首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The extracellular signal-regulated kinase (ERK) is a component of the mitogen-activated protein kinase cascade. Exon 2 of erk2 was deleted by homologous recombination and resulted in embryonic lethality at embryonic day 6.5. erk2 mutant embryos did not form mesoderm and showed increased apoptosis but comparable levels of BrdUrd incorporation, indicating a defect in differentiation. erk2 null embryonic stem (ES) cells exhibited reduced total ERK activity upon serum stimulation, augmented ERK1 phosphorylation, and decreased downstream p90Rsk phosphorylation and activity; yet ES cell proliferation was unaffected. Mutant ES cells were capable of forming mesoderm; however, treatment of mutant ES cells with the mitogen-activated protein kinase kinase inhibitor PD184352 decreased total ERK activity and expression of the mesodermal marker brachyury, suggesting that ERK1 can compensate for ERK2 in vitro. Normal embryos at embryonic day 6.5 expressed activated ERK1/2 in the extraembryonic ectoderm, whereas erk2 mutant embryos had no detectable activated ERK1/2 in this region, suggesting that activated ERK1 was not expressed, and therefore cannot compensate for loss of ERK2 in vivo. These data indicate that ERK2 plays an essential role in mesoderm differentiation during embryonic development.  相似文献   

2.
OBJECTIVE: Study the effect of loss of expression of Pitx2, a homeodomain gene preferentially expressed in murine hematopoietic stem/progenitor cells, on hematopoietic stem cells (HSCs). METHODS: We examined the fetal livers of mouse embryos with homozygous disruption of the Pitx2 gene, using flow cytometry immunophenotyping analysis, as well as immunohistochemistry techniques. We further investigated the role of Pitx2 in HSCs using a chimeric mouse model system. Pitx2 null embryonic stem (ES) cell clones were generated from embryonic day 3.5 blastocysts of Pitx2 null embryos. The Pitx2 null donor ES cell contribution to the adult hematopoietic system was confirmed by identifying donor-specific glucose-phosphate isomerase isotype in the erythrocytes using cellulose acetate eletrophoresis, and by demonstrating donor-specific major histocompatibility complex antigen allotype on the granulocytes/monocytes and T and B lymphocytes of the chimeric mice using flow cytometry analysis. RESULTS: Pitx2 homozygous null fetal livers are decreased in size and overall cellularity. The erythroid cell component of these livers is further reduced as compared to that of their wild-type and heterozygous littermates. Detailed quantitative analysis of the chimeric mice revealed contribution of Pitx2 null ES cells to erythroid, myeloid, lymphoid, and megakaryocytic lineages. The quantitative level of ES cell contribution to the peripheral hematopoietic cells was proportional to the level of general chimerism as determined by coat color. CONCLUSION: Although the fetal livers of Pitx2 null embryos displayed signs of impaired erythropoiesis, Pitx2 gene disrupted HSCs can contribute to hematopoiesis under physiological conditions.  相似文献   

3.
Mouse embryos homozygous for a targeted disruption in the Fli-1 gene show hemorrhage into the neural tube and brain on embryonic day (E)11.0 and die shortly thereafter. Livers from the mutant embryos contain drastically reduced numbers of pronormoblasts, basophilic normoblasts, and colony-forming cells. To determine the nature of impaired hematopoiesis, we carried out cell culture studies of mutant embryonic stem (ES) cells and cells from the aorta-gonad-mesonephros (AGM) region of E10.0 mutant embryos. There was a striking reduction in the number of megakaryocytes in cultures of mutant AGM cells compared with cultures of AGM cells from wild-type or heterozygous embryos. Furthermore, Fli-1 mutant ES cells failed to produce megakaryocyte colonies and multilineage colonies containing megakaryocytes. Consistent with the observed defect in megakaryopoiesis, we also demonstrated the down-regulation of c-mpl in the AGM of mutant embryos. The percentages of pronormoblasts and basophilic normoblasts were significantly reduced in cultures of mutant AGM embryos, which contained primarily polychromatophilic and orthochromatic normoblasts. These results provide further evidence for the role of Fli-1 in the regulation of hematopoiesis and for c-mpl as a Fli-1 target gene.  相似文献   

4.
By using both genetic and biochemical approaches, we have investigated the physiological role of Shp-2, a cytoplasmic tyrosine phosphatase with two Src homology 2 domains, in signaling pathways downstream of epidermal growth factor receptor (EGF-R). In previous studies, a targeted deletion mutation in the SH2-N domain of Shp-2 was introduced into the murine Shp-2 locus, which resulted in embryonic lethality of homozygous mutant (Shp-2(-/-)) mice at midgestation. By aggregating Shp-2(-/-) embryonic stem cells with wild-type embryos, we created Shp-2(-/-)/wild-type chimeric animals. Most chimeras had open eyelids at birth and abnormal skin development, a phenotype characteristic of mice with mutations in EGF-R signaling components. In genetic crosses, a heterozygous Shp-2 mutation dominantly enhanced the phenotype of a weak mutant allele of EGF-R (wa-2), resulting in distinctive growth retardation, developmental defects in the skin, lung, and intestine, and perinatal mortality that are reminiscent of EGF-R knockout mice. Biochemical analysis revealed that signal propagation proximal to the EGF-R upon EGF stimulation was significantly attenuated in wa-2 fibroblast cells, which was exacerbated by the additional Shp-2 mutation. Thus, we provide biological evidence here that protein-tyrosine phosphatase Shp-2 acts to enhance information flow from the EGF-R in mouse growth and development.  相似文献   

5.
Mice lacking the complex subset of N-glycans due to inactivation of the Mgat1 gene die at mid-gestation, making it difficult to identify specific biological functions for this class of cell surface carbohydrates. To circumvent this embryonic lethality and to uncover tissue-specific functions for complex N-glycans, WW6 embryonic stem cells with inactivated Mgat1 alleles were tracked in chimeric embryos. The Mgat1 gene encodes N-acetylglucosaminyltransferase I (Glc-NAc-TI; EC 2.4.1.101), the transferase that initiates the synthesis of complex N-glycans. WW6 cells carry an inert beta-globin transgene that allows their identification in chimeras by DNA-DNA in situ hybridization. Independent Mgat1-/- and Mgat1+/- mutant WW6 isolates contributed like parent WW6 cells to the tissues of embryonic day (E) 10.5 to E16.5 chimeras. However, a cell type-specific difference was observed in lung. Homozygous null Mgat1-/- WW6 cells did not contribute to the epithelial layer in more than 99% bronchi. This deficiency was corrected by transfection of a Mgat1 transgene. Interestingly, heterozygous Mgat1+/- WW6 cells were also deficient in populating the layer of bronchial epithelium. Furthermore, examination of lung bud in E9.5 Mgat1-/- mutant embryos showed complete absence of an organized epithelial cell layer in the bronchus. Thus, complex N-glycans are required to form a morphologically recognizable bronchial epithelium, revealing an in vivo, cell type-specific function for this class of N-glycans.  相似文献   

6.
7.
A method for the production of embryonic stem (ES) cell-embryo chimeras was developed that involves the simple coculture of eight-cell embryos on a lawn of ES cells. After coculture, the embryos with ES cells attached are transferred to normal embryo culture medium and allowed to develop to the blastocyst stage before reimplantation into foster mothers. Although the ES cells initially attach to the outside of the embryos, they primarily colonize the inner cell mass and its derivatives. This method results in the efficient production of chimeras with high levels of chimerism including the germ line. As embryos are handled en masse and manipulative steps are minimal, this method should greatly reduce the time and effort required to produce chimeric mice.  相似文献   

8.
Embryogenesis requires the timely and coordinated activation of developmental regulators. It has been suggested that the recently discovered class of histone demethylases (UTX and JMJD3) that specifically target the repressive H3K27me3 modification play an important role in the activation of "bivalent" genes in response to specific developmental cues. To determine the requirements for UTX in pluripotency and development, we have generated Utx-null ES cells and mutant mice. The loss of UTX had a profound effect during embryogenesis. Utx-null embryos had reduced somite counts, neural tube closure defects and heart malformation that presented between E9.5 and E13.5. Unexpectedly, homozygous mutant female embryos were more severely affected than hemizygous mutant male embryos. In fact, we observed the survival of a subset of UTX-deficient males that were smaller in size and had reduced lifespan. Interestingly, these animals were fertile with normal spermatogenesis. Consistent with a midgestation lethality, UTX-null male and female ES cells gave rise to all three germ layers in teratoma assays, though sex-specific differences could be observed in the activation of developmental regulators in embryoid body assays. Lastly, ChIP-seq analysis revealed an increase in H3K27me3 in Utx-null male ES cells. In summary, our data demonstrate sex-specific requirements for this X-linked gene while suggesting a role for UTY during development.  相似文献   

9.
Human embryonic stem (ES) cells are derived from the inner cell mass (ICM) of blastocyst embryos. They are established from spare embryos that have been obtained by in vitro fertilization (IVF) and donated for research purposes. The ICM-derived cell lines have two unique properties, they can be propagated indefinitely in culture and have the potential to develop into practically any cell type in vitro and in vivo. Human embryonic stem (hES) cells carrying specific mutations can be used as a valuable tool for studying genetic disorders in human. One favorable approach to obtain such mutant ES cell lines is their derivation from affected preimplantation genetic diagnosed (PGD) embryos. This review focuses on the importance of deriving human ES cell lines from genetically abnormal embryos, especially in cases where no good cellular and/or animal models exist.  相似文献   

10.
The introduction of foreign genes into early mouse embryos and embryonic stem (ES) cells is invaluable for the analysis of gene function and regulation in the living animal. The use of vectors derived from retroviruses as gene transfer vehicles in this setting has had limited success because of silencing of transgene expression. Here, we show that vectors derived from lentiviruses, which are complex retroviruses, can efficiently deliver genes to murine ES cells and that transgene expression is stable during proliferation of undifferentiated ES cells. The transgene is expressed during differentiation of ES cells in vitro (embryoid bodies) and in vivo (teratomas). Transfer of lentivector-transduced ES cells into blastocysts resulted in chimeric animals that expressed the transgene in multiple tissues. Embryos derived from crossings of chimeric mice expressed the transgene, indicating successful germ-line transmission. Infection of murine preimplantation embryos at morula stage with lentiviral vectors resulted in stable transduction and expression of the transgene in mouse embryos and in newborn mice. Finally, human ES cells were transduced by lentiviral vectors and expressed the transgene over several passages. Thus, lentiviral vectors represent a significant improvement over oncoretroviral vectors used previously for gene transfer into murine ES cells and preimplantation embryos. Ability to transfer foreign genes into human ES cells has potential relevance for the development of gene and cell-based therapies.  相似文献   

11.
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology.  相似文献   

12.
Melotti  P; Calabretta  B 《Blood》1996,87(6):2221-2234
To provide insight into the mechanisms by which c-myb regulates hematopoiesis, we analyzed the expression of markers for multiple hematopoietic lineages in differentiating parental embryonic stem (ES) cells and in ES cells transfected with c-myb or with a mutant c-myb deficient in DNA binding and assessed the ability of these cells to undergo hematopoietic commitment and colony formation. Undifferentiated ES cells transfected with intact c-myb, but not cells transfected with mutant c-myb, expressed CD34, c-kit, GATA1, and flt3 mRNA as well as surface CD34, c-kit, and flt3 product. In contrast, the kinetics of GATA-2 mRNA expression was identical in parental and Myb-transfected ES cells. Transient expression assays suggested transactivation of gene expression dependent on interaction with Myb binding sites in the CD34 and GATA1 5' flanking regions. Undifferentiated parental and c-myb mutant-transfected ES cells were not clonogenic, whereas c-myb transfectants formed erythromyeloid colonies in methylcellulose cultures in the absence of added hematopoietic growth factors and, at higher frequency, in the presence of kit and flt-3 ligands. Colony formation was suppressed by treatment with antisense oligodeoxynucleotides specifically downregulating c-kit and flt-3 expression. These findings indicate that c-myb regulates hematopoietic commitment and progenitor cell proliferation and differentiation through the activation of certain genes that define the stem/progenitor cell compartment.  相似文献   

13.
We report a method for introducing mtDNA mutations into the mouse female germ line by means of embryonic stem (ES) cell cybrids. Mitochondria were recovered from the brain of a NZB mouse by fusion of synaptosomes to a mtDNA-deficient (rho degrees ) cell line. These cybrids were enucleated and the cytoplasts were electrofused to rhodamine-6G (R-6G)-treated female ES cells. The resulting ES cell cybrids permitted transmission of the NZB mtDNAs through the mouse maternal lineage for three generations. Similarly, mtDNAs from a partially respiratory-deficient chloramphenicol-resistant (CAP(R)) cell line also were introduced into female chimeric mice and were transmitted to the progeny. CAP(R) chimeric mice developed a variety of ocular abnormalities, including congenital cataracts, decreased retinal function, and hamaratomas of the optic nerve. The germ-line transmission of the CAP(R) mutation resulted in animals with growth retardation, myopathy, dilated cardiomyopathy, and perinatal or in utero lethality. Skeletal and heart muscle mitochondria of the CAP(R) mice were enlarged and atypical with inclusions. This mouse ES cell-cybrid approach now provides the means to generate a wide variety of mouse models of mitochondrial disease.  相似文献   

14.
Gene disruptions and deletions of up to 20kb have been generated by homologous recombination with appropriate targeting vectors in murine embryonic stem (ES) cells. Because we could not obtain a deletion of about 200 kb in the mouse amyloid precursor protein gene by the classical technique, we employed strategies involving the insertion of loxP sites upstream and downstream of the region to be deleted by homologous recombination and elicited excision of the loxP-flanked region by introduction of a Cre expression vector into the ES cells. In the first approach, the loxP sequences were inserted in two successive steps and after each step, ES cell clones were isolated and characterized. Deletion of the loxP-flanked sequence was accomplished by introducing the cre gene in a third step. In the second approach, ES cells containing the upstream loxP cassette were electroporated simultaneously with the downstream loxP targeting vector and the Cre expression plasmid. ES cells were obtained that gave rise to chimeric mice capable of germ-line transmission of the deleted amyloid precursor protein allele.  相似文献   

15.
Whether, and to what extent, lineage restriction contributes to the organization of the mammalian brain remains unclear. Here we address this issue by examining the distribution of clonally related cells in chimeric mice generated by injecting genetically tagged embryonic stem (ES) cells into blastocyst embryos. Our examination of postnatal chimeric brains revealed that the vast majority of labeled ES cell descendents were confined within a different subset of brain regions in each animal. Moreover, the deployment of labeled cells in different brain regions was distinctive. The pattern of ordered and binomial colonization suggested that early diversified founder cells may constrain the fates of their descendants through a restriction of dispersion. In addition, the symmetrical distribution of ES cell descendants suggests that bilaterally corresponding structures may arise from a common set of progenitor cells. Finally, clones of cells formed a continuous band within the deep strata of the neocortex. This later finding in conjunction with the radial distribution of clones in remaining layers observed in previous studies indicates that the cerebral neocortex may derive from two groups of founder cells, which is consistent with the hypothesis of dual phylogenetic origins of the mammalian cerebral cortex.  相似文献   

16.
Somatic crossing over in flies heterozygous for a dominant Minute mutant may result in two cells, homozygous for wild type and Minute, respectively. If both cells took part in development, a twin spot of two genotypes, different from the rest of the body, would result. Two-hundred wild type spots were found, none of which was accompanied by an adjacent twin spot homozygous for Minute. The absence of these spots shows that their cell lethality is not overcome by transport, including diffusion, across a few cells of gene-dependent material from the neighboring cells which carry one or two wild type alleles of Minute.  相似文献   

17.
To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F(1) genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F(1) ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F(1) ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F(1) ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F(1) ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F(1) ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.  相似文献   

18.
Heterozygosity for germ-line mutations in the DNA mismatch repair gene MSH2 predisposes humans to cancer. Here we use a highly sensitive reporter to describe a spontaneous mutator phenotype in diploid yeast cells containing a deletion of only one MSH2 allele. We also identify five MSH2 missense mutations that have dominant mutator effects in heterozygous cells when expressed at normal levels from the natural MSH2 promoter. For example, a 230-fold mutator effect is observed in an MSH2/msh2 diploid strain in which Gly693, which is invariant in MutS homologs and involved in ATP hydrolysis, is changed to alanine. DNA binding data suggest that mismatch repair is suppressed by binding of a mutant Msh2-Msh6 heterodimer to a mismatch with subsequent inability to dissociate from the mismatch in the presence of ATP. A dominant mutator effect also is observed in yeast when Gly693 is changed to serine. An early onset colorectal tumor is heterozygous for the analogous Gly --> Ser mutation in hMSH2, and a second hMSH2 mutation was not found, suggesting that this missense mutation may predispose to cancer via a dominant mutator effect. The mutator effects of the deletion mutant and the Gly --> Ala missense mutant in yeast MSH2 are enhanced by heterozygosity for a missense mutation in DNA polymerase delta that reduces its proofreading activity but is not a mutator in the heterozygous state. The synergistic effects of heterozygosity for mutations in two different genes that act in series to correct replication errors may be relevant to cancer predisposition.  相似文献   

19.
We have produced a line of transgenic mice that is characterized by prenatal lethality. These mice bear a chimeric plasmid containing the long terminal repeat of the Rous sarcoma virus linked to the coding region of the chloramphenicol acetyltransferase gene (pRSV-CAT). Mice heterozygous for the pRSV-CAT integration site are semisterile, producing litters approximately equal to 40% of the average size when crossed to normal mice. Approximately 50% of the progeny from such a cross bear the pRSV-CAT sequences and also produce litters of smaller size. An analysis of embryogenesis revealed that normal numbers of embryos implanted, but 60% failed to develop past day 7. Eight other independent transgenic lines containing RSV-CAT show no evidence of embryonic lethality; thus, it is unlikely that the defect observed is due to the direct effects of RSV-CAT expression. We have found that carrier mice bear a reciprocal translocation between chromosomes 6 and 17, T(6A2-6A3;17D-17E1), that can explain the apparent dominant embryonic lethality seen in this line. The site of integration has been localized by in situ hybridization at or near the translocation breakpoint in one of the translocated chromosomes (6(17)). Because the foreign DNA is present in one of the translocated chromosomes, we propose that this rearrangement was elicited by the introduction of foreign DNA.  相似文献   

20.
Mutations of c-kit, which encodes a transmembrane receptor tyrosine kinase, have been identified in mice by abnormal coat color, anemia, and germ cell defects. Mice heterozygous for mutations of c-kit have a white forehead blaze and a white ventral spot, leading these mutants to be termed dominant White spotting (W). We have previously demonstrated that the membrane-associated isoform of human stem cell factor (hSCF220, the ligand for c-kit) is inefficiently processed in murine stromal cell transfectants. Thus, in murine cell lines analyzed in vitro, hSCF220 transfectants present SCF as a membrane restricted protein in contrast to the murine SCF220 cDNA protein product, which is slowly cleaved and secreted. We show here that transgenic mice expressing the human SCF220 isoform in vivo display a phenotype indistinguishable from some alleles of W. Specifically, hSCF220- expressing transgenic mice display a prominent forehead blaze and a white ventral spot. Generations of doubly heterozygous animals that carry both a mutated c-kit allele and the hSCF220 transgene display a more severe coat color abnormality. This phenotype appears to be due to occupancy of murine c-kit by human SCF and diminished cell surface expression of endogenous murine SCF. Normal signaling events that lead to cell survival or proliferation appear to be disrupted in vivo in these transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号