首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim:To determine the secondary structure of insulin encapsulated within liposome.Methods:The secondary structure of native insulin,mixture of insulin with liposome(sample I) and insulin encapsulated within liposome(sample Ⅱ) were determined by FTIR(Fourier Transform Infrared) spectroscopy.Results:The secondary structure of insulin encspsulated within liposome(Ⅱ) are similar with the secondary structure of native insulin.The difference existed in the amount of α-helices (from 36% of insulin to 31% of sample Ⅱ)and β-sheet(from 48% of insulin to 51% of sample Ⅱ).The content of α-helices and β-sheet of insulin in sample I was found to be very close to that of sample Ⅱ.The results revealed that the insulin encapsulated within liposome possibly spread on the surface of liposome,without inserting into the liposome membrane.Coclusion:The secondary structure of insulin encapsulated within liposome is similar with the native insulin.  相似文献   

2.
3.
Pseudomonas aeruginosa is an opportunistic bacteria responsible for recurrent lung infections. Previously, we demonstrated that certain materials improved the activity of tobramycin (Tob) against P. aeruginosa biofilms in vitro. We aimed to develop prototype dry powder formulations comprising Tob and a mixture of excipients and test its aerodynamic properties and antimicrobial activity. First, we evaluated different combinations of excipients with Tob in solution against P. aeruginosa biofilms. We selected the compositions with the highest activity, to prepare dry powders by spray drying. The powders were characterized by morphology, bulk density, water content, and particle size distributions. Finally, the antimicrobial activity of the powders was tested. The combinations of Tob (64 μg/mL) with l-alanine and l-proline (at 10 and 20 mM; formulations 1 and 2, respectively) and with l-alanine and succinic acid (at 20 mM; formulation 3) showed the highest efficacies in vitro and were prepared as dry powders. Formulation 1 had the best aerodynamic performance as indicated by the fine particle fraction and the best in vitro activity against P. aeruginosa biofilms. Formulation 3 represents a good candidate for further optimization because it demonstrated good dispersibility potential and optimization of the particle size distribution may achieve high delivery efficiencies.  相似文献   

4.
This was an open-label, randomized, 3-way crossover study that compared in 25 healthy male subjects, the pharmacokinetics of a single 60-mg dose of nifedipine GITS tablet versus (1) 20-mg doses of nifedipine prolonged action tablets given q12h for a total of two doses and (2) 2 x 10 mg doses of nifedipine capsules given q8h for a total of three doses. Following capsule administration, there was a rapid rise in plasma concentration of drug achieving a peak concentration of 196(35) ng/mL (mean and coefficient of variation) within 0.7 (105) hours and an AUC(infinity) of 973(39) ng.hr/mL. After nifedipine PA there was also a rapid rise in plasma concentration of drug achieving a Cmax of 85.5 (36) ng/mL with a tmax of 1.7(58) hours and an AUC(infinity) of 879(46) ng.hr/mL. For the nifedipine GITS formulation, there was a lag in the plasma concentration time profile for approximately 2 to 3 hours, then it rose gradually achieving a Cmax of of 686(54) 30.5(63) ng/mL with a tmax of 15.0(50) hours and an AUC(infinity) ng.hr/mL. The AUC(infinity) and Cmax were significantly (P = 0.0001) greater in the capsule and PA formulations than for the GITS; however, the tmax for the GITS formulation was significantly (P = 0.001) longer than for the other formulations.This study suggests marked formulation-dependent pharmacokinetics, which may have important clinical implications.  相似文献   

5.
6.
Insulin suffers from poor oral bioavailability, but lipid-based drug delivery systems (DDS) may constitute promising tools for improving this. Loading of protein drugs into lipid matrices may, however, be challenging, and different formulation approaches must be taken to achieve sufficient loading and preservation of native structure. The aim of the present study was to characterize insulin after complexation with biocompatible surfactants to improve loading into lipid-based DDS. Insulin–surfactant complexes were prepared by freeze-drying with distearyldimethylammonium bromide or soybean phospholipid as complexing surfactant and dimethyl sulfoxide (DMSO) as solvent. Significant change in secondary structure of insulin freeze dried from DMSO was observed using Fourier transform infrared spectroscopy. Changes were quantitatively smaller in the presence of surfactants, demonstrating both a stabilizing effect of surfactants, but also a nonnative secondary structure in the solid state. Finally, circular dichroism analysis of rehydrated complexes showed that the processing did not irreversibly alter the secondary structure of insulin. In short, the present study demonstrates changes in the secondary structure of insulin after freeze-drying from DMSO, constituting a potential generic issue with this technique for protein processing. In the specific case of insulin, the changes were found to be reversible, explaining the success of this strategy in previous studies.  相似文献   

7.
Over the last few years, numerous ligand binding assay technologies that utilize real-time measurement have been introduced; however, an assemblage and evaluation of these technologies has not previously been published. Herein, we describe six emerging real-time measurement technologies: Maverick™, MX96 SPR™, NanoDLSay™, AMMP®/ViBE®, SoPrano™, and two Lab-on-a-Chip (LoC) microfluidic devices. The development stage gate of these technologies ranges from pre-commercial to commercially available. Due to the novelty, the application and utility of some of the technologies regarding bioanalysis are likely to evolve but it is our hope that this review will provide insight into the direction the development of real-time measurement technologies is moving and the vision of those that are taking us there. Following the technology discussions, a comprehensive summary table is presented.KEY WORDS: acoustic wave mass dampening, dynamic light scattering, integrated microfluidic systems, localized surface plasmon resonance, microring array  相似文献   

8.
Biopharmaceutical precipitation assays are an important in vitro tool to characterize the precipitation behavior of weakly basic drugs during their transit from the stomach into the small intestine. To mimic the intestinal fluids more closely, biorelevant media like Fasted State Simulated Intestinal Fluid (FaSSIF) and versions thereof are often applied. When applying UV analytics to measure the drug concentration during the transfer experiments, changes in the UV spectrum of the medium have been observed when FaSSIF was stored over a longer period of time or under accelerated conditions. Therefore, this study aimed at evaluating the stability of FaSSIF under various storage conditions. Furthermore, the impact of stressed FaSSIF on the supersaturation and precipitation behavior of ketoconazole was investigated. As a result of this study, it was demonstrated that the FaSSIF powder composition changes during storage, which, in turn, impacts the supersaturation and precipitation behavior of ketoconazole in in vitro transfer studies. Based on the results of this study, we provide recommendations on the application of FaSSIF in biopharmaceutical precipitation assays with the aim to increase reproducibility and enhance data reliability for those compounds where changing FaSSIF composition may impact the supersaturation and precipitation behavior.  相似文献   

9.
This study demonstrates the preparation and characterization of ibuprofen (IBP) microparticles with some excipients by a controlled crystallization technique with improved dissolution performance. Using the optimum concentrations pluronic F127, hydroxypropyl methyl cellulose, D-mannitol, and l-leucine in aqueous ethanol, the IBP microparticles were prepared. The dissolution tests were performed in phosphate buffer saline using a United States Pharmacopoeia dissolution tester at 37°C. The Raman spectroscopy was used to investigate the interactions and distribution of the IBP with the additives in the microcrystals. The prepared IBP microparticles showed higher dissolution compared to that of the smaller sized original IBP particles. The Raman data revealed that the excipients with a large number of hydroxyl groups distributed around the IBP particle in the crystal enhanced the dissolution of the drug by increasing the drug-solvent interaction presumably through hydrogen bonding. The Raman mapping technique gave an insight into the enhanced dissolution behavior of the prepared IBP microparticles, and such information will be useful for developing pharmaceutical formulations of hydrophobic drugs. The controlled crystallization was a useful technique to prepare complex crystals of IBP microparticles along with other additives to achieve the enhanced dissolution profile.  相似文献   

10.

Purpose

The purpose of this study was to evaluate the specifically targeted efficiency of budesonide loaded PLGA nanoparticles for the treatment of inflammatory bowel disease (IBD).

Methods

The nanoparticles were prepared by an oil/water (O/W) emulsion evaporation technique. The nanoparticles were characterized for their size, shape and in vitro drug release profile. Solid state characterization was carried out by differential scanning calorimetry (DSC) and X-ray Power diffraction (XPRD). In order to evaluate the targeted efficiency of nanoparticles, a particle localization study in the healthy and in the inflamed colon was determined in vivo. These data were complemented by cryo-sections.

Results

Nanoparticles were 200?±?05 nm in size with a smooth and spherical shape. The encapsulation efficiency was around 85?±?3.5%, which was find-out by both, direct and indirect methods. Release of budesonide from the nanoparticles showed a biphasic release profile with an initial burst followed by sustained release. XPRD data revealed that the drug in the polymer matrix existed in crystalline state. Nanoparticles accumulation in inflamed tissues was evaluated by in-vivo imaging system and it was found that particles are accumulated in abundance at the site of inflammation when compared to the healthy group.

Conclusion

The study demonstrates that the budesonide loaded PLGA nanoparticles are an efficient delivery system for targeted drug delivery to the inflamed intestinal mucosa.
  相似文献   

11.
Life expectancy is rising however with more people living longer there is a concomitant rise in the incidence of dementia. In addition to age-related cognitive decline there is a higher risk of going on to develop vascular dementia and Alzheimer's disease associated with aspects of modern lifestyle. Most worryingly, recent data reports accelerated cognitive decline in adolescents associated with poor diet (high fat and calorie intake). Thus the increase in dementia in 'old-age' may have as much to do with 'new-age' lifestyle as it does with normal ageing. It would seem wise therefore to investigate the molecular connections between lifestyle and cognitive decline in more detail. Epidemiological evidence suggests an increased risk of developing dementia (including Alzheimer's disease) in individuals with obesity and type 2 diabetes but also in those with poor insulin sensitivity without diabetes, implicating a mechanistic link between adiposity, insulin sensitivity and dementia. Insulin receptors are expressed in the brain and physiological roles for insulin in the CNS are starting to be delineated. Indeed disrupted neuronal insulin action may underlie the link between diabetes and neurodegenerative disorders. This review discusses the difficulties in quantifying insulin sensitivity of the brain and why it is vital that we develop technology for this purpose so that we can establish its role in this 'new-age' dementia. This has particular relevance to the design and interpretation of clinical trials in progress to assess potential benefits of insulin and insulin sensitisers on prevention of cognitive decline.  相似文献   

12.
《Substance use & misuse》2013,48(6):770-774
The purpose of this qualitative study is to understand changing illicit drug use patterns in rural Appalachia since a new formulation of OxyContin® was released with the goal of deterring diversion and misuse. Participants (n = 25) from a longitudinal study of rural drug users (N = 192) were approached to participate in semistructured qualitative interviews between April and June 2011. The primary finding is that the majority of participants switched from using the original formulation OxyContin to immediate-release oxycodone. We discuss the implications and limitations of these findings.  相似文献   

13.
Purpose. The ability to optimize new formulations for pulmonary delivery has been limited by inadequate in vitro models used to mimic conditions particles encounter in the lungs. The aim is to develop a physiologically-relevant model of the pulmonary epithelial barrier that would allow for quantitative characterization of therapeutic aerosols in vitro. Methods. Calu-3 human bronchial epithelial cells were cultured on permeable filter inserts under air-interfaced culture (AIC) and liquid-covered culture (LCC) conditions. Calu-3 cells grown under both conditions formed tight monolayers and appeared physiologically similar by SEM and immunocytochemical staining against cell junctional proteins and prosurfactant protein-C. Results. Aerosolized large porous particles (LPP) deposited homogeneously and reproducibly on the cell surface and caused no apparent damage to cell monolayers by SEM and light microscopy. However, monolayers initially grown under LCC conditions showed a significant decrease in barrier properties within the first 90 min after impingement with microparticles, as determined by transepithelial electrical resistance (TEER) measurements and fluorescein-sodium transport. Conversely, AIC grown monolayers showed no significant change in barrier properties within the first 90 min following particle application. A dense mucus coating was found on AIC grown Calu-3 monolayers, but not on LCC grown monolayers, which may protect the cell surface during particle impinging. Conclusions. This in vitro model, based on AIC grown Calu-3 cells, should allow a more relevant and quantitative characterization of therapeutic aerosol particles intended for delivery to the tracheo-bronchial region of the lung or to the nasal passages. Such characterization is likely to be particularly important with therapeutic aerosol particles designed to provide sustained drug release in the lung.  相似文献   

14.
The activity of serine proteases is influenced by their substrate specificity as well as by the physicochemical conditions. Here, we present the characterization of key biochemical features of the two SPATE members EspPα and EspI from Shiga-toxin producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC). Both proteases show high activity at conditions mimicking the human blood stream. Optimal activities were observed at slightly alkaline pH and low millimolar concentrations of the divalent cations Ca2+ and Mg2+ at physiological temperatures indicating a function in the human host. Furthermore, we provide the first cleavage profile for EspI demonstrating pronounced specificity of this protease.  相似文献   

15.

Purpose

The aim of the present study was to examine the influence of the formulation and process variables on the entrapment efficiency of simvastatin–phospholipid complex (SPC), prepared with a goal of improving the solubility and permeability of simvastatin.

Methods

The SPC was prepared using a solvent evaporation method. The influence of formulation and process variables on simvastatin entrapment was assessed using a central composite design. An additional SPC was prepared using the optimized variables from the developed quadratic model. This formulation was characterized for its physical–chemical properties. The functional attributes of the optimized SPC formulation were analyzed by apparent aqueous solubility analysis, in vitro dissolution studies, dissolution efficiency analysis, and ex vivo permeability studies.

Results

The factors studied were found to significantly influence the entrapment efficiency. The developed model was validated using the optimized levels of formulation and process variables. The physical–chemical characterization confirmed a formation of the complex. The optimized SPC demonstrated over 25-fold higher aqueous solubility of simvastatin, compared to that of pure simvastatin. The optimized SPC exhibited a significantly higher rate and extent of simvastatin dissolution (>98 %), compared to that of pure simvastatin (~16 %). The calculated dissolution efficiency was also found to be significantly higher for the SPC (~54 %), compared to that of pure simvastatin (~8 %). Finally, the optimized SPC exhibited a significantly higher simvastatin permeability (>78 %), compared to that of pure simvastatin (~11 %).

Conclusion

The present study shows that SPC can be a promising strategy for improving the delivery of simvastatin and similar drugs with low aqueous solubility.
  相似文献   

16.
Gastrointestinal responsive polymeric nanospheres (NPs) based on hydroxypropyl methylcellulose phthalate were prepared using spontaneous emulsification solvent diffusion method for improved oral administration of insulin. The NPs prepared under optimized conditions have an encapsulation efficiency of 90% and a particle size of about 200 nm. In vitro drug release experiments demonstrated that the NPs exhibited a gradient release profile of loaded drug when the pH value gradually increased from 3.0 to 7.4. Enzyme resistance experiments showed that under simulated gastrointestinal conditions, the NPs protected more than 60% of the drug from being degraded by trypsin. The oral hypoglycemic experiments revealed that insulin-loaded NPs could significantly reduce blood glucose levels in diabetic rats with a relative bioavailability of 8.6%. Ex vivo imaging investigation of rat tissues showed that the drug-loaded NPs could promote the absorption of insulin in the ileum and colon. The work described here suggests that the gastrointestinal responsive polymeric NPs may be promising candidates for improving gastrointestinal tract delivery of hydrophilic biomacromolecules. Accordingly, the results indicated that hydroxypropyl methylcellulose phthalate NPs with gastrointestinal stimuli responsiveness could be a promising candidate for oral insulin delivery.  相似文献   

17.
18.
1957年Jervell和Lange-Nielsen报告一组病人,特点为:①先天性双侧高频性耳聋;②心电图示Q-T间期延长;③因心律失常而发作晕厥、猝死。该组病人发生于挪威的一个家庭中,在兄妹6人中,4人生后一年内就开始发作晕厥,其中3人分别于3、4和9岁时,发作晕厥而猝死。此后屡有报告,称心脏-听力综合征、耳聋-心脏综合征或Jervell和Lange-Nielsen综合征。  相似文献   

19.
The present study aimed at formulating and optimizing natamycin (NT)-loaded polyethylene glycosylated nano-lipid carriers (NT-PEG-NLCs) using Box-Behnken design and investigating their potential in ocular applications. Response surface methodology computations and plots for optimization were performed using Design-Expert® software to obtain optimum values for response variables based on the criteria of desirability. Optimized NT-PEG-NLCs had predicted values for the dependent variables which are not significantly different from the experimental values. NT-PEG-NLCs were characterized for their physicochemical parameters; NT's rate of permeation and flux across rabbit cornea was evaluated, in vitro, and ocular tissue distribution was assessed in rabbits, in vivo. NT-PEG-NLCs were found to have optimum particle size (<300 nm), narrow polydispersity index, and high NT entrapment and NT content. In vitro transcorneal permeability and flux of NT from NT-PEG-NLCs was significantly higher than that of Natacyn®. NT-PEG-NLC (0.3%) showed improved delivery of NT across the intact cornea and provided concentrations statistically similar to the marketed suspension (5%) in inner ocular tissues, in vivo, indicating that it could be a potential alternative to the conventional suspension during the course of fungal keratitis therapy.  相似文献   

20.
The poorly soluble drug buparvaquone is proposed as an alternative treatment of Pneumocystis carinii pneumonia (PCP) lung infections. Physically stable nanosuspensions were formulated in order to deliver the drug at the site of infection using nebulization. The aerosolization characteristics of two buparvaquone nanosuspensions were determined with commercial jet and ultrasonic nebulizer devices. Aerosol droplet size distribution was determined with laser diffractometry (LD). Nebulization of the nanosuspensions and dispersion media surfactant solutions produced aerosol droplets diameters in the range from 3 to 5 μm for Respi-jet Kendall, Pari Turbo Boy system and Multisonic nebulizers and particles around 9–10 μm with Omron U1. Fractions of the nanosuspensions from the nebulizer reservoir and of aerosol produced were collected to investigate changes in the size of the drug nanocrystals influenced by the nebulization technology. Comparisons were performed measuring the drug nanocrystals with photon correlation spectroscopy (PCS) and LD of the samples. Drug particle aggregates were detected in the fractions of aerosol collected from jet nebulizers. Nebulizer technology (jet vs. ultrasonic) showed influence on the stability of the drug particle size distribution of buparvaquone nanocrystals during the nebulization time evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号