells were found in the thalamus. In summary, microglia activation both in the primary cortical lesion area and in the secondarily affected thalamus preceded the manifestation of tissue injury. These observations encourage further studies on the role of microglia in focal cerebral ischemia. Received: 31 July 1997 / Revised, accepted: 12 January 1998  相似文献   

17.
A new method for brain resuscitation following acute focal ischemic insult has been developed in this laboratory. The technique utilizes a surrogate route to supply cerebral metabolites and employs highly oxygenated fluorocarbons (OFNS), which are efficient gas transport and exchange agents, perfused through the ventriculo-subarachnoid spaces. We previously described a return of aerobic metabolism and EEG after severe global ischemia by oxygenated perfusions and now report treatment-induced reduction in the size of experienced cerebral infarction. Twenty-eight cats were anesthetized (choralose and urethane), tracheotomized and placed in a stereotactic frame. Physiologic adjustments assured arterial blood pCO2 28-35 Torr, pO2 100-150 Torr pH 7.4 and glucose less than 200 mg%. The left middle cerebral artery was exposed transorbitally and temporarily clipped along with both common carotids for 2 h. One hour later (3 h after ischemic onset) the treated group were perfused by the ventriculo-cisternal route either with OFNS [pO2 = 600 Torr; 3 ml/min 6 h, 2 ml/min 2 h, 1 ml/min 2 h, 0.5 ml/min 2 h at 10 mm Hg intracranial pressure (ICP)] or with the vehicle perfusate. Eighteen to twenty hours after the ischemic insult the animals were sacrificed. Sections of fresh brain of 0.5 mm thickness were incubated in 1% triphenyl tetrazolium chloride. The infarcted areas were confirmed with classic neuropathologic techniques. Areas of infarction (expressed in cm3 and as % of the brain) were measured using a planimeter. OFNS-treated brains contained 80% less infarcted tissue than the vehicle-perfused or untreated stroked animals. The infarcted areas were significantly treatment reduced (P less than 0.05 ANOVA and Bonferroni tests).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two different techniques were utilized to identify the infiltration of polymorphonuclear leukocytes (PMN) into cerebral tissue following focal ischemia: histologic analysis and a modified myeloperoxidase (MPO) activity assay. Twenty-four hours after producing permanent cortical ischemia by occluding and severing the middle cerebral artery of male spontaneously hypertensive rats, contralateral hemiparalysis and sensory-motor deficits were observed due to cerebral infarction of the frontal and parietal cortex. In hematoxylin-and-eosin-stained histologic sections, PMN, predominantly neutrophils, were identified at various stages of diapedesis from deep cerebral and meningeal vessels at the periphery of the infarct, into brain parenchyma. When MPO activity in normal brain tissue was studied initially, it could not be demonstrated in normal tissues extracted from non-washed homogenates. However, if tissue was homogenized in phosphate buffer (i.e., washed), MPO activity was expressed upon extraction. Utilizing this modified assay, MPO activity was significantly increased only in the infarcted cortex compared to other normal areas of the brain. This was observed in non-perfused animals and after perfusion with isotonic saline to remove blood constituents from the vasculature prior to brain removal. The increased PMN infiltration and MPO activity were not observed in forebrain tissue of sham-operated control rats. Also, MPO activity was not increased in the ischemic cortex of MCAO rats perfused immediately after middle cerebral artery occlusion, indicating that blood was not trapped in the ischemic area. By using a leukocyte histochemical staining assay, activity of peroxidases was identified within vascular-adhering/infiltrating PMN in the infarcted cortex 24 hr after focal ischemia. An evaluation of several blood components indicated that increased MPO activity was selective for PMN. The observed increase of approximately 0.3 U MPO/g wet weight ischemic tissue vs. nonischemic cerebral tissues probably reflects the increased vascular adherance/infiltration of approximately 600,000 PMN/g wet weight infarcted cortex 24 hr after focal ischemia. This combined biochemical and histological study strongly suggests that PMN adhere within blood vessels and infiltrate into brain tissue injured by focal ischemia and that the associated inflammatory response might contribute to delayed progressive tissue damage in focal stroke. This modified MPO assay is a useful, quantitative index of PMN that can be utilized to elucidate the potential deleterious consequences of neutrophils infiltrating into the central nervous system after cerebral ischemia, trauma, or other pro-inflammatory stimuli.  相似文献   

19.
The mitochondrial enzyme glutaminase is a significant contributor to extracellular glutamate after neuronal injury in vitro [R. Newcomb, X. Sun, L. Taylor, N. Curthoys, R.G. Giffard, Increased production of extracellular glutamate by the mitochondrial glutaminase following neuronal death, J. Biol. Chem. 272 (1997) 11276–11282.]. As a step towards characterizing the role of the enzyme in neuronal injury in vivo, glutaminase activity was measured in central and peripheral regions of the ischemic distribution in rat brain at 6, 24, and 48 h after permanent focal ischemia. Although glutaminase activity decreases in the central ischemic area, significant activity remains in peripheral areas of evolving damage, even after 24 and 48 h ischemia. Western blots show no detectable change in glutaminase molecular weight or total immunoreactivity, regardless of the degree of inactivation. Significant amounts of glutamine remain in ischemic tissue at prolonged times after focal ischemia, while reductions in tissue amounts of glutamate are highly correlated with decreases in glutaminase activity. In vivo microdialysis probes were inserted into the ischemic periphery after 24 h focal ischemia. Glutamate is significantly elevated in these dialysates. Perfusion of the glutaminase substrate glutamine and the enzyme activator phosphate results in further and specific elevations in dialysate glutamate. In sum, significant mitochondrial glutaminase activity remains in the periphery of the ischemic lesion at 24 and 48 h, where it can contribute directly to elevated extracellular glutamate. Inactivation of the glutaminase in central areas of the ischemic lesion does not involve significant proteolytic degradation, and likely involves a specific molecular event.  相似文献   

20.
Exogenous microglia pass through the blood-brain barrier and migrate to ischemic hippocampal lesions when injected into the circulation. We investigated the effect of exogenous microglia on ischemic CA1 pyramidal neurons. Microglia were isolated from neonatal mixed brain cultures, labeled with the fluorescent dye PKH26, and injected into the subclavian artery of Mongolian gerbils subjected to ischemia reperfusion neuronal injury. PKH26-labeled microglia migrated to the ischemic hippocampal lesion, resulting in increased numbers of surviving neurons compared with control animals, even when injected 24 h after ischemia. Interferon-gamma stimulation of isolated microglia enhanced the neuroprotective effect. Administration of exogenous microglia resulted in normal performance in a passive avoidance-learning task. Additionally, administration of exogenous microglia increased the expression of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in the ischemic hippocampus, and thus might have induced neurotrophin-dependent protective activity in damaged neurons. Peripherally injected microglia exhibited a specific affinity for ischemic brain lesions, and protected against ischemic neuronal injury in vivo. It is possible that administration of exogenous microglia can be developed as a potential candidate therapy for central nervous system repair after transitory global ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号