首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural network of glucose monitoring system   总被引:8,自引:0,他引:8  
Glucose-sensitive neural elements exist in the hypothalamus, the nucleus of the solitary tract (NTS) and autonomic afferents from visceral organs such as liver and gastrointestinal tract. Glucose affects neural activity through these central and peripheral chemosensors. Glucose is generally suppressive in the liver, the NTS and the lateral hypothalamic area (LHA), and generally excitatory in the small intestine and ventromedial hypothalamic nucleus (VMH). The hypothalamus is involved in the control of pancreatic hormone secretion through autonomic efferent nerves. Stimulation or lesion of the hypothalamus induces various changes in pancreatic autonomic nerve activity. The VMH, the dorsomedial hypothalamic nucleus and the paraventricular nucleus have inhibitory effects on vagal nerve activity and excitatory effects on splanchnic nerve activity. The LHA is excitatory to the vagal nerve, and both excitatory and inhibitory to the splanchnic nerve. These findings suggest that the neural network of the glucose monitoring system, which also analyzes and integrates information concerning other metabolites and peptides in the blood and cerebrospinal fluid, contributes to regulation of peripheral metabolism and endocrine activity as well as feeding behavior. The physiological function and input-output organization of this network are discussed.  相似文献   

2.
Whether secretion of gastric acid (GAS) is in response to peripheral and/or central administration of chemical or electrical stimuli can be differentiated by vagotomy. GAS has been shown to be controlled by specific lateral hypothalamic (LHA) neurons. Application of 2-deoxy-D-glucose (2-DG) or insulin to the LHA by microinjection or iontophoresis has experimentally induced GAS. The paraventricular nucleus (PVN) has now been found to also affect GAS. GAS was produced more copiously and more quickly by rostral PVN lesion than by lesion of the ventromedial (VMH) or dorsomedial (DMH) nucleus, and nearly as much by caudal PVN lesion. Microinjection of 2-DG into the LHA induced GAS more potently in animals with rostral PVN lesions than in those with caudal PVN, VMH or DMH lesions, or in intact animals. Results indicate that the PVN may be an additional central site from which GAS is affected.  相似文献   

3.
Intrahypothalamic connections of the lateral (LHA), ventromedial (VMH), dorsomedial (DMH) and paraventricular (PVN) hypothalamic nuclei were studied with anterograde transport of iontophoretically injected Phaseolus vulgaris leuco-agglutinin and the immunocytochemical detection of labeled structures. The LHA was found to give rise to a minor projection in the VMH, whereas the VMH in reverse maintains few connections with the ventromedial part of the tuberal LHA. Tracer deposits in both the LHA and VMH resulted in anterograde terminal labeling in the DMH. The DMH, in turn, donates a small number of projections to the LHA and VMH. The main projection of the DMH is aimed at the parvocellular paraventricular nucleus. Direct outflow pathways from the VMH to the PVN were not found, but lectin injections in the LHA on the other hand gave rise to terminal labeling in both the parvocellular and magnocellular divisions of the PVN. The PVN in turn was found to give only minor reciprocal projections to the LHA, DMH and VMH. These findings indicate that the main stream of connections in the hypothalamus runs from the LHA and VMH to the DMH, and from the DMH to the PVN. The identified circuitry patterns were discussed with respect to the role of the hypothalamus in the control of homeostasis and metabolic regulation, and more specifically in relation to the modulation of the hormone release from the pancreas and adrenal glands.  相似文献   

4.
To identify sites of histaminergic modulation of food intake, histamine H1-receptor antagonist was microinfused into the rat hypothalamus, the ventromedial hypothalamus (VMH), the lateral hypothalamus (LHA), the paraventricular nucleus (PVN), the dorsomedial hypothalamus (DMH), or the preoptic anterior hypothalamus (POAH), during the early light period. Feeding, but not drinking, was elicited in 100% of the rats (P<0.01) that were bilaterally microinfused with 26 nmol chlorpheniramine into the VMH. Unilateral infusion into the VMH did not affect food intake at doses of 26 or 52 nmol. Feeding was also induced by bilateral microinfusion into the PVN, but only the 52 nmol dose was effective. Bilateral infusions into the LHA, the DMH or the POAH did not affect ingestive behavior. Feeding induced by an H1-antagonist was completely abolished in all 7 rats tested when endogenous neuronal histamine was decreased by pretreatment with α-fluoromethylhistidine (100 mg/kg). The findings suggest that H1-receptors in the VMH and the PVN, but not in the LHA, the DMH or the POAH, may be involved in histaminergic suppression of foof intake.  相似文献   

5.
6.
Independent glucose effects on rat hypothalamic neurons: an in vitro study   总被引:1,自引:0,他引:1  
The effects of changes in glucose concentration were studied on 256 ventromedial (VMH), 212 dorsomedial (DMH) and 59 lateral (LHA) neurons recorded from coronally-oriented rat hypothalamic slices. When glucose concentration of the medium was increased (5.5-20 mM), these neurons exhibited 3 response patterns: excitation, excitation followed by inhibition, and inhibition. Twenty percent of neurons in VMH, 33% in DMH, and 41% in LHA responded to increases in glucose concentration. The majority in VMH and DMH were excited, and in LHA, inhibited. Only minor modifications of these ratios were obtained by isolating VMH from the other areas. In isolated DMH, equal numbers were excited and inhibited. Both glucose-responsive and non-glucose-responsive neurons in VMH and DMH were identified by intracellular horseradish peroxidase staining. The dendritic arborizations of glucose-responsive neurons were richer than in non-glucose-responsive neurons. These results suggest that the different populations of glucose-responsive neurons in the VMH, DMH and LHA might have different functions in the regulation of glucose.  相似文献   

7.
Efferent discharges were recorded from the nerve filament dissected from the central cut end of the pancreatic branch of the vagus nerve in the rat. Microinjections of 5% glucose solution (100–200 nl) into the LHA caused an increase in efferent activity, however, those into VMH caused no change in discharge rate. The results of experiments indicate that activation of vagal pancreatic efferents in hyperglycemie situation is originated in LHA and transmitted to the vagal pancreatic motoneurons. The role played by the neural network on blood glucose homeostasis was also discussed.  相似文献   

8.
Evidence implies that nitric oxide (NO) in the central nervous systems mediates anorexia in tumor-bearing hosts. We have therefore evaluated, by immunohistochemical image analyses, net alterations of nitric oxide synthases (nNOS, eNOS, iNOS) in brain nuclei [paraventricular hypothalamic nucleus (PVN), medial habenular nucleus (MHB), lateral habenular nucleus (LHB), paraventricular thalamic nucleus (PV), lateral hypothalamic area (LHA), ventromedial hypothalamic nucleus (VMH), nucleus of the solitary tract (NTS)] of tumor-bearing mice (TB) with prostanoid-related anorexia. Pair-fed (PF) and freely fed (FF) non-tumor-bearing mice were used as controls. c-fos was analyzed as indicator of neuronal activation. nNOS was significantly increased in VMH and PVN from TB mice, while eNOS was significantly increased in LHB and LHA. iNOS was significantly increased in LHA and PVN nuclei, but decreased in MHB, LHB and VMH from tumor-bearers. However, several of these alterations were similarly observed in brain nuclei from pair-fed controls. Provision of unspecific NOS-antagonists to TB mice increased nNOS, eNOS and iNOS in several brain nuclei (PVN, LHA, VMH), but left tumor-induced anorexia unchanged. c-fos was significantly increased in all brain nuclei in PF mice except for NTS, LHA and PVN compared to controls, while tumor-bearing mice had increased c-fos in LHA and PVN only compared to controls. Our results demonstrate a complex picture of NOS expression in brain areas of relevance for appetite in tumor-bearing hosts, where most changes seemed to be secondary to stress during negative energy balance. By contrast, NOS content in PVN and LHA nuclei remains candidate behind anorexia in tumor disease. However, nitric oxide does not seem to be a primary mediator behind tumor-induced anorexia. NO may rather secondarily support energy intake in conditions with negative energy balance.  相似文献   

9.
10.
GABA-related feeding control in genetically obese rats   总被引:1,自引:0,他引:1  
S Tsujii  G A Bray 《Brain research》1991,540(1-2):48-54
Feeding in response to glucoprivation induced by 2-deoxy-D-glucose (2-DG) is impaired in genetically obese (Zucker) rats. Muscimol, a GABAA-agonist (0.5 nmol/0.5 microliter in each area) increased food intake in lean rats over 3 h but in fatty rats only at 30 min after infusion into the VMH. Injection of muscimol into the DMH and PVN increased feeding of both phenotypes. Picrotoxin, a non-competitive GABAA-antagonist (0.1 nmol/0.5 microliter) increased food intake after infusion into the LH of both phenotypes and decreased food intake over a 3 h period when infused into the VMH. DMH and PVN of fatty rats. In the lean littermates, picrotoxin was only effective in reducing food intake at 30 min after infusion into the VMH and PVN but not the DMH. The present results suggest that the fatty Zucker rat has a disturbance in the GABA-related regulatory mechanism of feeding behavior in the ventromedial hypothalamus, which may be responsible for the impaired response to glucoprivation found in these rats.  相似文献   

11.
A hypothalamo-vagal mechanism of immobilization (IMB) stress-induced hypocalcemia was investigated in rats. Bilateral lesions in the Ventromedial nucleus of the hypothalamus (VMH), but not those of the lateral hypothalamic area (LHA) or the paraventricular nucleus (PVN), eliminated the calcium-lowering effect of IMB. None of these lesions, however, affected the basal levels of the blood calcium. An electrical stimulation of the VMH induced a significant decrease in the blood calcium level (0.07 mM fall) 60 min after stimulation. The hypocalcemic response was eliminated by a vagotomy of the gastric branches but not by that of the thyroid/parathyroid branches. These results suggest that the VMH mediates IMB-induced hypocalcemia through its influence on the gastric vagus.  相似文献   

12.
Glucose counter-regulatory dysfunction correlates with impaired activation of the hypothalamic metabolic sensor adenosine 5′-monophosphate-activated protein kinase (AMPK). Hypothalamic AMPK is controlled by hindbrain energy status; we examined here whether hindbrain AMPK regulates hypothalamic AMPK and metabolic neurotransmitter maladaptation to recurring insulin-induced hypoglycemia (RIIH). Brain tissue was harvested after single versus serial insulin (I) dosing for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant biosynthetic enzyme/neuropeptide expression in micro-punch dissected arcuate (ARH), ventromedial (VMH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissue. The AMPK inhibitor compound c (Cc) or vehicle was administered to the caudal fourth ventricle ahead of antecedent I injections. RIIH caused site-specific elevation (ARH, VMH, LHA) or reduction (DMH) of total AMPK protein versus acute hypoglycemia; Cc respectively exacerbated or attenuated this response in the ARH and VMH. Hindbrain AMPK correspondingly inhibited or stimulated LHA and DMH pAMPK expression during RIIH. RIIH elicited Cc-reversible augmentation of VMH glutamate decarboxylase profiles, but stimulated (ARH pro-opiomelanocortin; LHA orexin-A) or decreased (VMH nitric oxide synthase) other metabolic neurotransmitters without hindbrain sensor involvement. Results demonstrate acclimated up-regulation of total AMPK protein expression in multiple hypothalamic loci during RIIH, and document hindbrain sensor contribution to amplification of this protein profile in the VMH. Concurrent lack of net change in ARH and VMH tissue pAMPK implies adaptive reductions in local sensor activity, which may/may not reflect positive gain in energy state. It remains unclear if ‘glucose-excited’ VMH GABAergic and/or ARH pro-opiomelanocortin neurons exhibit AMPK habituation to RIIH, and whether diminished sensor activation in these and other mediobasal hypothalamic neurotransmitter populations may contribute to HAAF.  相似文献   

13.
《Brain research bulletin》1988,21(2):239-244
Effects of hypothalamic stimulation and lesion on hepatic autonomic nerve activity were investigated in anesthetized rats. Stimulation of the lateral hypothalamic area increased activity of the hepatic vagal nerve and decreased activity of the splanchnic nerve. Lesion of this area produced a rapid and strong reduction of vagal nerve activity and induced either an increase or a decrease of splanchnic nerve activity. In contrast, stimulation of the ventromedial hypothalamic nucleus produced a strong inhibition of vagal nerve activity and facilitation of splanchnic nerve activity. However, lesion of this nucleus facilitated or inhibited activities in both nerve branches. The functional significance of the relationship between the hypothalamus and the hepatic autonomic nerve in regulation of glucose metabolism in the liver are discussed.  相似文献   

14.
Study of hypothalamic control of gastric acid scretion (GAS) has revealed GAS-related neurons, their location in the lateral hypothalamic area (LHA), their characteristics, and implications of their relations to feeding and other functions. Some LHA glucose-sensitive neurons are referred to as gastric type because of their effects on gastric oxyntic cells via specific gastric related neurons of the medulla oblongata and the vagus. The 2-deoxy-D-glucose (2-DG), or insulin induced GAS was completely abolished by bilateral subdiaphragmatic vagotomy, or micro-lesions in specific sites of the LHA. These gastric type glucose-sensitive neurons were thus believed to contribute to control of GAS. The paraventricular nucleus (PVN) was also found to affect GAS. GAS-related PVN neurons were observed in the rostral PVN. Electrophoretic application of various chemicals, especially glucose, also affected neurons in the rostral PVN. Electrophoretically applied norepinephrine (NE) increased PVN single neuron activity and suppressed GAS. Results suggest that the rostral PVN may be another site to modulate LHA control of GAS, and NE may be a transmitter or modulator.  相似文献   

15.
To obtain evidence for a functional connection between the ventromedial hypothalamic nucleus (VMH) and the sympathetic nervous system, effects of electrical stimulation of the VMH, the lateral hypothalamic area (LH) and the paraventricular hypothalamic nucleus (PVN) on norepinephrine (NE) turnover in the heart, liver, pancreas, spleen, submandibular gland and the interscapular brown adipose tissue were examined in anesthetized rats. Stimulation of the VMH elicited a 3-8-fold increase in the rate of NE turnover in all organs examined, whereas stimulation of the LH or the PVN had no appreciable effects. The effect of VMH stimulation was abolished after sympathetic ganglionic blockade with hexamethonium. Epinephrine turnover in the adrenal gland was accelerated by stimulation of not only the VMH but also the LH. It was concluded that the VMH is intimately associated with sympathetic facilitation in peripheral tissues.  相似文献   

16.
17.
Accumulating evidence implicates the dorsomedial hypothalamic nucleus (DMH) in the regulation of autonomic and neuroendocrine stress responses. However, although projections from the DMH to the paraventricular hypothalamic nucleus (PVN), which is the critical site of the neuroendocrine stress axis, have been described, the impact of DMH neurones in the modulation of hypothalamic‐pituitary‐adrenal (HPA) axis activation during stress is not fully understood. The present study aimed to investigate the role of the DMH in HPA axis responses to different types of stimuli. Male Sprague–Dawley rats fitted with a chronic jugular venous catheter were exposed to either an emotional stressor (elevated platform‐exposure) or immune challenge (systemic interleukin‐1β administration). Bilateral electrolytic lesions of the DMH disinhibited HPA axis responses to the emotional stressor, as indicated by higher plasma adrenocorticotrophic hormone levels during and after elevated platform exposure in lesioned animals compared to sham‐lesioned controls. Moreover, DMH‐lesioned animals showed increased neuronal activation in the PVN, as indicated by a higher c‐Fos expression after elevated‐platform exposure compared to controls. By contrast, DMH‐lesions had no effects on HPA axis responses to immune challenge. Taken together, our data suggest an inhibitory role of DMH neurones on stress‐induced HPA axis activation that is dependent upon the nature of the stimulus being important in response to an emotional stressor but not to immune challenge.  相似文献   

18.
The effects of glucose injection into the hepatic portal vein on neural activity of the lateral hypothalamic area (LHA) were studied in rats. A majority of identified glucose-sensitive neurons in the LHA were inhibited by portal injection of glucose. This was found to be mediated through the alpha-noradrenergic pathways. Most of the glucose-insensitive neurons did not respond to the same procedure. Portal injection of hypertonic saline increased neural activity of some glucose-insensitive neurons but no glucose-sensitive neurons responded. Convergence of hepatic vagal afferent glucose-sensitive units on LHA glucose-sensitive neurons was clarified by this study.  相似文献   

19.
It is accepted that the tone of the parasympathetic nervous system increases after VMH lesion, whereas the sympathetic tone decreases. To reinforce investigations over outcomes from disturbances of the hypothalamic neuronal systems on peripheral autonomic nerve activity this study determined the acetylcholinesterase (AchE) activity in visceral organs, known as vagal targets, from VMH-lesioned obese rats. It was found that AchE activity was significantly increased in liver, pancreas, and stomach from these animals. However, it was not changed in kidneys, being decreased in spleen. The results suggest that AchE activity is enhanced in vagus innervated tissues to following up the unbalance of the autonomic nervous system as observed in VMH lesion–induced obesity.  相似文献   

20.
Neuronal activity changes in the medial preoptic area (MPOA) of the male monkey were related to the commencement of sexual behavior, penile erection and the refractory period following ejaculation. Similarly, changes in the female MPOA were related to the commencement of sexual behavior and presentation. Increased neuronal activity in the dorsomedial hypothalamic nucleus (DMH) in the male monkey and in the ventromedial hypothalamic nucleus (VMH) in the female monkey was synchronized to each mating act. Stimulation study and neuronal activity recordings in the MPOA, DMH and VMH suggest involvement of MPOA neurons in sexual arousal, and of male DMH and female VMH neurons in the copulatory act. Stimulation experiment on the various parts in the hypothalamus of the female monkey also supports the conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号