首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
DC, NK lectin group receptor-1 (DNGR-1), also known as C-type lectin domain family 9 member A (CLEC9A), is a promising target for immunological therapeutics and vaccination against tumors and viruses. However, little is known about its property in rhesus macaques. In this study, we cloned rhesus macaque DNGR-1 cDNA, and found that its coding region could encode a 241-amino acid polypeptide with 91.7% sequence identity and similar antigenicity to that of humans. Both free and cell surface rhesus macaque DNGR-1 expressed in vitro could bind to apoptotic/dead cells induced by serum deprivation or freeze-thaw, and to pyroptotic cells stimulated with PMA and LPS. We also demonstrated that rhesus macaque DNGR-1 mRNA was present in all the examined tissues, with the highest in lymph nodes, spleen, blood, and thymus. The expression of DNGR-1 that is highly similar to that of humans warranted the usefulness of rhesus macaques in testing human therapeutics and vaccines targeting DNGR-1, especially those for HIV/AIDS.  相似文献   

2.
Increased rates of T-cell apoptosis have been detected in human immunodeficiency virus (HIV)-infected individuals and in the simian immunodeficiency model (SIV) for AIDS research. We have infected macaques with virulent SIV or SIV/HIV hybrid viruses (SHIV) of different pathogenic potentials to study the early kinetics of apoptosis in this model. Animals infected with SIV showed an increased degree of apoptosis in their peripheral blood mononuclear cells as early as 8 weeks after virus inoculation. Apoptotic cells were detected in the CD4 and CD8 cell populations of infected animals. In contrast, apathogenic SHIV did not lead to increased lymphocyte apoptosis and moderately pathogenic SHIV induced only transient apoptosis. T-cell death was temporally linked to viral replicationin vivo.Furthermore, lymphocyte apoptosis in infected macaques was associated with impaired proliferative responses of helper T-cells and with CD4 cell depletion. The monkey model described here provides the opportunity for testing early therapeutic interventions to prevent virus-induced programmed cell death and the subsequent onset of AIDS.  相似文献   

3.
Despite the fact that human immunodeficiency virus (HIV) is transmitted primarily by sexual contact, the biology of the sexual transmission of HIV is poorly understood. Simian immunodeficiency virus (SIV) can be transmitted to female rhesus macaques by placing cell-free virus into the vaginal canal, and SIV can be isolated from the vaginal secretions of infected rhesus macaques. The authors examined the genital tracts from 16 chronically infected female rhesus macaques and localized SIV-infected cells using in situ hybridization and immunohistochemistry. SIV-infected cells were found in the genital tract of 13 of the 16 animals examined, and in most cases the SIV-infected cells were located in the submucosa of the cervix and vagina. However, SIV-infected cells were also found in the vaginal epithelium. SIV-infected cells were more common in sites of inflammation than in normal areas. These findings suggest that SIV gains access to genital tract secretions from the cervix and vaginal epithelium.  相似文献   

4.
The enzyme-linked immune spot (ELISPOT) assay is receiving increased attention as a means for quantifying antigen-specific CD8 T-cell responses in rhesus macaques. Further improving the sensitivity of this assay could aid in the evaluation of vaccine candidates and/or immune therapeutic candidates. Interleukin (IL)-15 has been demonstrated to stimulate expansion of human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) and to regulate homeostatic proliferation of CD8+ memory cells. We evaluated the in vitro effect of IL-15 to increase the detection of interferon-gamma (IFN-gamma) production by antigen-specific stimulated lymphocytes from a group of rhesus macaques exposed to simian-human immunodeficiency virus (SHIV) and a second group infected with SIVmac251, before and after antiretroviral treatment (ART). Results from these studies demonstrate that the presence of IL-15 during stimulation in a peptide-based ELISPOT assay greatly enhanced IFN-gamma production in both SHIV and simian immunodeficiency virus (SIV)-infected macaques. IFN-gamma production was mainly mediated by CD8 lymphocytes. The optimal concentrations of IL-15 that give enhancement of IFN-gamma production to specific antigen, without a significant increase in the spontaneous IFN-gamma release, ranged from 0.5 to 2.5 ng/ml. The mean number of IFN-gamma spots was increased 3.1- to 3.6-fold in response to SIV gag or HIV env peptide pools, respectively, in peripheral blood mononuclear cells (PBMC) from SHIV-infected macaques. Similarly, in SIV-infected macaques, IL-15 increased the mean number of IFN-gamma spots 2.7-fold in response to both SIV gag and env peptide pools. In samples obtained after ART in the same macaques, the increase factor was 2.5 for SIV gag and 1.8 for the env peptide pools. Thus, the sensitivity of the ELISPOT assay can be enhanced by addition of IL-15. This modified assay will be useful for detection of low frequencies of IFN-gamma producing cells in rhesus macaques.  相似文献   

5.
Cold agglutinins are uncommon autoimmune phenomena associated with mycoplasma pneumonia, viral infections, lymphoproliferative neoplasia and recently, acquired immunodeficiency syndrome (AIDS) in human beings. Six rhesus macaques infected with pathogenic isolates of simian immunodeficiency virus (SIV) developed cold agglutinins late in the course of viral infection in association with hyperproteinaemia, hyperglobulinaemia and thrombocytopenia. Cold agglutinin titres ranged from 1:1024 to 1:8192. The development of cold agglutinins in SIV-infected rhesus macaques may be another manifestation of immune dysfunction in this non-human primate model of AIDS.  相似文献   

6.
The cytokine interleukin-21 (IL-21) regulates viral pathogenesis in individuals infected with human and simian immunodeficiency viruses. However, because the time of initial infection with HIV in humans is rarely known, the dynamics of IL-21 production during the first weeks have not been adequately explored. In the present study, we used rhesus macaques to model the first stages of infection. Twenty-two rhesus macaques were infected rectally with simian-human immunodeficiency virus (SHIV)-1157ipd3N4, and for 12 weeks, replication of the virus, the numbers of CD4+ and CD8+ T cells, and the levels of plasma IL-21 were monitored. Our study demonstrated that plasma levels of IL-21 increased during the early phase of SHIV infection when compared with the values observed before inoculation. We conclude that IL-21 has a likely role in the immunopathogenesis of HIV/SIV/SHIV.  相似文献   

7.
Polymeric immunoglobulin receptors (pIgR) and neonatal Fc receptors (FcRn) are crucial immunoglobulin (Ig) receptors for the transcytosis of immunoglobulins, that is IgA, IgM and IgG, the levels of which in mucosal secretions were altered in both HIV‐ and SIV‐infected individuals. To gain an insight into the changes of pIgR and FcRn expression after immunodeficiency virus (SHIV/SIV) infection, real‐time RT‐PCR methods were established and the mRNA levels of pIgR and FcRn in normal and SHIV/SIV‐infected rhesus macaques were quantitatively examined. It was found that the levels of pIgR mRNA were within a range of 107 copies per million copies of GAPDH mRNA in the gut mucosa of rhesus macaques, which were up to 55 times higher than that in the oral mucosa, the highest among the non‐gut tissues examined. Levels of FcRn mRNA were generally lower than that of pIgR, and the levels of FcRn mRNA in the gut mucosa were also lower than that in most non‐gut tissues examined. Notably, the levels of pIgR mRNA in the duodenal mucosa were positively correlated with that of IL‐17A in normal rhesus macaques. Both pIgR and FcRn mRNA levels were significantly reduced in the duodenal mucosa during acute SHIV infection and in the jejunum and caecum during chronic SHIV/SIV infection. These data expanded our knowledge on the expression of pIgR and FcRn in the gastrointestinal tract of rhesus macaques and demonstrated altered expression of pIgR and FcRn in SHIV/SIV, and by extension HIV infections, which might have contributed to HIV/AIDS pathogenesis.  相似文献   

8.
A T-cell tropic retrovirus, simian immunodeficiency virus (SIV), has recently been isolated from immunodeficient rhesus monkeys. This virus has remarkable similarities to human immunodeficiency virus (HIV), the etiologic agent of acquired immunodeficiency syndrome. Subsequent studies of simian infection with SIV have shown it to be a relevant animal model for studying the pathogenesis of AIDS in man. In both HIV-infected humans and SIV-infected monkeys, a cutaneous maculopapular eruption has been described. To date, the pathogenesis and possible relationship of these exanthema to the evolution of systemic immunosuppression have remained obscure. In this study, the mononuclear cell infiltrates that characterize skin rashes of SIV-infected rhesus monkeys were found to be composed predominantly of cells with phenotypic characteristics of cytotoxic/suppressor (T8+) lymphocytes and natural killer cells. Many of these cells expressed membrane-bound interleukin-2 receptor molecules. Double labeling and immunoelectron microscopy revealed these cells in direct contact with degenerative Langerhans cells within the epidermis and dermis. These observations suggest that the cutaneous rash associated with SIV infection may be the consequence of target cell injury of Langerhans cells by effector cells with cytotoxic potential.  相似文献   

9.
10.
11.
Summary: Infection of rhesus macaques with simian immunodeficiency virus (SIV) is an excellent model system for studying viral adaptation to immune responses. In this review, we discuss how the SIV-infected macaque has provided unequivocal evidence for cytotoxic T-lymphocyte (CTL) selection of viral escape variants. This improved understanding of CTL escape may influence human immunodeficiency virus (HIV) vaccine design as well as our understanding of HIV pathogenesis.  相似文献   

12.
Studies were undertaken to determine whether previously described reductions in splenic DC-SIGN expression in simian acquired immune deficiency syndrome (AIDS) are limited to pathogenic simian immunodeficiency virus (SIV) infection. DC-SIGN expression was evaluated by immunohistochemistry in lymphoid tissues from AIDS-susceptible Asian macaque monkeys as compared with AIDS-resistant sooty mangabey monkeys in the presence and absence of SIV infection. The phenotype of DC-SIGN+ cells in susceptible and resistant species was identical and most consistent with macrophage identity. Significantly lower levels of DC-SIGN expression were identified in spleen, mesenteric lymph node, and bone marrow of macaques with AIDS (P<0.05). Reduced levels of splenic DC-SIGN correlated significantly with CD4T cell depletion in long-term pathogenic infection of macaques (P<0.01), whereas SIV-infected mangabeys retained high levels of DC-SIGN expression in spleen despite persistent infection. Reduced expression of DC-SIGN in spleen specifically characterizes pathogenic forms of SIV infection, correlates with disease progression, and may contribute to SIV pathogenesis.  相似文献   

13.
A T-cell tropic lentivirus of macaques the simian immunodeficiency virus (SIV), has morphologic, growth, and antigenic properties that indicate that it is related to the human immunodeficiency virus (HIV), the etiologic agent of the acquired immune deficiency syndrome (AIDS) in humans. Six juvenile macaques developed persistent lymphadenopathy (greater than 3 months in duration) after inoculation with SIV. The histologic appearance of the lymph nodes was characterized by marked follicular hyperplasia with abundant proliferative B cells infiltrating into the paracortex. The number of T8-positive lymphocytes equaled or exceeded the number of T4-positive lymphocytes in the paracortex. These findings, in association with immunologic abnormalities and a previously observed fatal immunodeficiency syndrome in SIV-infected macaques, provide further evidence of the importance of SIV-induced disease in macaques as a model for the study of AIDS.  相似文献   

14.
Acute HIV/SIV (human/simian immunodeficiency virus) infection results in severe CD4(+) T cell depletion in lymphoid compartments. During the chronic phase of infection, CD4(+) T cell numbers rebound in blood but remain low in the gut-associated lymphoid tissue (GALT), even when viral replication is suppressed by antiretroviral therapy (ART). Thus, strategies to repopulate lymphoid compartments may ameliorate the clinical outcome of HIV/SIV infection. Interleukin (IL)-7 is a key cytokine for the maintenance of homeostatic proliferation of T cells. In HIV/SIV infection, IL-7 expression is increased, likely to compensate for T cell loss, suggesting that supraphysiological administration of IL-7 could provide additional benefit. However, the ability of T cells to respond to IL-7 is dependent on the level of expression of the IL-7 receptor (IL-7R) in T cells in various body compartments. In here, we investigated the proportion of IL-7R(+) T cells in blood, spleen, gut, and genitourinary tract of healthy and SIV-infected macaques with various degrees of CD4(+) T cell depletion. We found that the percentage of T cells expressing IL-7R was significantly lower in both CD4(+) and CD8(+) T cell subsets in SIV-infected macaques than in healthy animals and this decrease directly correlated with the CD4(+) T cell number. Importantly, the proportion of CD4(+) and CD8(+) T cells expressing IL-7R in blood paralleled that found in tissues. IL-7R(+) T cells within the SIV-specific CD8(+) T cells varied and were lowest in most tissues of viremic macaques, likely reflecting continuous antigen stimulation of effector cells.  相似文献   

15.
RANTES, a beta-chemokine, can suppress human immunodeficiency virus (HIV) as well as simian immunodeficiency virus (SIV) infections in T-lymphocyte cultures in vitro. However, the association of RANTES levels in peripheral blood with viral loads and disease outcome in HIV infection has been inconclusive. SIV-infected rhesus macaques were evaluated to determine whether RANTES gene expression correlated with suppression of viral infection in intestinal lymphoid tissues. Intestinal tissues were obtained from rhesus macaques infected with either pathogenic or nonpathogenic SIVmac variants at various stages of infection (primary acute, asymptomatic, and terminal). We examined the level of SIV infection (in situ hybridization), RANTES expression (quantitative competitive RT-PCR), and T-cell counts (immunohistochemistry). The most pronounced increase in RANTES gene expression in intestinal tissues was observed in primary SIV infection, which correlated with the pathogenicity of the infecting virus and not the tissue viral loads. Our results demonstrated that in contrast to the occurrence of viral suppression by RANTES in vitro, there was no direct correlation between high RANTES gene expression and suppression of viral loads in intestinal lymphoid tissues. Thus RANTES expression in the gut lymphoid tissue may not be a correlate for viral suppression. However, RANTES gene expression in primary SIV infection may be part of early host immune response to viral infection.  相似文献   

16.
17.
The tat, rev, vpu, and env genes from the monocytotropic CCR5-dependent HIV-1 Ba-L isolate were substituted for homologous simian immunodeficiency virus (SIV) sequences in the SIV genome. The resultant SHIV (SHIV Ba-L) replicated in CCR5-positive PM-1 cells but not in CCR5-negative CEMX174 cells. Infection of HOS cells expressing different co-receptors showed SHIV Ba-L to be strictly CCR5-dependent. Infection of PM-1 cells and rhesus peripheral blood mononuclear cells (PBMCs) was highly sensitive to RANTES but not to SDF-1. Although SHIV Ba-L infected rhesus and pigtail macaques intravenously or rectally, plasma viremia was controlled after 3 weeks. After serial passage through 4 pigtails by blood and bone marrow transfer, virus from pigtail PBMCs had higher in vitro infectious titers on rhesus PBMCs and was efficiently transmitted vaginally in rhesus and cynomolgus macaques. Plasma viremia generally persisted longer than after infection with unpassaged virus but was eventually controlled with no significant decrease in CD4+ T-cell counts in peripheral blood. The envelope gene of SHIV Ba-L revealed a very little genetic drift during in vivo passage. SHIV Ba-L provides a potentially useful model for R5 HIV-1 infection of humans.  相似文献   

18.
《Mucosal immunology》2008,1(3):219-228
Live attenuated lentivirus immunization is the only vaccine strategy that elicits consistent protection against intravaginal challenge with pathogenic simian immunodeficiency virus (SIV). To determine the mechanism of protection in rhesus monkeys infected with attenuated simian–human immunodeficiency virus (SHIV)89.6, a detailed analysis of SIV Gag-specific T-cell responses in several tissues including the genital tract was performed. Six months after SHIV infection, antiviral T-cell responses were rare in the cervix; however, polyfunctional, cytokine-secreting, and degranulating SIV Gag-specific CD4+ T cells were consistently found in the vagina of the immunized macaques. SIV-specific CD8+ T cells were also detected in the vagina, blood, and genital lymph nodes of most of the animals. Thus, an attenuated SHIV vaccine induces persistent antiviral T cells in tissues, including the vagina, where these effector T-cell responses may mediate the consistent protection from vaginal SIV challenge observed in this model.  相似文献   

19.
Brain perivascular macrophages are a major target of simian immunodeficiency virus (SIV) infection in rhesus macaques and HIV infection in humans. Perivascular macrophages are distinct from parenchymal microglia in their location, morphology, expression of myeloid markers, and turnover in the CNS. In contrast to parenchymal microglia, perivascular macrophages are continuously repopulated by blood monocytes, which undergo maturation to macrophages on entering the central nervous system (CNS). We studied differences in monocyte/macrophages in vivo that might account for preferential infection of perivascular macrophages by SIV. In situ hybridization for SIV and proliferating cellular nuclear antigen (PCNA) immunohistochemistry demonstrated that SIV-infected and PCNA-positive cells were predominantly found in perivascular cuffs of viremic animals and in histopathological lesions that characterize SIV encephalitis (SIVE) in animals with AIDS. Multilabel techniques including double-label immunohistochemistry and combined in situ hybridization and immunofluorescence confocal microscopy revealed numerous infected perivascular macrophages that were PCNA-positive. Outside the CNS, SIV-infected, PCNA-expressing macrophage subpopulations were found in the small intestine and lung of animals with AIDS. While PCNA is used as a marker of cell proliferation it is also strongly expressed in non-dividing cells undergoing DNA synthesis and repair. Therefore, more specific markers for cell proliferation including Ki-67, topoisomerase IIalpha, and bromodeoxyuridine (BrdU) incorporation were used which indicated that PCNA-positive cells within SIVE lesions were not proliferating. These observations are consistent with perivascular macrophages as terminally differentiated, non-dividing cells and underscores biological differences that could potentially define mechanisms of preferential, productive infection of perivascular macrophages in the rhesus macaque model of neuroAIDS. These studies suggest that within CNS and non-CNS tissues there exist subpopulations of macrophages that are SIV-infected and express PCNA.  相似文献   

20.
Previously, we described the derivation of a pathogenic strain of simian-human immunodeficiency virus (SHIV(KU-2)) consisting of the tat, rev, vpu, and env genes of HIV-1 (strain HXB2) in a genetic background of SIV(mac)239 that causes AIDS and productive infection of the CNS in rhesus macaques (Macca mulatta) (Raghavan et al., 1997, Brain Pathol. 7, 851-861). We report here on the characterization of a molecular clone of SHIV(KU-2), designated SHIV(KU-2MC4), that caused CD4(+) T cell loss as well as neurological and renal disease in macaques. DNA sequence analysis of selected SIV regions of SHIV(KU-2MC4) revealed 10 nucleotide changes in the LTR, whereas Gag, Vif, Vpr, Vpx, and Nef had 1, 1, 1, 2, and 13 predicted amino acid substitutions, respectively, compared to SIV(mac)239. DNA sequence analysis of HIV-1 derived regions of SHIV(KU-2MC4) revealed 2, 1, 2, and 18 predicted amino acid substitutions in the Tat, Rev, Vpu, and Env proteins, respectively, when compared to SHIV-4. Unlike the parental SHIV-4, which is not tropic for macrophages, SHIV(KU-2MC4) replicated efficiently in macrophage cultures as determined by p27 assays. However, despite the numerous changes in the Env protein and newly acquired tropism for macrophages, SHIV(KU-2MC4), like the parental SHIV-4, used CXCR4 exclusively as its coreceptor for entry into susceptible cells. Inoculation of SHIV(KU-2MC4) into two rhesus macaques resulted in severe infection in which the numbers of circulating CD4(+) T cells in the blood declined rapidly by 2 weeks postinoculation and virus producing cells in the peripheral blood mononuclear cells were identified throughout the course of infection. At the time of euthanasia (20 and 22 weeks), both macaques had lost a significant amount of weight and had no circulating CD4(+) T cells. In addition, one macaque developed intension tremors and uncoordinated movements. Virological examination of tissues at necropsy revealed active virus replication in both lymphoid and nonlymphoid tissues such as the lung and brain. Histological examination revealed that the induced immunodeficiency was associated with lymphoid depletion of the lymph nodes and spleen, opportunistic infections, lentiviral encephalitis, and severe glomerulosclerosis of the kidney. This molecular clone will serve as the basis for analyzing the molecular determinants through which SHIV(KU-2) causes severe CD4(+) T cell loss, neurological disease, and SHIV nephropathy in rhesus macaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号