首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Summary Since quipazine is a potent 5-HT agonist in peripheral organs, its possible stimulatory effects on serotoninergic receptors in the rat brain were investigated. Quipazine administration (10 mg/kg, i.p.) induced a significant decrease in the synthesis and turnover rates of serotonin in the brain stem as well as in the forebrain. It is not likely that these changes were mediated by a negative feed-back mechanism triggered by adirect action of quipazine on central 5-HT postsynaptic receptors. Indeed, in contrast to LSD and 5-methoxy-N,N-dimethyltryptamine, this compound failed to activate the 5-HT sensitive adenylate cyclase in colliculi homogenates of newborn rats. However, quipazine exerted direct effects on serotoninergic terminals. It inhibited competitively the reuptake process in synaptosomes (Ki =1.38×10–7 M) and stimulated the K+ evoked release of newly synthesized3H-5-HT in slices of the brain stem. Injected in vivo in a dose which affected 5-HT uptake and release, quipazine did not modify MAO activity. However, this activity was noncompetitively inhibited by high concentration of the drug in vitro (Ki=3.0×10–5 M). These actions are very likelyindirectly responsible for the stimulation of central 5-HT receptors.  相似文献   

2.
The uptake of 3H-5-HT in synaptosomes from rat brains was investigated. Addition of DA or NA had only a slight or no effect on the uptake. When the uptake into NA and DA neurons was inhibited by the addition of high concentrations of NA and DA, the uptake of 3H-5-HT was unchanged. This was also found after destruction of NA and DA neurons by 6-hydroxydopamine treatment. Furthermore, the uptake of 3H-5-HT was almost equal in different brain parts containing NA and DA in very different amounts. These observations show that the uptake measured with 3H-5-HT is specific for 5-HT neurons.The present study revealed that citalopram and chlorimipramine inhibited uptake competitively, and in this respect the two drugs were equipotent. Compared with a series of tricyclic thymoleptics, the two drugs were the most potent inhibitors of 5-HT uptake, about 20 to 35 times more active than imipramine and amitriptyline. The metabolites of citalopram were also rather potent. The results obtained in the present study correlate closely with those obtained using inhibition of 14C-5-HT uptake in blood platelets, or using the inhibition of H 75/12-induced 5-HT depletion in rat brain.When rats were treated orally with citalopram or chlorimipramine, the inhibition of 3H-5-HT uptake in synaptosomes derived from these rats was two times greater after citalopram than after chlorimipramine.  相似文献   

3.
The effects of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists on tritium overflow evoked by high K+ were determined in superfused synaptosomes and slices, preincubated with [3H]5-HT, from guinea-pig brain cortex. In addition, we estimated the potencies of 5-HT receptor ligands in inhibiting specific [3H]5-HT binding (in the presence of 8-hydroxy-2(di-n-propylamino)tetralin and mesulergine to prevent binding to 5-HT1A and 5-HT2C sites) to guinea-pig cortical synaptosomes and membranes.5-HT receptor agonists inhibited the K+-evoked tritium overflow from synaptosomes and slices. In synaptosomes the rank order of potencies was 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl] ethylamine (L-694,247) >5-carboxamidotryptamine (5-CT) > oxymetazoline (in the presence of idazoxan) 5-HT > sumatriptan 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (RU 24969). The potencies of the agonists in inhibiting tritium overflow from slices correlated with those in synaptosomes, suggesting that the same site of action is involved in both preparations. In synaptosomes the nonselective antagonist at cloned human 5-HT1D, and 5-HT1D receptors, methiothepin, shifted the concentration-response curve for 5-CT to the right (apparent pA2: 7.87). In contrast, ketanserin at a concentration which should block the 5-HT1D, but not the 5-HT1D\, receptor did not alter the inhibitory effect of 5-CT on tritium overflow. In cortical synaptosomes and membranes, [3H]5-HT bound to a single site with high affinity. In competition experiments, 5-HT receptor agonists and antagonists inhibited specific [3H]5-HT binding. In synaptosomes the rank order was L-694,247 > methiothepin >5-CT >5-methoxytryptamine >5-HT sumatriptan oxymetazoline > RU 24969 > ketanserin > ritanserin. A very similar rank order was obtained in cerebral cortical membranes. The potencies of the 5-HT receptor agonists in inhibiting tritium overflow from synaptosomes and slices correlated with their potencies in inhibiting [3H]5-HT binding to synaptosomes and membranes.In conclusion, the 5-HT receptors mediating inhibition of 5-HT release in the guinea-pig cortex are located on the serotoninergic axon terminals and, hence, represent presynaptic inhibitory autoreceptors. The [3H]5-HT binding sites in cerebral cortical synaptosomes and membranes exhibit the pharmacological properties of 5-HT1D receptors. The correlation between the functional responses and the binding data confirms the 5-HT1D character of the presynaptic 5-HT autoreceptors. According to the results of the interaction experiment of ketanserin and methiothepin with 5-CT on 5-HT release, the presynaptic 5-HT autoreceptors can be subclassified as 5-HT1D\-like.  相似文献   

4.
Summary In PGF2-precontracted pulmonary arteries with intact endothelium, 5-hydroxytryptamine (5-HT, 1.0-100 nmol/l) caused a concentration-dependent reversible relaxation, at higher concentrations the contractile response prevailed. In endothelium-denuded vessels relaxation was absent. 5-HT-induced relaxation of precontracted pulmonary arteries was probably mediated by release of an endothelium-derived relaxing factor (EDRF). Preincubation of the arteries with methylene blue or NG-nitro-Lrarginine (200 mol/l) attenuated the relaxant effect. The 5-HT-induced relaxation was accompanied by an increase in cGMP. Indomethacin (3 mol/l) did not influence the 5-HT-induced relaxation indicating that eicosanoids are not involved in the relaxant response to 5-HT.The 5-HT1C and 5-HT2 receptor agonist -methyl-5HT was as potent as 5-HT in inducing relaxation. The rank order of relaxant potency of the agonists investigated was -methyl-5-HT > 5-HT > 5-methoxytryptamine > tryptamine > -methyl-5-HT > 5-carboxamidotryptamine >2-methyl-5-HT > 5,6-dihydroxytryptamine > m-chlorophenylpiperazine >sumatriptan > 8-OH-DPAT.Phentolamine, pindolol and ICS 205-930 did not interfere with the relaxant effect. The 5-HT2 receptor antagonist ketanserin (1 mol/l) inhibited the contractile response but did not alter vasodilatation. Apart from the blockade of the contractile effects, mesulergine, cyproheptadine and mianserin (0.1-3.0 mol/l, each) induced a parallel shift to the right of the concentration-response curve for the relaxation induced by a-methyl-5-HT or 5-HT. Spiperone (0.3 mol/l) exerted weak inhibitory effects on relaxation and contraction. The most potent (noncompetitive) antagonist against relaxant responses was metitepine (0.1-1.0 mol/l) which markedly depressed the relaxant maximum effect of the agonists.The failure of ketanserin and ICS 205-930 to inhibit the relaxant effect of 5-HT receptor agonists suggests that classical 5-HT2 and 5-HT3 receptors are not involved in the endothelium-dependent relaxation. Comparison of the rank order of potencies of agonists and antagonists with their affinities for brain binding sites revealed that the endothelial 5-HT receptors are similar to the 5-HT1C receptor subtype. Furthermore, the endothelial receptors exhibit marked similarity to the recently cloned 5-HT receptor mediating contraction of the rat stomach fundus. Correspondence to E. Glusa at the above address  相似文献   

5.
Abstract Changes in endogenous concentrations of 5-HT and 5-HIAA as well as the turnover rate of 5-HT was studied in rat brain after treatment with a new potent and selective inhibitor of the neuronal 5-HT reuptake mechanism, Lu 10-171 (1-(3-(dimethylamino)propyl)-1-(p-fluorophenyl)-5-phthalancarbonitrile). After a single dose of Lu 10-171 the concentration of 5-HIAA was reduced from 1 to 24 hours after treatment, whereas that of 5-HT was practically unchanged, indicating decreased turnover of 5-HT in the brain. This was confirmed using three different methods for measuring 5-HT turnover. Thus the rate of 5-HIAA accumulation in the brain after probenecid was reduced after Lu 10–171. Likewise treatment with Lu 10-171 led to a decreased fall in 5-HT and an increased fall in 5-HIAA after inhibition of 5-HT synthesis with parachloro-phenylalanine (PCPA). Unexpectedly Lu 10-171 did not change either the accumulation of 5-HT or the decrease in 5-HIAA after inhibition of MAO with pargyline. By and large the results are consistent with the proposed negative feed-back regulation of 5-HT neuronal firing rate due to the abundance of 5-HT at postsynaptic receptors after inhibition of the reuptake mechanism.  相似文献   

6.
This study deals with the characterization of 5-hydroxytryptamine (5-HT, serotonin) receptors positively linked to adenylyl cyclase in membranes from pig brain caudate. 5-HT and related agonists induced a concentration-dependent stimulation of adenylyl cyclase activity in pig caudate membranes, with the following rank order of potency (mean pEC50 values): 5-HT (7.1) 5-methoxytryptamine (6.9) > 5-carboxamidotryptamine (5.6) > sumatriptan (<5). Maximal stimulation by 5-HT averaged 35 pmol cyclic AMP/min/mg protein over a basal activity of 159 pmol cyclic AMP/min/mg protein. 5-Methoxytryptamine and 5-carboxamidotryptamine had similar efficacies to that of 5-HT, whereas sumatriptan was about half efficacious. Other compounds known as agonists at some 5-HT receptors were weakly potent (mean pEC50 values <5). They include the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), the 5-HT4 receptor agonist, renzapride and the 5-HT2 receptor agonist, (1-(2,5-dimethoxy-4-iodophenyl)-2 aminopropane) (DOI). In antagonist studies, methiothepin (0.1 and 1 mol/l) shifted the 5-HT curve to the right with no depression of the Emax, yielding pKB values of 7.4–8.0. Clozapine (1 mol/l) also produced surmountable antagonism of 5-HT-induced effects (pKB 6.9). Ketanserin (10 mol/l) weakly antagonized 5-HT (pKB 5.0). The 5-HT4 receptor antagonists, tropisetron (ICS 205–930) and SDZ 205–557 (2-methoxy-4-amino-5-chloro-benzoic acid 2-(diethylamino) ethyl ester), each at 1 mol/l, did not significantly alter the concentration-response curve of 5-HT. The present receptor shares some characteristics of the recently cloned 5-HT6 receptor (Monsma et al. (1993) Mol Pharmacol 43:320–327): similar pharmacological profile, location (striatum) and ability to stimulate adenylyl cyclase. It may thus represent the functional 5-HT6 receptor in its natural environment. Correspondence to: P. Schoeffter at the above address  相似文献   

7.
Summary The effects of 5-hydroxytryptamine (5-HT) and of a number of 5-HT receptor agonists and antagonists on the release of endogenous aspartate were investigated in rat cerebellum slices and synaptosomes depolarized with high K+. The release of endogenous aspartate evoked from slices by 35 mmol/l KCl and from synaptosomes by 15 mmol/1 KCl was strongly (about 90%) calcium-dependent. In slices the release of aspartate was inhibited by exogenous 5-HT (0.1–100 nmol/1) in a concentration-dependent manner. The indoleamine was very potent, producing 30% inhibition at 0.1 nmol/l. The effect of 10 nmol/1 5-HT was partly but maximally counteracted by ketanserin (300–1000 nmol/1), a 5-HT2 receptor antagonist, but fully blocked by 300 nmol/1 of the mixed 5-HT1/5-HT2 receptor antagonist methiothepin. The 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) inhibited the K+-evoked release of endogenous aspartate in a concentration-dependent manner. The effect of 8-OH-DPAT was antagonized by methiothepin, but not by ketanserin which fully antagonized the inhibition produced by DOI. In cerebellar synaptosomes the release of endogenous aspartate evoked by 15 mmol/l K+ was inhibited by exogenous 5-HT and by 8-OH-DPAT, but not by DOI. Methiothepin (100–300 nmol/1) antagonized the inhibitory effects of 100 nmol/l 5-HT or 8-OH-DPAT. However, 1000 nmol/l of various 5-HT receptor antagonists [ketanserin, methysergide, (–)-propranolol, spiperone or ICS 205–930] did not counteract the effect of 100 nmol/15-HT.It is concluded that: (1) 5-HT projections to the rat cerebellum may exert a potent inhibitory action on the depolarization-evoked release of aspartate; (2) this inhi bition is mediated through receptors of both the 5-HT1 and the 5-HT2 type; (3) the 5-HT2 receptors appear to be sited on structures which do not survive the standard preparation of synaptosomes, while the 5-HT1 receptors are likely to be localized on Apartate-releasing nerve terminals; and (4) the 5-HT1 receptors do not conform to the pharmacological criteria defining the known subtypes of the 5-HT1-binding sites.  相似文献   

8.
Summary The receptors mediating the contractile effect of 5-hydroxytryptamine (5-HT) on the human isolated saphenous vein, obtained from 42 patients undergoing coronary bypass surgery, have been further characterized using a number of 5-HT-related drugs. The rank order of agonist potency was 5-carboxamidotryptamine (5-CT) 5-HT > methysergide sumatriptan -methyl-5-HT 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1-Hindolesuccinate (RU 24969) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) > 2-methyl-5-HT > 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT). Flesinoxan was inactive as an agonist. Ketanserin (1 mol/l) hardly affected sumatriptan-induced contractions but it caused a rightward shift of the upper part of the concentration-response curve of 5-HT and 5-CT. The same concentration of ketanserin caused a parallel rightward shift of the concentration-response curves of -methyl-5-HT and DOI with pKB values of 7. 1 and 7.1, respectively. The responses to sumatriptan were antagonized by methiothepin (0.1 mol/l), metergoline (0.1 and 1 mol/l), rauwolscine (1 mol/l) and cyanopindolol (1 mol/l); the calculated pKB values were 7.3, 6.9, 7.3, 6.7 and 6.5, respectively. Contractions to 5-HT were antagonized by methysergide (1 mol/l), methiothepin (0.1 mol/l; pKB = 7.1), ICS 205-930 (1 mol/l; pKB = 5.9) and flesinoxan (30 mol/l; pKB = 5.3). Remarkably, the contractions elicited by 2-methyl-5-HT were not attenuated by ICS 205-930, but were antagonized by methiothepin (0.1 mol/l) and, more markedly, by ketanserin (1 mol/l).There was a high correlation between the functional pD2 values of 5-HT1-like receptor agonists (5-CT, 5-HT, methysergide, sumatriptan, RU 24969 and 8-OH-DPAT) and their reported binding affinities for the 5-HT1D receptor in human or calf brain membranes. Such a correlation for the antagonism of sumatriptan-induced responses was less marked than for the agonists, but of the 5-HT1-like receptor subtypes it was the highest for the 5-HT1D receptor identified in human or calf brain membranes.In 3 patients, undergoing heart transplantation, saphenous vein which had previously functioned as a graft for 6–11 years, was dissected out from the heart. Though the contractions to potassium were significantly smaller in the grafted veins, the pD2 and Emax values (calculated as percentage of potassium-induced contractions) for 5-HT and sumatriptan were similar to those found in the veins obtained directly from the lower leg.It is concluded that contractions in the human isolated saphenous vein induced by 5-HT are mediated by 5-HT2 receptors as well as by a 5-HT1-like receptor resembling the 5-HT1D subtype found in brain membranes. It is also to be noted that 2-methyl-5-HT, considered selective for the 5-HT3 receptor, contracts the saphenous vein mainly via 5-HT2 receptors.This study was supported by the Netherlands Heart Foundation, grant 89.252 Send offprint requests to W. A. Bax at the above address  相似文献   

9.
The effect of 1-(I-naphthyl)piperazine (NP) on the 5-HT terminal autoreceptor modulating 5-HT release was investigated in vitro and in vivo. In vitro 5-HT release was measured in slices of guinea-pig substantia nigra and hypothalamus prelabelled with 3H-5-HT, superfused with Krebs solution and depolarized electrically. NP, at 0.1 and 1 mol/l, did not modify the calcium-dependent release of 3H-5-HT elicited by electrical stimulation using a frequency of 5 Hz, however at 0.1 mol/l NP shifted to the right the inhibition curve of the non-selective autoreceptor agonist, 5-carboxamidotryptamine, in both regions. In hypothalamus when using lower frequencies (1 Hz or 0.2 Hz) or under pseudo-one-pulse stimulation, NP decreased the release of 3H-5-HT at 1 mol/l. In vivo microdialysis was used to measure extracellular levels of endogenous 5-HT in the substantia nigra of freely moving guinea-pigs. The endogenous release of 5-HT was tetrodotoxin (TTX)-sensitive, indicating a neuronal origin of this efflux. NP, administered through the microdialysis probe (1–100 mol/1), increased the levels of extracellular 5-HT in concentration-dependent and TTX-sensitive manner. These results suggest that in vitro NP acts as a 5-HT autoreceptor partial (ant)agonist in the substantia nigra and hypothalamus of guinea-pigs, and as a full antagonist in vivo. However, NP administered systemically at 10 mg/kg i.p., did not modify the levels of extracellular 5-HT in the substantia nigra. This lack of systemic effect of NP probably results from its interaction at other receptors that modify 5-HT neurotransmission. In particular, NP is an agonist at 5-HT1A somatodendritic receptors in the raphe nucleus, an action which would decrease the release of 5-HT.  相似文献   

10.
Summary 5-Hydroxytryptamine (5-HT) contracts ring preparations of rabbit saphenous vein via direct and indirect components, the latter being- compatible with a tyramine-like action at sympathetic nerve terminals. Here an attempt was made to establish the identity of the receptor mediating contraction directly, in terms of the currently accepted proposals (Bradley et al. 1986).Results with agonists suggested 5-HT1-like receptor activation: methysergide behaved as a partial agonist with microcolar affinity and 5-HT effects were mimicked by 5-carboxamidotryptamine (5-CT) and GR43175. The agonist potency order was 5-CT > 5-HT > methysergide GR43175, the same as that reported at the 5-HT1-like receptor in dog saphenous vein (Feniuk et al. 1985; Humphrey et al. 1988). Consistent with this, 5-HT effects were resistant to blockade by the selective 5-HT3 receptor antagonist MDL72222 (1.0 mol/l). In contrast, methiothepin (0.01–0.3 mol/l), ketanserin (0.3–30.0 mol/l) and spiperone (0.3–30.0 mol/l) each produced surmountable antagonism which, although competitivv in nature only for methiothepin (pKB = 9.45 ± 0.09, 17 d. f.), implied 5-HT2 receptor involvement. The possibility that these discrepancies resulted from mixed populations of 5-HT1-like and 5-HT2 receptors can be excluded because; 1). Ketanserin and spiperone blocked the actions of 5-HT and the selective 5-HT1-like receptor agonist GR43175 with equal facility and 2). Responses to all of the agonists studied were similarly antagonised by flesinoxan (pKB 6.4), a simple competitive antagonist at the receptor in rabbit saphenous vein. This novel result with flesinoxan demonstrates that the ligand displays affinity at 5-HT receptors other than the 5-HT1A subtype.These data show that the 5-HT receptor in rabbit saphenous vein shares features in common with, and may be identical to, the 5-HT1-like receptor in dog saphenous vein. However, unlike the latter it demonstrates qualities evident in both 5-HT1-like and 5-HT2 receptors and for this reason fails to meet the currently accepted criteria for admission into any of the recognised classes. It is suggested that this sort of problem reflects the generally unreliable behaviour of the available receptor antagonists and the emphasis which the Bradley et al. (1986) scheme places upon them for classification by exclusion. A complementary approach which provides a rigorous, quantitative basis for receptor differentiation uses finger-prints comprising affinity and relative efficacy estimates for a set of tryptamines. This study illustrates the power and economy of this approach by showing how affinity and relative efficacy finger-prints obtained using 5-HT, 5-CT, (±) -methyl-5-HT, 5-methyltryptamine and N,N-dimethyltryptamine establish a positive identity for the 5-HT receptor in rabbit saphenous vein and at the same time enable it to be distinguished from other 5-HT receptor types presently allocated to the 5-HT1-like, 5-HT2 and so-called orphan receptor classes.7Send offprint requests to G. R. Martin at the above address  相似文献   

11.
In vitro investigations revealed that PAT (8-hydroxy-2-(n-dipropylamino)tetralin) interacted with postsynaptic 5-HT receptors in the rat brain: the drug stimulated 5-HT-sensitive adenylate cyclase in homogenates of colliculi from new-born rats (KAapp 8.6 μM) and inhibited the specific binding of [3H]5-HT to 5-HT1 sites. The PAT-induced inhibition of [3H]5-HT binding showed marked regional differences compatible with a preferential interaction of PAT (IC50 2 nM) with the 5-HT1A subclass. As previously seen with 5-HT agonists, the efficacy of PAT for displacing [3H]5-HT bound to hippocampal membranes was markedly increased by Mn2+ (1 nM) and reduced by GTP (0.1 nM). PAT also affected presynaptic 5-HT metabolism since it inhibited competitively (Ki 1.4 μM) [3H]5-HT uptake into cortical synaptosomes and reduced (in the presence of the 5-HT uptake inhibitor fluoxetine) the K+-evoked release of [3H]5-HT previously taken up or newly synthesized from [3H]tryptophan in cortical or striatal slices. This latter effect was prevented by 5-HT antagonists (methiothepin, metergoline) suggesting that it was mediated by the stimulation of presynaptic 5-HT autoreceptors by PAT. Like 5-HT, PAT counteracted the stimulatory effect of K+-induced depolarization on the synthesis of [3H]5-HT from [3H]tryptophan in cortical slices. It is concluded that PAT is a potent 5-HT agonist acting on both post- and presynaptic 5-HT receptors in the rat brain.  相似文献   

12.
Summary Rat cerebral cortex slices or synaptosomes were labelled with 3H-5-hydroxytryptamine (3H-5-HT) and subsequently superfused. They were depolarized by electrical stimulation (slices) or with high K+ (slices and synaptosomes). Continuous electrical stimulation (2 Hz, 24 mA, 2 ms) and continuous or discontinuous K+ depolarization (15–25 mM) were used. 1. Continuous electrical stimulation or continuous K+-depolarization of slices evoked a steady overflow of tritium that slowly decayed with time. 2. Exposure to increasing concentrations of 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole succinate (RU 24969) (0.001–0.1 M) during continuous electrical stimulation produced a concentration-dependent decrease in tritium overflow. Citalopram (1 M) counteracted the effect of RU 24969. 3. RU 24969 inhibited the evoked 3H-overflow and citalopram reduced the effect of RU 24969 also during continuous depolarization of slices with 20 mM K+. Similar results were obtained by using 5-methoxytryptamine or LSD. 4. In slices 1 M citalopram increased significantly the tritium overflow evoked by electrical stimulation or by 20 mM K+-depolarization. 5. Increasing the K+ concentration from 20 mM to 25 mM mimicked the effects of 1 M citalopram both on the RU 24969 activity and on the evoked tritium overflow. 6. RU 24969 (0.001–0.1 M) decreased in a concentration-dependent way the release of tritium from cortical synaptosomes depolarized with K+ (15–20 mM). The presence of 1 M citalopram did not modify significantly the effect of the agonist. Citalopram was ineffective also when the serotonin uptake carrier in superfused synaptosomes was activated by tryptamine. In conclusion, in slices of rat cerebral cortex, the action of exogenous 5-HT autoreceptor agonists is inhibited by 5-HT uptake blockers independently of the depolarizing agent (electrical stimulation or high-K+) used to elicit 3H-5-HT release. Increasing K+-concentration, which probably increases serotonin in the biophase, mimics the presence of the reuptake inhibitor. These data together with the finding that, in superfused synaptosomes, 5-HT uptake inhibition did not affect the potency of autoreceptor agonists, favours the idea that, in cerebral cortex slices, inhibitors of 5-HT reuptake prevent activation of autoreceptors by exogenous agonists by increasing the concentration of 5-HT in the autoreceptor biophase. Send offprint requests to M. Raiteri at the above address  相似文献   

13.
Summary The properties of MDL 72222 (1H,3,5H-tropan-3-yl-3,5-dichlorobenzoate), a novel compound with potent and selective blocking actions at certain excitatory 5-hydroxytryptamine (5-HT) receptors on mammalian peripheral neurones, are described.On the rabbit isolated heart, MDL 72222 was a potent antagonist of responses mediated through the receptors for 5-HT present on the terminal sympathetic fibres. The threshold for antagonism was approximately 0.1 nM and the negative logarithm of the molar concentration of MDL 72222 which reduced the chronotropic response of the isolated rabbit heart to twice an ED50 of 5-HT to that of the ED50 was 9.27. MDL 72222 was also highly selective since responses to the nicotine receptor agonist, dimethylphenylpiperazinum iodine (DMPP), were inhibited only at concentrations more than 1000 times those necessary to inhibit 5-HT.In the anaesthetised rat, MDL 72222 produced marked blockade of the Bezold-Jarisch effect of 5-HT. Again, inhibition was selective since much higher doses of MDL 72222 failed to alter the response to electrical stimulation of the efferent vagus nerves. In contrast, MDL 72222 proved only a weak and essentially non-selective antagonist of responses mediated by the 5-HT M-receptor present on the cholinergic nerves of the guinea-pig ileum.MDL 72222 does not block smooth muscle contractile responses elicited by oxytocin or mediated through 5-HT D-receptors, muscarinic or nicotinic cholinoceptors or histamine H1-receptors except at relatively high concentrations. Similarly, in a number of radioligand binding assays carried out using brain tissue membranes, the displacing effects of MDL 72222 were absent or weak at sites identifying compounds with activity at 1, 2 or -adrenoceptors, 5-HT1 or 5-HT2 receptors, benzodiazepine receptors or histamine H1-receptors.MDL 72222 is the first reported selective and potent antagonist of responses mediated through the 5-HT receptors present on the terminal sympathetic neurones of the rabbit heart and on the neurones subserving the afferent limb of the Bezold-Jarisch reflex. The compound should provide a useful means by which responses mediated through such sites can be distinguished.  相似文献   

14.
The effect of antidepressant and neuroleptic drugs on the electrically evoked release of serotonin (5-HT) was investigated in rat brain cortical slices preincubated with 0.1 mol/l 3H-5-HT. Zimelidine, trazodone, clomipramine, doxepin, and viloxazine (1 mol/l each) enhanced the electrically-induced 3H overflow by 20–44%. Six other antidepressants and five neuroleptics did not increase the evoked transmitter release. Only trazodone and viloxazine also increased the 3H overflow in experiments in which neuronal 5-HT reuptake was already blocked by 6-nitroquipazine. 5-HT and clonidine inhibited the electrically-induced 3H-5-HT release by stimulation of presynaptic 5-HT autoreceptors and 2-adrenoceptors, respectively; trazodone and viloxazine had no effect on the concentration-response curves of 5-HT and clonidine. Other psychotropic agents with well known antiserotonergic activities also failed to block presynaptic 5-HT autoreceptors. It is concluded that zimelidine, clomipramine, and doxepin enhanced the 3H-5-HT overflow by inhibition of neuronal 5-HT uptake, whereas the increase produced by trazodone and viloxazine cannot be explained by reuptake inhibition or interaction with presynaptic receptors.  相似文献   

15.
Summary 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT) and the gastrointestinal kinetic benzamides renzapride and cisapride caused tachycardia in spontaneously beating right atria of piglet in the presence of 400 nmol/l(±)-propranolol and 6 mol/l cocaine. The maximum tachycardia caused by agonists, compared to that evoked by 200 mol/l(–)-isoprenaline, was 63% for 5-HT, 50% for 5-CT, 50% for renzapride and 28% for cisapride. The rank order of potency was 5-HT > renzapride > cisapride > 5-CT. The effects of the agonists, but not those of (–)-isoprenaline, were antagonised by 3-tropanyl-1H-indole-3-carboxylic acid (ICS 205930); the pKB of ICS 205930 (vs 5-HT) was 6.9. These characteristics suggest that piglet sinoatrial 5-HT receptors are similar to so-called 5-HT4 receptors previously described in mouse colliculi neurons. Piglet sinoatrial 5-HT4-like receptors resemble the human atrial 5-HT receptors that mediate positive isotropic effects of 5-HT.Send of fprint requests to A. J. Kaumann at the above address  相似文献   

16.
Summary The present study was undertaken in an attempt to assess whether the effects of the potent and selective 5HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT, on cerebral 5-hydroxytryptamine (5-HT) neurochemistry in vivo are mediated via 5-HT autoreceptors on the cell bodies or on the terminals, and/or via postsynaptic 5-HT receptors. To this end we determined in vivo indices of 5-HT synthesis and release/turnover rates in a number of prominent 5-HT neuronal projection areas in the CNS i) after systemic administration of 8-OH-DPAT to rats with an acute unilateral axotomy of the ascending mesencephalic monoamine neurones, or ii) after local infusion of the compound into the dorsal raphé (DRN) 5-HT cell body region of intact rats. Transection did not alter 5-HT synthesis per se, but prevented the synthesis-inhibitory effect of 8-OH-DPAT. Thus, the 5-HT synthesis-inhibiting action of 8-OH-DPAT is highly dependent upon intact impulse flow in the central 5-HT neurones. On the other hand, local DRN application of the compound (1 g) resulted in a clearcut reduction of the 5-HT synthesis and release indices measured in 5-HT terminals in, e. g., the striatum. These findings provide direct neurochemical evidence that by preferentially stimulating somatodendritic 5-HT1A receptors, 8-OH-DPAT inhibits the 5-HT neuronal impulse flow, thereby effectuating decreased terminal 5-HT synthesis and release. Taken together, the data are consistent with the suggestion that 8-OH-DPAT acts as an agonist preferentially at cell body vs. terminal 5-HT autoreceptors, therefore also emphasizing the distinction between terminal and cell body 5-HT autoreceptors. The results obtained may have important implications for the understanding of mechanisms involved in regulating the activity of central serotoninergic neurones.Part of these data were presented at the 6th European Winter Conference on Brain Research, Avoriaz, France, March 9–15, 1985, and at the 18th Annual Meeting, Society for Neuroscience, Washington (DC), USA, Nov. 9–15, 1986 (Hjorth et al. 1986, 1987). Send offprint requests to S. Hjorth at the above address  相似文献   

17.
The contractions induced by 5-hydroxytryptamine (5-HT) and the 5-HT1-like receptor agonist, sumatriptan, were investigated in the open ring preparations of rabbit mesenteric artery in order to characterize the 5-HT receptors. 5-HT induced concentration-dependent contractions. Sumatriptan did not induce any contraction of unstimulated rings, whereas it elicited concentration-dependent contractions in preparations given a moderate tone by a threshold concentration of prostaglandin F2 (PGF2). Pargyline, cocaine or normetanephrine were without significant effect on the contractions induced by 5-HT and sumatripan. The 5-HT concentration-effect curve was clearly biphasic. Methiothepin (0.01 M) shifted the both phases of the concentration-effect curve to the right. Ketanserin (0.1 M) shifted the second, low affinity, phase and prazosin did not alter concentration-effect curve to 5-HT. The sumatriptan concentration-effect curve was shifted by methiothepin (0.01 M) to the right (pKB = 9.19) but not by ketanserin (1 M). Concentration-effect curves to 5-HT and sumatriptan were not affected by the 5-HT3 receptor antagonist tropisetron (1 M). These results suggest that 5-HT1-like type receptors are responsible for the first phase of 5-HT-induced contraction and 5-HT2A receptor for the second phase, in rabbit mesenteric artery. Sumatriptan-induced contractions appear to be mediated by 5-HT1-like type receptors in this artery. These results also suggest that this kind of amplification may be a common feature of vascular 5-HT1-like type receptor as has been shown in other vascular segments such as rabbit femoral, iliac and renal arteries, and guinea-pig iliac artery.  相似文献   

18.
Summary Isamoltane (CGP 361A; (1-(2-(1-pyrrolyl)phenoxy)-3-isopropylamino-2-propanol hydrochloride), -adrenoceptor ligand (IC50 = 8.4 nmol/l) which has reported activity as an anxiolytic in man was found to be a reasonably active inhibitor of the binding of [125I]ICYP to 5-HT1B recognition sites in rat brain membranes with 27-fold selectivity (IC50 = 39 nmol/l) as compared to the inhibition of binding of [3H]8-OH-DPAT to 5-HT1A receptors (IC50 = 1070 nmol/l). This selectivity was considerably greater than that observed for other -adrenoceptor ligands including propranolol (5-HT1A/5-HT1B ratio = 2), oxprenolol (3.5) and cyanopindolol (8.7). The 5-HT1B activity of the compound resided in the (–)-enantiomer. (–)Isamoltane had weak activity (IC50 3–10 mol/l) at 5-HT2 and 1-adrenoceptors. The compound was devoid of activity at a number of other central neurotransmitter recognition sites including the 5-HT1C site. Isamoltane increased the electrically evoked release of [3H]5-HT from prelabeled rat cortical slices in a manner similar to that of cyanopindolol. While both compounds were similar in potency to methiothepin, they had lower efficacy. Oxprenolol was less potent that both isamoltane and cyanopindolol while propranolol was essentially inactive. The effects of the compounds on 5-HT release appeared to be correlated with their 5-HT1B rather than 5-HT1A activity. In vivo, isamoltane increased 5-HTP accumulation in rat cortex following central decarboxylase inhibition at doses of 1 and 3 mg/kg i. p. At higher doses this effect was gradually diminished. Similar, but less clearcut results were obtained with cyanopindolol and oxprenolol, but propranolol was ineffective. No changes in brain tryptophan levels were associated with the isamoltaneevoked changes in brain 5-HTP levels. In reserpinized animals, isamoltane reduced 5-HTP accumulation even at doses which enhanced accumulation of this metabolite when given alone. The effects of the putative 5-HT1B agonist, m-trifluoromethylphenylpiperazine (TFMPP), the mixed 5-HT autoreceptor agonist/antagonist/ -adrenoceptor antagonist, pindolol, the 5-HT uptake inhibitor, CGP 6085A and the MAO-A inhibitor, brofaromine, were not antagonized by pretreatment with isamoltane. The possibility that isamoltane and the other -adrenoceptor antagonists are antagonists at 5-HT1B receptors and that their effect on 5-GT synthesis in vivo is the net result of their agonist/antagonist effects at 5-HT1A and 5-HT1B receptors is discussed in relation to the potential mechanism of the anxiolytic activity of isamoltane.Abbreviations 5-HT Serotonin - ICYP Iodocyanopindolol - 8-OHDPAT 8-hydroxy-2(di-n-propylamino) tetralin - TFMPP m-trifluoromethylphenylpiperazine - MAO-A monoamine oxidase-A Send offprint requests to P. C. Waldmeier at the above address  相似文献   

19.
Summary The effects of agonists and antagonists of 5-hydroxytryptamine (5-HT) receptors on the release of endogenous 5-HT from enterochromaffin cells were studied in the vascularly perfused isolated guinea-pig small intestine. The experiments were done in the presence of tetrodotoxin in order to exclude a neuronally mediated influence on 5-HT release.The 5-HT3 receptor agonist 2-methyl-5-HT increased 5-HT release, and this effect was antagonized by 1 nmol/l tropisetron. Nanomolar concentrations of tropisetron, MDL 72 222 and granisetron decreased 5-HT release. Ondansetron (0.1 and 1 mol/1) did not modify 5-HT release.5-Methoxytryptamine, BIMU8 and cisapride concentration-dependently inhibited 5-HT release. BIMU8 was more potent than 5-methoxytryptamine. Micromolar concentrations of tropisetron (1 and 10 mol/1) enhanced the release, whilst methiothepine (0.1 mol/l) did not affect the release of 5-HT.The results suggest that enterochromaffin cells of the guinea-pig ileum do not contain 5-HT1 and 5-HT2 receptors, but are endowed with 5-HT3 and 5-HT4 autoreceptors. Activation of the 5-HT3 receptors triggers a positive feedback mechanism leading to an increase of 5-HT release. The 5-HT3 receptors on the enterochromaffin cell differ from neuronal 5-HT3 receptors on guinea-pig myenteric plexus by their high affinity for tropisetron and MDL 72 222, and their very low affinity for ondansetron. Stimulation of 5-HT4 receptors causes inhibition of release; the inhibitory 5-HT4 receptor mechanism appears to predominate.Correspondence to H. Kilbinger at the above address  相似文献   

20.
Summary Agonist-induced desensitization has been utilized to discriminate and independently isolate the neuronal excitatory receptors to 5-hydroxytryptamine (5-HT) in the guinea pig ileum (5-HT3 and putative 5-HT4 receptors). Electrically stimulated longitudinal muscle myenteric plexus preparations, and non-stimulated segments of whole ileum were used. Exposure to 5-methoxytryptamine (10 mol/l) inhibited completely responses to 5-HT at the putative 5-HT4 receptor without affecting 5-HT3-mediated responses. Conversely, exposure to 2-methyl-5-HT (10 mol/l) inhibited completely responses to 5-HT at the 5-HT3 receptor without affecting putative 5-HT4-mediated responses. The inhibition with 5-methoxytryptamine and 2-methyl-5-HT, either alone or in combination, appeared selective as responses to KCI, DMPP, carbachol, histamine, and substance P were unaffected or only very slightly modified. Furthermore, the pA2 values for ICS 205–930 at the putative 5-HT4 (pA2 = 6.2 to 6.5) and 5-HT3 (pA2 = 7.6 to 8.1) receptors (estimated in the presence of 2-methyl-5HT and 5-methoxytryptamine, respectively) were consistent with those estimated in the absence of desensitization.5-Methoxytryptamine, but not 2-methyl-5-HT, suppressed completely but reversibly the concentration-effect curve to renzapride, suggesting that responses to this agent are mediated exclusively via agonism at the putative 5-HT4 receptor.It is concluded that 5-methoxytryptamine and 2-methyl-5-HT can be utilized as selective probes to discriminate the putative 5-HT4 receptor from the 5-HT3 receptor in guinea pig ileum. This finding is of importance as no selective antagonist exists for the putative 5-HT4 receptor. Furthermore, the presently described method of agonist-induced desensitization and 5-HT receptor discrimination may be useful for the identification and characterization of the putative 5-HT4 receptor in other tissues and species. Send offprint requests to D. E. Clarke at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号