共查询到20条相似文献,搜索用时 11 毫秒
1.
A perifusion system was developed to investigate the control of α-melanocyte-stimulating hormone (α-MSH) release from rat brain. Hypothalamic slices were perifused with Krebs-Ringer bicarbonate (KRB) medium supplemented with glucose, bacitracin and bovine serum albumine. Fractions were set apart every 3 min and α-MSH levels were measured by means of a specific and sensitive radioimmunoassay method. Hypothalamic tissue in normal KRB medium released α-MSH at a constant rate corresponding to 0.1% of the total hypothalamic content per 3 min. The basal release was not altered by Ca2+ omission in the medium or addition of the sodium channel blocker tetrodotoxine (TTX). Depolarizing agents such as potassium (50 mM) and veratridine (50 μM), which is known to increase Na+ conductance, significantly stimulated α-MSH release in a Ca2+-dependent manner. When Na+-channels were blocked by TTX (0.5 μM) the stimulatory effect of veratridine was completely abolished whereas the K+-evoked release was unaffected. These findings suggest that: (1) voltage-dependent sodium channels are present on α-MSH hypothalamic neurons; (2) depolarization by K+ induces a marked stimulation of α-MSH release; (3) K+- and veratridine-evoked releases are calcium-dependent. Altogether, these data provide evidence for a neurotransmitter or neuromodulator role for α-MSH in rat hypothalamus. 相似文献
2.
Carla Scali Costanza Prosperi Lisa Giovannelli Loria Bianchi Giancarlo Pepeu Fiorella Casamenti 《Brain research》1999,831(1-2)
The nucleus basalis of adult rats was injected with β(1–40) amyloid peptide. A marked increase in basal and K+-evoked GABA release in the ipsilateral cortex and a significant decrease in GAD activity in the injected NB were found 30 days after injection. An intense activation of microglial cells that surrounded and infiltrated the deposit was observed. These data demonstrate that a local injection of β(1–40) peptide into the NB induces glia activation and affects GABAergic neurons. 相似文献
3.
Superfusion of rat hypothalamic slices with 10−4 MN-methyl-d-aspartic acid (NMDA) resulted in increased release of α-melanocyte-stimulating hormone (α-MSH). Peptide release was blocked by 10−6 MNG-nitro-l-arginine methyl ester (l-NAME) a specific competitive inhibitor of nitric oxide synthase but not by the inactive enantiomerd-NAME at 10−6 M. The inhibition byl-NAME was reversed by the addition of 10−5 Ml-arginine, an excess of enzyme substrate. Release of nitric oxide products into tissue superfusates was stimulated by a 50 mM concentration of potassium ions and by 10−4 M NMDA. Potassium-stimulated release was blocked byl-NAME. Basal, potassium-stimulated and NMDA-stimulated release of nitric oxide products were significantly inhibited by the NMDA-receptor antagonistd-(−)-2-amino-5-phosphopentanoic acid (AP5) at 10−4 M and by the NMDA-channel blocker ketamine at 10−4 M. We conclude that nitric oxide mediates the stimulatory action of glutamic acid ont he release of α-MSH from the rat hypothalamus. 相似文献
4.
Melanin-concentrating hormone (MCH)-containing neurons have recently been localized in the dorsolateral region of the rat hypothalamus, an area where the second α-MSH system is found which contains only α-MSH and none of the pro-opiomelanocortin (POMC)-related peptides. In order to study the morphological relationships between the MCH and α-MSH neuronal systems, we have studied the immunocytochemical localization of both MCH and α-MSH in the rat hypothalamus. The same study was also performed in the human hypothalamus where there is only one α-MSH system which contains α-MSH as well as the other POMC-related peptides (first α-MSH system). In the rat dorsolateral hypothalamus, we could demonstrate that most neuronal cell bodies stained for MCH also contained immunoreactive α-MSH. In the human hypothalamus, neuronal cell bodies stained for MCH were observed only in the periventricular area whereas cell bodies containing α-MSH were exclusively located in the infundibular (arcuate) nucleus. In the rat, immunoelectron microscopy showed labelling for MCH in the dense core vesicles of positive neurons and double-staining techniques clearly demonstrated that both immunoreactive MCH and α-MSH could be consistently detected in the same dense core vesicles. These ultrastructural studies then suggest that these two peptides should be released simultaneously from neurons located in the rat dorsolateral hypothalamus. 相似文献
5.
The effects of CPA (a selective A1 receptor agonist), NECA (a mixed A1 and A2 receptor agonist), and CGS 21680 (a selective A2 receptor agonist) on the ischemia-evoked release of gamma-aminobutyric acid (GABA) from rat cerebral cortex was investigated with the cortical cup technique. Cerebral ischemia (20 min) was elicited by four vessel occlusion. In control animals, superfusate GABA increased from a basal level of 206 +/- 26 nM (mean +/- S.E.M., n = 18) to 10,748 +/- 3,876 nM during the reperfusion period. Pretreatment with adenosine receptor agonists failed to affect basal levels of GABA release. However, CPA (10(-10) M), NECA (10(-9) M), and CGS 21680 (10(-8) M) significantly suppressed the ischemia-evoked release of GABA. The ability to block the ischemia-evoked release of GABA was not evident when the adenosine receptor agonists were administered at higher concentrations. Thus, the selective activation of either A1 or high-affinity A2a adenosine receptors results in an inhibition of ischemia-evoked GABA release. 相似文献
6.
Denis Tranchand Bunel Catherine Delbende Catherine Blasquez Sylvie Jegou Hubert Vaudry 《Brain research》1990,513(2)
The neuropeptide α-melanocyte-stimulating hormone (α-MSH) is synthesized by discrete populations of hypothalamic neurons which project in different brain regions including the cerebral cortex, hippocampus and amygdala nuclei. The purpose of the present study was to identify the α-MSH-immunoreactive species contained in these different structures and to compare the ionic mechanisms underlaying α-MSH release at the proximal and distal levels, i.e. within the hypothalamus and amygdala nuclei, respectively. The molecular forms of α-MSH-related peptides stored in discrete areas of the brain were characterized by combining high-performance liquid chromatography (HPLC) separation and radioimmunoassay detection. In mediobasal and dorsolateral hypothalamic extracts, HPLC analysis confirmed the existence of a major immunoreactive peak which co-eluted with the syntheticdes-Nα-acetyl α-MSH standard. In contrast, 3 distinct forms of immunoreactive α-MSH, which exhibited the same retention times as synthetic des-, mono- and di-acetyl α-MSH, were resolved in amygdala nuclei, hippocampus, cortex and medulla oblongata extracts. The proportions of acetylated α-MSH (authentic α-MSH plus diacetyl α-MSH) contained in these extrahypothalamic structures were, respectively, 78, 80, 60 and 92% of the total α-MSH immunoreactivity. In order to compare the ionic mechanisms underlaying α-MSH release from hypothalamic and extrahypothalamic tissues, we have investigated in vitro the secretion of α-MSH by perifused slices of hypothalamus and amygdala nuclei. High potassium concentrations induced a marked increase of α-MSH release from both tissue preparations. However, a higher concentration of KCl was required to obtain maximal stimulation of amygdala nuclei (90 mM) than hypothalamic tissue (50 mM). The effect of depolarizing concentrations of KCl was totally suppressed in the absence of Ca2+, indicating that high-K+ induced the opening of voltage-operated Ca2+ (VOC) channels. Veratridine (50 μM), a depolarizing agent which activates Na+ conductances, caused a robust stimulation of α-MSH release from hypothalamic slices but had virtually no effect on amygdala nuclei. ω-Conotoxin (1 μM), a peptide toxin which blocks L- and N-type VOC channels, caused a slight reduction of K+-evoked α-MSH release from hypothalamic slices but induced a dramatic decrease of α-MSH release from amygdala nuclei. These data suggest that acetylation of α-MSH to generate the biologically active forms of the peptide is a slow process which occurs gradually during axonal transport. Our results also indicate that release of α-MSH at the hypothalamic level mainly results from activation of T-type VOC channels whereas, in the amygdala nuclei, L- and (or) N-type VOC channels are involved in the regulation of α-MSH secretion. 相似文献
7.
8.
Immunoreactive α-MSH was measured in cerebrospinal fluid (CSF) and plasma of rats. While treatment with haloperidol increased α-MSH levels in the plasma concentration of α-MSH in the CSF showed little change. Hypophysectomy also had little effect on the concentration of α-MSH in the CSF despite the fall in plasma α-MSH levels. This lack of correlation between α-MSH levels in the CSF and plasma suggests that the systemic circulation does not deliver α-MSH to the CSF. The apparently normal levels of α-MSH in the hypothalamus after hypophysectomy suggests that this tissue is able to synthesize α-MSH and it is possible that the hypothalamus is a source of the α-MSH in the CSF. 相似文献
9.
J.Z. Kiss E. Mezey M.D. Cassell T.H. Williams G.P. Mueller T.L. O''Donohue M. Palkovits 《Brain research》1985,329(1-2):169-176
The detailed distribution of adrenocorticotropin (ACTH), beta-endorphin (beta-END) and alpha-melanotropin (alpha-MSH) immunoreactivity was examined in the rat median eminence (ME) and pituitary stalk using light microscopic immunocytochemistry and radioimmunoassay (RIA). Nerve fibers and varicosities immunoreactive for ACTH/beta-END/alpha-MSH had identical distributions in the ME suggesting that they are part of the same arcuate proopiomelanocortin neuronal (POMC) system. The quantitative image analysis of POMC immunoreactive varicosities in the ME indicates no significant differences between the various rostro-caudal segments. In the main (preinfundibular) portion of the ME, a moderate density of immunoreactive elements was located in the lateral part of the internal zone and throughout the postinfundibular ME. Very few scattered varicosities were observed in the neurohemal (external) zone and in the pituitary stalk. By RIA, alpha-MSH is present in a substantially higher concentration than ACTH and beta-END throughout the ME. Knife cuts between the arcuate nucleus and ME indicate that proopiomelanocortin (POMC) fibers enter the ME in its whole rostro-caudal extent. Thus POMC neurons seem to provide innervation of structures in the internal zone but not in the neurohemal/external/zone where the portal capillary system is located. Moreover, the observation that the density of immunoreactive elements is substantially lower in the pituitary stalk than in the ME, suggests that the majority of immunoreactive fibers in the internal zone are not fibers of passage directed towards the neurohypophysis. 相似文献
10.
11.
Piotr Zelazowski Vladimir K. Patchev Elzbieta B. Zelazowska George P. Chrousos Philip W. Gold Esther M. Sternberg 《Brain research》1993,631(1)
The susceptibility of Lewis rats is related to blunted hypothalamic-pituitary-adrenal (HPA) axis responsiveness to a variety of inflammatory and neuroendocrine stimuli. In contrast resistance to inflammatory disease of histocompatible Fischer rats is associated with their intact HPA axis responses to the same stimuli. We have examined the contribution of IL-1β to in vitro corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) release from hypothalamic explants derived from LEW/N and F344/N rats. The same animal model has been used to investigate the regulatory effect of αMSH, an immunosuppressive neurohormone, on IL-1β stimulated CRH and AVP secretion. CRH basal release in both strains was similar. However, LEW/N hypothalamic AVP basal secretion was significantly elevated. CRH relative response of LEW/N hypothalamic explants to IL-1β stimulation was lower compared to Fischer, which is consistent with their hyporesponsiveness to inflammatory mediators. AVP secretion however, was significantly decreased in hypothalamic explants from both strains after 40 min exposure to IL-1β. αMSH suppressed basal CRH and AVP release in both LEW/N and F344/N rats and prevented IL-1β stimulated CRH secretion in these strains. AVP was further diminished in F344/N explants following incubation with αMSH+IL-1β, while LEW/N level was significantly elevated. However, AVP levels remained significantly below baseline in explants from both strains after final incubation with IL-1β. Although our findings indicate a modulatory action of αMSH in HPA axis regulation in vitro, the physiological importance of this phenomenon in Lewis and Fischer rats requires further investigation. 相似文献
12.
The effects of the centrally produced allylic neurosteroid, 3α-hydroxy-4-pregnen-20-one (3αHP), on the responses of male mice to an aversive, anxiety-inducing, predator (cat) odor were examined in an odor preference test. Control untreated mice displayed an anxiogenic response to the cat odor, spending a minimal amount of time in a Y-maze in the vicinity of the cat odor. Intracerebroventricular (i.c.v.) administrations of 3αHP had an anxiolytic action, resulting in significant dose-related (0.01–1.0 μg) increases in the amount of time spent in the proximity of the cat odor. These anxiolytic effects of 3αHP were stereospecific, with the stereoisomer, 3β-hydroxy-4-pregnen-20-one (3βHP) having no significant effects on odor preferences. The analgesic, morphine, also had no significant effects on the response to cat odor indicating that the anxiolytic actions of 3αHP were unlikely to be related to any analgesic effects. The effects of 3αHP were significantly reduced by peripheral administrations of the GABAA antagonists, bicuculline and picrotoxin, but were unaffected by either the benzodiazepine antagonist, Ro 15-1788, or the opiate antagonist, naloxone. These results indicate that the allylic neurosteroid 3αHP has anxiolytic actions involving interactions with the GABAA receptor. 相似文献
13.
Immunocytochemical localization of α-MSH was performed in the brain of rats of which the arcuate nucleus has been destroyed by treatment with monosodium glutamate in the neonatal period. In these animals, α-MSH cell bodies normally found in the arcuate nucleus were almost completely absent. The reactive fibers found in the ACTH-β-LPH pathway were also markedly decreased. On the other hand, α-MSH cell bodies located in the dorsolateral hypothalamus as well as fibers located outside the ACTH-β-LPH pathway were not decreased. These results strongly suggest that α-MSH cell bodies in dorsolateral hypothalamus have projections completely different from those located in the arcuate nucleus. 相似文献
14.
We have studied the distribution of the putative amino acid neurotransmitters glutamate, aspartate, gamma-aminobutyric acid (GABA), glycine, taurine and beta-alanine in the caudal cerebellar lobe and electrosensory lateral line lobe (ELL) of weakly electric gymnotid fish. In the caudal lobe of the cerebellum, the levels of the various amino acids in the granular and molecular layers are comparable to the levels in the rat cerebellum, with the exception of taurine which is present in greater amounts in the gymnotid. In the ELL, these amino acids are differentially distributed in the various layers of this structure. Glutamate and taurine are enriched in the molecular layer, whereas GABA, aspartate, and beta-alanine are enriched in the deep neuropil + granular layers. Glycine is slightly enriched in the pyramidal cell layer. 相似文献
15.
Christian Gramsch Gerhard Kleber Volker Hllt Aurelio Pasi Parviz Mehraein Albert Herz 《Brain research》1980,192(1)
The ‘pro-opiocortin’ fragments, β-lipotropin, β-endorphin, ACTH and α-MSH, were estimated in discrete areas of rat and human brain and pituitaries by means of radioimmunoassay in combination with gelfiltration. These peptides exihibited parallel patterns of distribution, but with β-endorphin and α-MSH predominant in the brain of rat and man, and, in contrast, their respective precursors, β-LPH and ACTH predominant in the adenohypophysis of rat and man. These data may be indicative of important differences in post-translational processing of ‘pro-opiocortin’ between these contrasting tissues. 相似文献
16.
17.
β-N-Oxalyl-l-α,β-diaminopropionic acid (β-l-ODAP) is an excitatory amino acid agonist found in the seeds ofLathyrus sativus that is believed to be the major causative agent in the pathology of human lathyrism. We have found that in addition to its previously recognized neurotoxic properties, β-l-ODAP is also gliotoxic. When added to cultures of neonatal rat astrocytes, β-l-ODAP induced a series of morphological changes (e.g., extensive vacuole formation, pale and swollen nuclei with obvious nucleoli, and cellular swelling) that led to the eventual lysis of the glial cells. If the β-l-ODAP was removed prior to the lysis of the astrocytes, many of the early morphological changes appeared to be reversible. When quantitated by a loss of the lactate dehydrogenase activity, β-l-ODAP lysed the astrocytes with an LD50 of2.1 ± 0.2mM following 48 h of exposure. Lower concentrations of β-l-ODAP were found to be more toxic if the duration of the exposure was increased. The results suggest that the overall impact of the toxin on the CNS may represent the cumulative action of β-l-ODAP at a number of distinct points on both neurons and astrocytes. The potential that these multiple sites of action may affect the normal regulation of extracellular glutamate and, consequently, disturb the balance between its normal and pathological roles is discussed. 相似文献
18.
The effect of the chronic administration of α-MSH on the incorporation of tritiated tyrosine into noradrenalin and dopamine and of tritiated tryptophan into serotonin was studied in different regions of the rat brain. α-MSH increased the incorporation of tritiated tryptophan into serotonin in the cortex and slightly decreased that of tyrosine into the dopamine in the hypothalamus. As the brain concentration of serotonin was unchanged in the animals treated with α-MSH, it is suggested that some of the changes in behavior, which other investigators have found following the administration of peptides containing the same sequence of amino acids to that found in MSH, could be associated with an increased turnover of cortical serotonin. 相似文献
19.
In order to identify more accurately the organelles containing immunoreactive α-melanocyte-stimulating hormone (α-MSH) in the rat brain, attempts were made to improve the ultrastructural preservation of the neural tissue used for immunostaining of the peptide. With the post-embedding staining technique, the quality of the preservation was not adequate since only low concentrations (0.2–0.5%) of OsO4 could be used for postfixation. Higher concentrations of OsO4 completely destroyed the antigenicity of α-MSH. With the pre-embedding technique in which the immunostaining is performed prior to postfixation with OsO4, a good preservation could be obtained making possible the identification of organelles and classification of endings containing immunoreactive α-MSH. In the dendrites, the staining was rather diffuse without any clear association with organelles. In the endings, the staining was mostly restricted to dense core vesicles with some degree of diffusion in the cytoplasm. None of the positive endings were seen making synaptic contact. These results support the hypothesis that α-MSH could be released in sites other than the classical synaptic junction and act as a local hormone. 相似文献
20.
Mie Hirohata Kenjiro Ono Akiyoshi Morinaga Tokuhei Ikeda Masahito Yamada 《Experimental neurology》2009,217(2):434-439
The α-synuclein aggregation in the brain is the hallmark of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies, and multiple system atrophy. Some epidemiological studies have revealed that estrogen therapy reduces the risk of Parkinson's disease in females. We examined the effects of estriol, estradiol, estrone, androstenedione, and testosterone on the formation and destabilization of α-synuclein fibrils at pH 7.5 and 37 °C in vitro, using fluorescence spectroscopy with thioflavin S and electron microscopy. These sex hormones, especially estriol, significantly exert anti-aggregation and fibril-destabilizing effects; and hence, could be valuable preventive and therapeutic agents for α-synucleinopathies. 相似文献