首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Easton A  Meerlo P  Bergmann B  Turek FW 《Sleep》2004,27(7):1307-1318
CONTEXT: Sleep is regulated by circadian and homeostatic processes. The circadian pacemaker, located in the suprachiasmatic nuclei (SCN), regulates the timing and consolidation of the sleep-wake cycle, while a homeostatic mechanism governs the accumulation of sleep debt and sleep recovery. Recent studies using mice with deletions or mutations of circadian genes show that components of the circadian pacemaker can influence the total amount of baseline sleep and recovery from sleep deprivation, indicating a broader role for the SCN in sleep regulation. OBJECTIVE: To further investigate the role of the circadian pacemaker in sleep regulation in mice, we recorded sleep in sham and SCN-lesioned mice under baseline conditions and following sleep deprivation. RESULTS: Compared to sham controls, SCN-lesioned mice exhibited a decrease in sleep consolidation and a decrease in wakefulness during the dark phase. Following sleep deprivation, SCN-lesioned mice exhibited an attenuated increase in non-rapid eye movement sleep time but an increase in non-rapid eye movement sleep electroencephalographic delta power that was similar to that of the sham controls. CONCLUSIONS: These findings support the hypothesis that the SCN consolidate the sleep-wake cycle by generating a signal of arousal during the subjective night (ie. the active period), thereby having the capacity to alter baseline sleep amount. Although the SCN are not involved in sleep homeostasis as defined by the increase in electroencephalographic delta power after sleep deprivation, the SCN does play a central role in the regulation of sleep and wakefulness beyond just the timing of vigilance states.  相似文献   

2.
Hu WP  Li JD  Zhang C  Boehmer L  Siegel JM  Zhou QY 《Sleep》2007,30(3):247-256
STUDY OBJECTIVES: Sleep is regulated by circadian and homeostatic processes. Recent studies with mutant mice have indicated that circadian-related genes regulate sleep amount, as well as the timing of sleep. Thus a direct link between circadian and homeostatic regulation of sleep may exist, at least at the molecular level. Prokineticin 2 (PK2), which oscillates daily with high amplitude in the suprachiasmatic nuclei (SCN), has been postulated to be an SCN output molecule. In particular, mice lacking the PK2 gene (PK2-/-) have been shown to display significantly reduced rhythmicity for a variety of circadian physiological and behavioral parameters. We investigated the role of PK2 in sleep regulation. DESIGN: EEG/EMG sleep-wake patterns were recorded in PK2-/- mice and their wild-type littermate controls under baseline and challenged conditions. MEASUREMENTS AND RESULTS: PK2-/- mice exhibited reduced total sleep time under entrained light-dark and constant darkness conditions. The reduced sleep time in PK2-/- mice occurred predominantly during the light period and was entirely due to a decrease in non-rapid eye movement (NREM) sleep time. However, PK2-/- mice showed increased rapid eye movement (REM) sleep time in both light and dark periods. After sleep deprivation, compensatory rebound in NREM sleep, REM sleep, and EEG delta power was attenuated in PK2-/- mice. In addition, PK2-/- mice had an impaired response to sleep disturbance caused by cage change in the light phase. CONCLUSIONS: These results indicate that PK2 plays roles in both circadian and homeostatic regulation of sleep. PK2 may also be involved in maintaining the awake state in the presence of behavioral challenges.  相似文献   

3.
STUDY OBJECTIVES: Individual sleep timing differs and is governed partly by circadian oscillators, which may be assessed by hormonal markers, or by clock gene expression. Clock gene expression oscillates in peripheral tissues, including leukocytes. The study objective was to determine whether the endogenous phase of these rhythms, assessed in the absence of the sleep-wake and light-dark cycle, correlates with habitual sleep-wake timing. DESIGN: Observational, cross-sectional. SETTING: Home environment and Clinical Research Center. PARTICIPANTS: 24 healthy subjects aged 25.0 +/- 3.5 (SD) years. MEASUREMENTS: Actigraphy and sleep diaries were used to characterize sleep timing. Circadian rhythm phase and amplitude of plasma melatonin, cortisol, and BMAL1, PER2, and PER3 expression were assessed during a constant routine. RESULTS: Circadian oscillations were more robust for PER3 than for BMAL1 or PER2. Average peak timings were 6:05 for PER3, 8:06 for PER2, 15:06 for BMAL1, 4:20 for melatonin, and 10:49 for cortisol. Individual sleep-wake timing correlated with the phases of melatonin and cortisol. Individual PER3 rhythms correlated significantly with sleep-wake timing and the timing of melatonin and cortisol, but those of PER2 and BMAL1 did not reach significance. The correlation between sleep timing and PER3 expression was stronger in individuals homozygous for the variant of the PER3 polymorphism that is associated with morningness. CONCLUSIONS: Individual phase differences in PER3 expression during a constant routine correlate with sleep timing during entrainment. PER3 expression in leukocytes represents a useful molecular marker of the circadian processes governing sleep-wake timing.  相似文献   

4.
Changes in the waking EEG as a consequence of sleep and sleep deprivation.   总被引:14,自引:0,他引:14  
Electroencephalographic (EEG) activity was monopolarly recorded during resting wakefulness in 10 volunteers under the following conditions: at night before going to sleep, at night before total sleep deprivation, in the morning after waking, in the morning after sleep deprivation and at night after having slept during the day. Absolute and relative power and inter- and intrahemispheric correlation were established. After diurnal and nocturnal sleep as compared to sleep deprivation, we obtained the following significant results: interhemispheric correlations were higher; intrahemispheric correlations were lower; absolute power of alpha 2, beta 1 and beta 2 was lower; and relative power of alpha 2 and beta 2 was lower. EEG changes as a consequence of sleep or lack of sleep are dependent on prior sleep and/or wakefulness and not on circadian phase. EEG activity during wakefulness is a sensitive parameter and a useful tool to assess the consequences of sleep on brain functional organization.  相似文献   

5.
Kas MJ  Edgar DM 《Sleep》1999,22(8):1045-1053
The circadian timing system in mammals is thought to promote wakefulness and oppose sleep drive that accumulates across the activity phase in diurnal and nocturnal species. Whether the circadian system actively opposes compensatory sleep responses in mammals with episodes of alertness consolidated at dawn and dusk is unknown. In the present study, an interaction between circadian timed arousal at dawn and compensatory sleep responses after sleep deprivation (SD) was examined in Octodon degus, a hystricomorph rodent with crepuscular episodes of wakefulness. Recovery sleep was compared after 6 hours and 12 hours of SD ending at either CT 21 or 12, just before the dawn, and just after the dusk crepuscular episodes of consolidated wakefulness, respectively. Total sleep time and NREM sleep after SD increased proportionally to the amount of sleep loss; however, compensatory sleep responses after SD were attenuated at CT 23, a circadian time when a crepuscular event of wakefulness occurs in this species. EEG slow-wave activity (SWA) and body temperature levels in the first two hours after 6 and 12 hours of SD ending at CT 12 were similar. However, both were significantly higher than after 12 hours of SD ending at CT 21, suggesting factors other than the amount of prior wake duration can influence SWA levels. This study provides evidence that the circadian arousal system opposes compensatory sleep responses at dawn by actively promoting wakefulness in this species.  相似文献   

6.
To understand the role that sleep may play in memory storage, the authors investigated how fear conditioning affects sleep-wake states by performing electroencephalographic (EEG) and electromyographic recordings of C57BL/6J mice receiving fear conditioning, exposure to conditioning stimuli, or immediate shock treatment. This experimental design allowed us to examine the effects of associative learning, presentation of the conditioning stimuli, and presentation of the unconditioned stimuli on sleep-wake states. During the 24 hr after training, fear-conditioned mice had approximately 1 hr more of nonrapid-eye-movement (NREM) sleep and less wakefulness than mice receiving exposure to conditioning stimuli or immediate shock treatment. Mice receiving conditioning stimuli had more delta power during NREM sleep, whereas mice receiving fear conditioning had less theta power during rapid-eye-movement sleep. These results demonstrate that a single trial of fear conditioning alters sleep-wake states and EEG oscillations over a 24-hr period, supporting the idea that sleep is modified by experience and that such changes in sleep-wake states and EEG oscillations may play a role in memory consolidation.  相似文献   

7.
Changes occurring with age in cortical EEG and sleep-wake states architecture were examined in senescence accelerated prone (SAMP8) or senescence resistant (SAMR1) mice (age: 2 and 12 months) under baseline conditions or after a 4 h sleep deprivation (SD). In baseline conditions, an increase in slow wave sleep (SWS) amount (21-24%) occurs at the expense of the wakefulness (W) in old SAMP8 and SAMR1 mice versus young animals. In these conditions, SWS latency is reduced (67-72%). Moreover, in SAMP8 and SAMR1 mice, aging deteriorates paradoxical sleep (PS) architecture with more pronounced changes in SAMP8 (amount: -63%; episode duration: -44%; latency: +286%; circadian component loss; and EEG theta (theta) peak frequency (TPF): -1 Hz). During the 4 h recovery subsequent to a 4 h sleep deprivation, old SAMP8 mice exhibit an enhanced sensitivity resulting in SWS (+62%) and PS (+120%) rebounds, a characteristic of this inbred strain. Results obtained are discussed in line with the age-related learning and memory impairments existing in SAMP8 animals. In particular, the reduced cognitive performances described in old SAMP8 might be linked to the TPF deterioration during PS.  相似文献   

8.
Methamphetamine-induced wakefulness is dependent on monoamine transporter blockade. Subsequent to methamphetamine-induced wakefulness, the amount of time spent asleep and the depth of sleep are increased relative to baseline sleep. The mechanisms that drive methamphetamine-induced hypersomnolence are not fully understood. We recently observed that methamphetamine exposure elevates the expression of the sleep-promoting cytokine, interleukin-1β in CD11b-positive monocytes within the brain. Here, we sought to determine whether activation of the interleukin 1 receptor (IL1R) drives the increase in the depth and amount of sleep that occurs subsequent to methamphetamine-induced wakefulness. IL1R-deficient mice and wild type control mice were subjected to systemic methamphetamine (1 and 2mg/kg) and saline treatments. The wake-promoting effect of methamphetamine was modestly potentiated by IL1R-deficiency. Additionally, the increase in time spent in NREMS subsequent to methamphetamine-induced wakefulness in wild type mice was abolished in IL1R-deficient mice. The increase in time spent asleep after 3h of behaviorally enforced wakefulness was also abolished in IL1R-deficient mice. Increases in EEG slow wave activity triggered by methamphetamine and sleep deprivation were of equal magnitude in IL1R-deficient and wild type mice. These data demonstrate that IL1R activation contributes to hypersomnolence that occurs after sleep loss, whether that sleep loss is triggered pharmacologically by methamphetamine or through behavioral sleep deprivation.  相似文献   

9.

Question of the study

Our aim was to assess the inter-individual link between the principal component structure of the waking EEG and the response of the parameters of sleep-wake regulation to sleep loss.

Subjects and methods

Resting EEG was recorded 9 times at 3-h intervals with eyes closed and open during the course of sustained wakefulness of 130 healthy subjects. The ipsatized power densities were calculated from the log-transformed absolute powers averaged across 10 frequency ranges (from slow delta to slow gamma). These spectra were further reduced by performing principal component analysis, which yielded the subjects’ scores on the largest principal components (PCs).

Results and conclusions

It was found that any EEG spectrum can be parsimoniously represented by only three scores on the PCs with eigenvalues greater or approximately equal to 1. These PCs remained virtually invariant in terms of the order of their extraction and loading patterns which signify EEG amplifying (1st), EEG slowing (2nd), and EEG smoothing (3rd). In the course of wakefulness, the 1st PC score was related to sleep debt (i.e., self-reported sleep restriction on the morning preceding the experiment), while the 2nd PC score was associated with sleep pressure (i.e., sleepiness perceived during night sleep deprivation).  相似文献   

10.
Changes in sleep-wake states and nitric oxide release were examined in aged rats versus young-adult ones. Sleep-wake recordings and nitric oxide measurements were taken from animals chronically equipped with polygraphic and voltametric electrodes. Animals were examined in baseline conditions and in response to a 24-hour paradoxical sleep deprivation. In aged rats, basal amount of paradoxical sleep is decreased during the light phase versus young-adult animals. After paradoxical sleep deprivation, a paradoxical sleep rebound occurs with an amount and intensity that are less marked in aged animals than in young-adult rats. The amplitude of the circadian distribution for wakefulness, slow-wave sleep and paradoxical sleep amounts is reduced with age. Finally, delta-slow-wave sleep and theta-paradoxical sleep power spectra are attenuated either in baseline conditions or after paradoxical sleep deprivation in aged animals. It is also reported that cortical nitric oxide release exhibits a circadian rhythm with higher amplitude in aged rats than in young-adult ones. However, after paradoxical sleep deprivation, a limited overproduction of nitric oxide is obtained compared with young-adult ones. These results, evidencing the dynamics of the nitric oxide changes occurring in relation to the sleep-wake cycle, point out the homeostatic paradoxical sleep regulation as an age-dependent process in which the nitric oxide molecule is possibly involved.  相似文献   

11.
Sleep/wake expression in mice varies predictably with circadian phase. Such circadian rhythms are known to depend on intact suprachiasmatic nuclei (SCN) in the hypothalamus, but the mechanism by which SCN activity modulates sleep/wake expression is unknown. This paper examines the possibility that circadian patterns of sleep/wake derive partly from circadian timing of waking behaviors that are incompatible with sleep, such as locomotor activity. Voluntary locomotor activity was restricted in five mice adapted to a running wheel by locking the wheel in place. Continuous electrographic monitoring of sleep and wakefulness over multiple circadian cycles revealed: (1) during the active phase, shorter wake bouts and more frequent bouts of sleep, resulting in greater sleep/wake fragmentation and more time spent asleep; (2) during the rest phase, a small compensatory reduction in NREM sleep; (3) reduced amplitude of circadian sleep/wake rhythms and a greater amount of sleep overall. Thus, voluntary locomotor activity has an important influence on sleep/wake expression in mice, and the normal circadian pattern of sleep/wake depends on circadian timing of activity. Previous reports of damped circadian sleep/wake rhythms in rodents may therefore be explained by coincident diminutions in locomotor activity associated with age or health status. Our results also support analogous findings in human subjects, and we propose that elderly humans may benefit from therapies that augment daytime activity.  相似文献   

12.
Jenni OG  Achermann P  Carskadon MA 《Sleep》2005,28(11):1446-1454
STUDY OBJECTIVES: To examine the effects of total sleep deprivation on adolescent sleep and the sleep electroencephalogram (EEG) and to study aspects of sleep homeostasis. DESIGN: Subjects were studied during baseline and recovery sleep after 36 hours of wakefulness. SETTING: Four-bed sleep research laboratory. PARTICIPANTS: Seven prepubertal or early pubertal children (pubertal stage Tanner 1 or 2 = Tanner 1/2; mean age 11.9 years, SD +/- 0.8, 2 boys) and 6 mature adolescents (Tanner 5; 14.2 years, +/- 1.4, 2 boys). INTERVENTIONS: Thirty-six hours of sleep deprivation. MEASUREMENTS: All-night polysomnography was performed. EEG power spectra (C3/A2) were calculated using a Fast Fourier transform routine. RESULTS: In both groups, sleep latency was shorter, sleep efficiency was higher, non-rapid eye movement (NREM) sleep stage 4 was increased, and waking after sleep onset was reduced in recovery relative to baseline sleep. Spectral power of the NREM sleep EEG was enhanced after sleep deprivation in the low-frequency range (1.6-3.6 Hz in Tanner 1/2; 0.8-6.0 Hz in Tanner 5) and reduced in the sigma range (11-15 Hz). Sleep deprivation resulted in a stronger increase of slow-wave activity (EEG power 0.6-4.6 Hz, marker for sleep homeostatic pressure) in Tanner 5 (39% above baseline) than in Tanner 1/2 adolescents (18% above baseline). Sleep homeostasis was modeled according to the two-process model of sleep regulation. The build-up of homeostatic sleep pressure during wakefulness was slower in Tanner 5 adolescents (time constant of exponential saturating function 15.4 +/- 2.5 hours) compared with Tanner 1/2 children (8.9 +/- 1.2 hours). In contrast, the decline of the homeostatic process was similar in both groups. CONCLUSION: Maturational changes of homeostatic sleep regulation are permissive of the sleep phase delay in the course of adolescence.  相似文献   

13.
Behavioral states of rats were automatically classified with a newly developed computer program into three sleep stages (awake, slow-wave sleep and REM sleep) from continuous long-term EEG and EMG recordings for several circadian cycles under entrained circumstances (L:D = 12:12). Histamine was depleted by 100 mg/kg intraperitoneal administration of a specific inhibitor of its synthesis, alpha-fluoromethylhistidine, in the mid-light period. This treatment had no effect on the amount of each sleep stage in the total 24-h period or in the light period, but caused significant increases in slow-wave sleep and REM sleep in the dark period. Equivalent decrease in the awake stage during the dark period was also observed. As a result, histamine depletion decreased the light:dark ratio of slow-wave sleep. These findings suggest that decrease of the histamine content of the brain attenuated the circadian amplitude of sleep-wakefulness by suppressing the surge of wakefulness during the dark period. From these results, histamine is suggested to modulate the circadian amplitude of the sleep-wakefulness cycle.  相似文献   

14.
Our understanding of the mechanisms by which sleep deteriorates with age almost exclusively stems from comparisons of young and elderly subjects. The present study investigated the different effects of a 25-h sleep deprivation on the recovery sleep initiated in the morning (when circadian sleep propensity decreases) of young (20-39 y) and middle-aged subjects (40-60 y). Middle-aged subjects showed a steeper increase in the duration of wakefulness during daytime recovery sleep than the young subjects. Slow-wave sleep (SWS) and EEG slow-wave activity (SWA: spectral power between 0.5-4.5 Hz) were potentiated in both groups following sleep deprivation. However, the rebound of SWS and SWA was significantly less pronounced in the middle-aged than in the young. This reduction in homeostatic recuperative drive in middle-aged subjects might account for the decrease in their ability to maintain sleep when they have to recuperate at an abnormal circadian phase. These results helps to understand the increase in complaints related to shift work and jet lag in the middle years of life.  相似文献   

15.
Aging is associated with marked changes in the timing, consolidation and structure of sleep. Older people wake up frequently, get up earlier and have less slow wave sleep than young people, although the extent of these age-related changes differs considerably between individuals. Interindividual differences in homeostatic sleep regulation in young volunteers are associated with the variable-number, tandem-repeat (VNTR) polymorphism (rs57875989) in the coding region of the circadian clock gene PERIOD3 (PER3). However, predictors of these interindividual differences have yet to be identified in older people. Sleep electroencephalographic (EEG) characteristics and circadian rhythms were assessed in 26 healthy older volunteers (55-75 years) selected on the basis of homozygosity for either the long or short allele of the PER3 polymorphism. Homozygosity for the longer allele (PER3(5/5)) associated with a phase-advance in the circadian melatonin profile and an earlier occurrence of the melatonin peak within the sleep episode. Furthermore, older PER3(5/5) participants accumulated more nocturnal wakefulness, had increased EEG frontal delta activity (0.75-1.50 Hz), and decreased EEG frontal sigma activity (11-13 Hz) during non-rapid eye movement (REM) sleep compared with PER3(4/4) participants. Our results indicate that the polymorphism in the clock gene PER3 may contribute to interindividual differences in sleep and circadian physiology in older people.  相似文献   

16.
The two-process model of sleep regulation has been applied successfully to describe, predict, and understand sleep-wake regulation in a variety of experimental protocols such as sleep deprivation and forced desynchrony. A non-linear interaction between the homeostatic and circadian processes was reported when the model was applied to describe alertness and performance data obtained during forced desynchrony. This non-linear interaction could also be due to intrinsic non-linearity in the metrics used to measure alertness and performance, however. Distinguishing these possibilities would be of theoretical interest, but could also have important implications for the design and interpretation of experiments placing sleep at different circadian phases or varying the duration of sleep and/or wakefulness. Although to date no resolution to this controversy has been found, here we show that the issue can be addressed with existing data sets. The interaction between the homeostatic and circadian processes of sleep-wake regulation was investigated using neurobehavioural performance data from a laboratory experiment involving total sleep deprivation. The results provided evidence of an actual non-linear interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.  相似文献   

17.
Regional differences in the effect of sleep deprivation on the sleep electroencephalogram (EEG) may be related to interhemispheric synchronization. To investigate the role of the corpus callosum in interhemispheric EEG synchronization, coherence spectra were computed in mice with congenital callosal dysgenesis (B1) under baseline conditions and after 6-h sleep deprivation, and compared with the spectra of a control strain (C57BL/6). In B1 mice coherence was lower than in controls in all vigilance states. The level of coherence in each of the three totally acallosal mice was lower than in the mice with only partial callosal dysgenesis. The difference between B1 and control mice was present over the entire 0.5-25 Hz frequency range in non-rapid eye movement sleep (NREM sleep), and in all frequencies except for the high delta and low theta band (3-7 Hz) in rapid eye movement (REM) sleep and waking. In control mice, sleep deprivation induced a rise of coherence in the Delta band of NREM sleep in the first 2 h of recovery. This effect was absent in B1 mice with total callosal dysgenesis and attenuated in mice with partial callosal dysgenesis. In both strains the effect of sleep deprivation dissipated within 4 h. The results show that EEG synchronization between the hemispheres in sleep and waking is mediated to a large part by the corpus callosum. This applies also to the functional changes induced by sleep deprivation in NREM sleep. In contrast, interhemispheric synchronisation of theta oscillations in waking and REM sleep may be mediated by direct interhippocampal connections.  相似文献   

18.
Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of sleep deprivation on the expression of immediate early gene and heat shock protein mRNAs previously shown to be upregulated in the mouse brain in sleep deprivation and in recovery sleep after sleep deprivation. We find that the molecular response to sleep deprivation and recovery sleep in the brain is highly conserved between these two mammalian species, at least in terms of expression of immediate early gene and heat shock protein family members. Using Affymetrix Neurobiology U34 GeneChips , we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by sleep deprivation or recovery sleep. We find that the response of the basal forebrain to sleep deprivation is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity.  相似文献   

19.
STUDY OBJECTIVES: Because sleep and wakefulness differ from each other by the amount of body movement, it has been claimed that the two states can be accurately distinguished by wrist actigraphy. Our objective was to test this claim in lengthy polysomnographic (psg) and actigraphic (acf) samples that included night and day components. DESIGN: Fourteen healthy young (21-35 years) and old (70-72 years) men and women lived in a laboratory without temporal cues for 7 days. Each subject continuously wore sleep-recording electrodes as well as 2 wrist-movement recorders. Act measurements were converted to predictions of sleep and wakefulness by simple-threshold and multiple-regression methods. Psg served as the gold standard for calculation of predictive values (PV, the probability that an act prediction is correct by psg criteria). SETTING: N/A. PARTICIPANTS: N/A. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: The 7-day act recordings showed clear circadian cycles of high and low activity that respectively corresponded to subjective days, when subjects were wakeful, and subjective nights when they slept. Lower act levels corresponded to deeper states of psg sleep. Logistic regression on a 20-minute moving average of act gave the highest overall PV's. Nevertheless, the mean PV for sleep (PVS) was only 62.2% in complete, day + night samples. PVS was 86.6% in night samples. Act successfully predicted wakefulness during subjective nights (PVW = 89.6) and accurately measured circadian period length and the extent of sleep-wake consolidation, but it overestimated sleep rate and sleep efficiency. Act systematically decreased before sleep onset and increased before awakening, but reliable transitions among joint psg/act states (the Markov-1 property) were not demonstrated. CONCLUSIONS: Low PV's and overestimation of sleep currently disqualify actigraphy as an accurate sleep-wake indicator. Actigraphy may, however, by useful for measuring circadian period and sleep-wake consolidation and has face validity as a measure of rest/activity.  相似文献   

20.
The purpose of this study was to evaluate homeostatic and circadian sleep process in 'larks' and 'owls' under daily life conditions. Core body temperature, subjective sleepiness and waking electroencephalogram (EEG) theta-alpha activity (6.25-9 Hz) were assessed in 18 healthy men (nine morning and nine evening chronotypes, 21.4 +/- 1.9 years) during a 36-h constant routine that followed a week of a normal 'working' sleep-wake schedule (bedtime: 23.30 h, wake time: 07.30 h). The phase of the circadian rhythm of temperature and sleepiness occurred respectively, 1.5 h (P = 0.01) and 2 h (P = 0.009) later in evening- than in morning-type subjects. Only morning-type subjects showed a bimodal rhythm of sleep-wake propensity. The buildup of subjective sleepiness, as quantified by linear regression, was slower in evening than in morning types (P = 0.04). The time course of EEG theta-alpha activity of both chronotypes could be closely fitted by an exponential curve. The time constant of evening types was longer than that of morning types (P = 0.03), indicating a slower increase in sleep pressure during extended wakefulness. These results suggest that both the circadian signal and the kinetics of sleep pressure buildup differ between the two chronotypes even under prior naturalistic conditions mimicking the usual working day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号