首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During the metamorphosis of the hawkmoth Manduca sexta the larval thoracic legs degenerate to be replaced in the adult by legs of very different form and function. This change must be accompanied by a reorganization of the neural circuits controlling leg movements. As an initial step in the study of this reorganization we describe here the sensory and motor elements of this circuitry in the larval stage of life. Sensory neurons innervating mechanoreceptive hairs on the thoracic surface were stained individually with cobalt. Those innervating hairs on the general thoracic surface project topographically into two ventral regions of the segmental ganglia. Sensory neurons innervating leg sensilla also map topographically to the more ventral of these regions but in addition have arborizations in a midlateral region. The density of branching within this lateral "leg neuropil" is greatest for sensory neurons form sensilla on the more distal leg segments. Leg motor neurons were identified with intracellular recording and cobalt injection techniques. Those innervating muscles controlling distal leg segments have dense dendritic arbors in the lateral "leg neuropil," while motor neurons controlling more proximal segments and muscles of the ventral body wall have extensive arborizations in a dorsomedial region of the ganglion. In general, flexor motor neurons are excited by medial and inhibited by lateral leg sensilla, while the opposite is true of extensors. Distal segment motor neurons respond most strongly to sensory neurons from distal segments, thus suggesting some interaction within the lateral "leg neuropil." Thus, in the larval nervous system a highly ordered array of of sensory and motor elements underlies the specific behavioral responses of the legs to tactile stimulation.  相似文献   

2.
A previous study reported that a peptide, sensorin-A, is expressed exclusively in mechanosensory neurons having somata in central ganglia of Aplysia. The present study utilized in situ hybridization, staining by nerve back-fill and soma injection, and electrophysiological methods to characterize the locations, numbers, and functions of sensorin-A-expressing neurons and to define the relationships between soma locations and the locations of peripheral axons and receptive fields. Approximately 1,000 cells express sensorin-A mRNA in young adult animals (10-30 g) and 1,200 cells in larger adults (100-300 g). All of the labeled somata are in the CNS, primarily in the abdominal LE, rLE, RE and RF, pleural VC, cerebral J and K, and buccal S clusters. Expression also occurs in a few sparsely distributed cells in most ganglia. Together, receptive fields of all these mechanosensory clusters cover the entire body surface. Each VC cluster forms a somatotopic map of the ipsilateral body, a "sensory aplunculus." Cells in the pleural and cerebral clusters have partially overlapping sensory fields and synaptic targets. Buccal S cells have receptive fields on the buccal mass and lips and display notable differences in electrophysiological properties from other sensorin-A-expressing neurons. Neurons in all of the clusters have relatively high mechanosensory thresholds, responding preferentially to threatening or noxious stimuli. Synaptic outputs to target cells having defensive functions support a nociceptive role, as does peripheral sensitization following noxious stimulation, although additional functions are likely in some clusters. Interesting questions arise from observations that mRNA for sensorin-A is present not only in the somata but also in synaptic regions, connectives, and peripheral fibers.  相似文献   

3.
A plexus of multidendritic sensory neurons, the dendritic arborization (da) neurons, innervates the epidermis of soft-bodied insects. Previous studies have indicated that the plexus may comprise distinct subtypes of da neurons, which utilize diverse cyclic 3',5'-guanosine monophosphate signaling pathways and could serve several functions. Here, we identify three distinct classes of da neurons in Manduca, which we term the alpha, beta, and gamma classes. These three classes differ in their sensory responses, branch complexity, peripheral dendritic fields, and axonal projections. The two identified alpha neurons branch over defined regions of the body wall, which in some cases correspond to specific natural folds of the cuticle. These cells project to an intermediate region of the neuropil and appear to function as proprioceptors. Three beta neurons are characterized by long, sinuous dendritic branches and axons that terminate in the ventral neuropil. The function of this group of neurons is unknown. Four neurons belonging to the gamma class have the most complex peripheral dendrites. A representative gamma neuron responds to forceful touch of the cuticle. Although the dendrites of da neurons of different classes may overlap extensively, cells belonging to the same class show minimal dendritic overlap. As a result, the body wall is independently tiled by the beta and gamma da neurons and partially innervated by the alpha neurons. These properties of the da system likely allow insects to discriminate the quality and location of several types of stimuli acting on the cuticle.  相似文献   

4.
The developing serotonergic system of the tobacco hornworm, Manduca sexta, has been studied immunocytochemically in whole mount preparations of brain-retrocerebral complexes. The distribution of serotonin-immunoreactive cell bodies, fibers and terminal fields has been analysed during larval and larval-pupal development using a specific rabbit antiserum against serotonin-hemocyanin conjugates. The serotonergic system was conserved from the fourth to the fifth larval stadium, with minimal changes occurring until the onset of pupal development. At this time, alterations in the distribution of serotonin-immunoreactive cells and processes were observed, including the apparent disappearance of some cell bodies and terminals. Nevertheless, the overall appearance of this system in the pupal brain was not significantly different from that in the larva. The larval pattern was characterized by eight bilateral groups of cell bodies which sent thick bridges of fibers across the midline, a feature strikingly similar to the serotonergic system in vertebrate embryos. In addition, three bilateral immunoreactive fields of arborization were observed around and ventral to these cell groups, together with regions of serotonin immunoreactivity in the medial and lateral protocerebral lobes. The central body, larval antennal centers, larval accessory lobes, and the tritocerebrum were also immunoreactive. Fibrous networks of serotonergic processes were usually observed around nerves emanating from the brain, including the connectives from the brain to the corpus cardiacum and corpus allatum. Smaller varicosities were observed in the interior of these neurohemal and glandular organs, and a network of 5-HT fibers was occasionally found around the corpus cardiacum and corpus allatum. The possible relationship of serotonin to cerebral neuroendocrine functions during the postembryonic development of M. sexta is discussed.  相似文献   

5.
As part of a planned study of the central neural basis of feeding behaviour in larval Manduca sexta, the morphology and physiology of the mandibular motor system is here described. The gross neuroanatomy of the postoral head segments has been investigated, especially the course and structure of the mandibular nerves. The electrophysiology of the mandibular opener and closer muscles has been investigated by extra- and intracellular recording during feeding behaviour and during electrical stimulation of the motor nerve. All the muscle fibres examined are of the "fast," twitch type. Contraction is associated exclusively with locally or completely propagated overshooting action potentials, never with local junctional potentials. Control of the muscles is by recruitment of more motor units and/or an increase of frequency of action potentials. No inhibitory synaptic potentials could be found. The motor neurons of the mandibular muscles have been identified by cobalt backfills of the mandibular nerve, and characterized by intracellular recording and dye injection. There are 12 closer and 8 opener motor neurons. All motor neurons recorded so far evoke 1:1 twitches in the muscle, and none appear to be inhibitory. No GABA-immunoreactive axons could be found in the mandibular nerve.  相似文献   

6.
The abdominal prolegs are the primary locomotory appendages of Manduca sexta larvae. After the prolegs are lost at pupation, some of the proleg motoneurons die while the survivors are respecified to carry out different functions in the adult moth. As a first step toward investigating the process of functional respecification at the synaptic level, we searched for larval interneurons that affected the activity of proleg motoneurons, and followed these interneurons into the pupal stage. Interneurons were judged to be individually identifiable based on their effects on proleg motoneuron activity and their anatomical features. Seven larval interneurons were identified and placed in five physiological classes based on their effects on proleg motoneurons: ipsilateral excitors, contralateral excitors, ipsilateral inhibitors, contralateral inhibitors, and bilateral inhibitor-excitors. Four of the larval interneurons produced apparently monosynaptic postsynaptic potentials in proleg motoneuron. Of the five larval interneurons that were reidentified in the early pupal stage, two showed minor but consistent structural modifications from the larval stage. Interneurons that produced unitary postsynaptic potentials in larval motoneurons continued to do so in pupal motoneurons. These studies demonstrate that individually identified interneurons can be followed through the larval-pupal transformation, during the initial stages of motoneuron respecification.  相似文献   

7.
Octopamine is a neuroactive monoamine that functions as a neurohormone, a neuromodulator, and a neurotransmitter in many invertebrate nervous systems, but little is known about the distribution of octopamine in the brain. We therefore used a monoclonal antibody to study the distribution of octopamine-like immunoreactivity in the brain of the hawkmoth Manduca sexta. Immunoreactive processes were observed in many regions of the brain, with the distinct exception of the upper division of the central body. We focused our analysis on nine ventral unpaired median (VUM) neurons with cell bodies in the labial neuromere of the subesophageal ganglion. Seven of these neurons projected caudally through the ventral nerve cord. Two neurons projected rostrally into the brain (supraesophageal ganglion), and one of these was a bilateral neuron that sent projections to the gamma-lobe of the mushroom body and the lateral protocerebrum. Octopamine-immunoreactive processes from one or more cells originating in the subesophageal ganglion also form direct connections between the antennal lobes and the calyces of the mushroom bodies.  相似文献   

8.
This paper describes the distribution of histamine-like immunoreactivity in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta. Intense immunocytochemical staining was detected in ten bilateral pairs of neurons in the median protocerebrum and in one pair of neurons in the suboesophageal ganglion. Whereas most areas of the brain and suboesophageal ganglion are innervated by one or more of these neurons, typically no immunoreactive fibers were found in the mushroom bodies, the protocerebral bridge, and the lateral horn of the protocerebrum. The 11 histamine-immunoreactive neurons were reconstructed from serial sections. Ten neurons have bilateral arborizations, often with axonal projections in symmetric areas of both hemispheres. One neuron, whose soma resides in the lateral protocerebrum, has only unilateral projections. Of the 11 neurons, 6 occur in pairs with similar morphological features. In addition to these neurons, weak histamine-like immunoreactivity was detected in 7-13 interneurons that were not reconstructed individually. The central projections of the ocellar nerves from the intracranial ocelli also exhibit histamine-like immunoreactivity. The single-cell reconstructions reveal similarities between the organization of histamine- and serotonin-immunoreactive neurons in the brain and suboesophageal ganglion of this insect.  相似文献   

9.
Primary sensory trigeminal projections were investigated in the hagfish following application of horseradish peroxidase (HRP) to the sensory branches. In our control preparations we were able to distinguish five sensory ganglia and their respective nerves. HRP application confirmed the almost exclusive relation of each of these nerves to their respective ganglia, with very little overlap. In normal frontal sections of the medulla oblongata, five columns of fibers surrounded by neuronal cell bodies could be clearly distinguished, but the number is probably fortuitous, for there was no one-on-one relationship with the five trigeminal ganglia. From their peripheral connections, we surmised that columns 1 and 3 handle general cutaneous sensation, columns 2, 4, and 5 handle taste sensation, and column 5 handles general mucous cutaneous sensation conveyed by utricular ganglion cells. Dorsally located columns received projections from nerves with dorsal peripheral connections, and more ventrally located columns received projections from nerves with ventral peripheral connections. This relation is the reverse of that seen in other vertebrates.  相似文献   

10.
We have studied differences in the development of segmentally homologous neurons to identify factors that may regulate a neuropeptide phenotype. Bilaterally paired homologs of the peripheral neuron L1 were identified in the thoracic and abdominal segments in embryos of the moth Manduca: each bipolar neuron arises at a stereotyped location and, at 40% of embryogenesis, projects its major process within the transverse nerve of its own segment. Shortly after the initiation of axonogenesis (approximately 41%), L1 homologs in all but the prothoracic segment (T1) were labelled specifically by an antiserum to the molluscan neuropeptide Phe-Met-Arg-Phe-NH2 (authentic FMRFamide). Levels of peptide-immunoreactivity (IR) were comparable in all such segmental homologs up to the approximately 60% stage of embryogenesis, whereupon two distinct levels of peptide IR were displayed: homologs in the three most rostral segments (T2, T3, and A1; [abdominal segment 1]) showed high levels and were called Type I L1 neurons; homologs in the more caudal segments (A2-A8) typically showed low levels of IR and were called Type II L1 neurons. This segment-specific difference represented mature differentiated states and was retained in postembryonic stages. Intracellular dye fills of embryonic L1 neurons revealed that the morphogenesis of the Type I and II L1 neuron homologs was similar until approximately 48% of embryogenesis; thereafter it differed in two salient ways: (1) the cell bodies of Type II L1 neurons migrated approximately 150 microns laterally from their point of origin, and (2) the distal processes of the Type II L1 neurons contacted the heart, whereas those of Type I L1 neurons did not. Ultrastructural studies of both mature and developing L1 homologs showed that the FMRFamide-like antigen(s) localized specifically to secretory granules. Further, whereas the secretory granules in segmental homologs appeared similar initially (i.e., at approximately 50% of development), following the establishment of segment-specific differences, secretory granules found in mature Type I and II L1 neurons were cell type-specific.  相似文献   

11.
The present study was undertaken in an attempt to better understand the abnormalities of cutaneous sensibility that are present in patients following nerve injury with concomitant cutaneous denervation and subsequent reinnervation. Reinnervated intervibrissal pelage of the rat mystacial pad was studied in silver-impregnated sections 3 and 5 months after transecting and 2 and 5 months after crushing the infraorbital nerve. The sensory terminals on guard and vellus hairs were analyzed in serial paraffin sections and in thick frozen sections. In normal rat mystacial skin, approximately nine/ten of innervated guard hairs have a typical piloneural complex consisting of a palisade of highly regular lanceolate terminals surrounded by circularly arranged Ruffini terminals and free nerve endings (FNEs). The remaining one of ten innervated guard hairs has only circularly arranged presumptive FNEs and Ruffini terminals. Vellus hairs, either singly or in clusters, typically have only circularly arranged terminals that in many cases are simple FNEs. We first recognized abnormalities in innervation of hairs following nerve transection and fully expected nerve terminals to be completely normal following nerve crush. Almost all reinnervated sensory nerve terminals associated with guard hairs were markedly abnormal following nerve transection and quantitatively abnormal following nerve crush. Following nerve transection, lanceolate terminals were almost completely absent, and they were remarkably reduced in number following nerve crush. Vellus hairs when reinnervated typically lacked the complex circular presumptive Ruffini terminals. These findings may be in part the basis for the abnormal cutaneous sensory perceptions (dysasthesias and paresthesias) noted in human subjects following damage to nerves with subsequent sensory reinnervation of the skin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Retrograde labeling has been used to identify sensory neurons in the lumbar dorsal root ganglia (DRG) that innervate the rat tibial periosteum, medullary cavity, and trabecular bone. The size, neurochemical profile [isolectin B4 (IB4) binding, substance P (SP), calcitonin gene‐related peptide (CGRP), and NF200 immunoreactivity (‐IR)], and segmental distribution of sensory neurons innervating each of these bony compartments are reported. After injections of fast blue into the periosteum, medullary cavity, and trabecular bone (epiphysis), retrogradely labeled neurons were observed throughout the ipsilateral (but not contralateral) lumbar DRG. They were predominantly small (<800 μm2) or medium‐sized (800–1,800 μm2) neurons. CGRP‐IR and SP‐IR were found in 23% and 16% of the retrogradely labeled neurons, respectively. IB4 binding was observed in 20% and NF200‐IR in 40% of the retrogradely labeled neurons. There were no significant differences in the percentage of neurons labeled with any one of the antisera following injections into each of the three bony compartments. To allow a direct comparison with sensory neurons innervating cutaneous tissues, injections of fast blue were also made into the skin overlying the tibia. The percentage of CGRP‐IR neurons innervating bone was significantly lower than the percentage of CGRP‐IR neurons innervating skin (ANOVA; P < 0.05). No other significant differences in the neurochemical profiles of neurons labeled from bone vs. skin were observed. The findings of the present study show that the periosteum, medullary cavity, and trabecular bone are all innervated by sensory neurons that have size and neurochemical profiles consistent with a role in nociception. J. Comp. Neurol. 517:276–283, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
By means of intracellular recording and staining, we studied the ability of several distinct classes of projection (output) neurons, which innervate the sexually dimorphic macroglomerular complex (MGC-PNs) in the antennal lobe of the male moth Manduca sexta, to encode naturally intermittent sex pheromonal stimuli. In many MGC-PNs, antennal stimulation with a blend of the two essential pheromone components evoked a characteristic triphasic response consisting of a brief, hyperpolarizing inhibitory potential (I1) followed by depolarization with firing of action potentials and then a delayed period of hyperpolarization (I2). MGC-PNs described in this study resolved pulsed pheromonal stimuli, up to about five pulses/second, with a distinct burst of action potentials for each pulse of odor. The larger the amplitude of I1, the higher the pulse rate an MGC-PN could follow, illustrating the importance of inhibitory synaptic input in shaping the temporal firing properties of these glomerular output neurons. In some MGC-PNs, triphasic responses were evoked by antennal stimulation with only one of the two key pheromone components. Again, the maximal pulse rate that an MGC-PN could follow with that pheromone component as sole stimulus was high in MGC-PNs that responded with a strong I1. These component-specific MGC-PNs innervated only one of the two principal glomeruli of the MGC, while MGC-PNs that were primarily excited by antennal stimulation with either key pheromone component had arborizations in both major MGC glomeruli. These observations therefore suggest that the population of antennal olfactory receptor cells responding to a single pheromone component is functionally heterogeneous: a subset of these sensory cells activates the excitatory drive to many uniglomerular MGC-PNs, while others feed onto inhibitory circuits that hyperpolarize the same PNs. This convergence of opposing inputs is a circuit property common to uniglomerular MGC-PNs branching in either of the major MGC glomeruli, and it enhances the ability of these glomerular output neurons to resolve intermittent olfactory input. Synaptic integration at the uniglomerular PN level thus contributes to the transmission of behaviorally important temporal information about each key pheromone component to higher centers in the brain. J. Comp. Neurol. 409:1–12, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

14.
During postembryonic development, a larval skeletal muscle motoneuron, MN-1 in abdominal segments 7 and 8, becomes respecified to innervate the terminal cardiac chamber of adult Manduca sexta. Neural tracing techniques and electrophysiology were used in this study to describe the anatomical and physiological remodeling of this identified motoneuron. During metamorphosis the MN-1 in segments 7 and 8 undergoes dendritic reorganization. Long new dendrites extend anteriorly in the terminal ganglion neuropil. Intracellular and extracellular recordings showed that broader action potentials, increased firing rate, and development of a bursting activity pattern accompany MN-1 respecification. Cardiac mechanograms showed that MN-1 activity bursts always correlate with the anterograde cardiac beat. Bilateral MNs-1 fire at similar times to activate and sustain the putative cardiac pacemaker activity of the terminal chamber synergistically. After remodeling, MN-1 output could be influenced rapidly by sensory inputs during evoked cardiac reversal. The effect is exerted by inhibition of MN-1 firing that, in turn, causes early blockade of the anterograde beat and reversal to the retrograde direction of beat.  相似文献   

15.
Responses of 71 single salivatory neurons, identified by antidromic spikes evoked by stimulation of the chorda tympani, were tested to stimulation of the ipsilateral infraorbital (IO), inferior alveolar (IA) and lingual nerves (LN) in the cat. Fifty-one neurons responded with spike potentials to stimulation of one or more of these nerves (responsive type, R), while the remaining 20 neurons did not respond to stimulation of any of them (non-responsive type, NR). Thirty-three R neurons activated by stimulation of all of the 3 trigeminal afferent branches, while 12 neurons responded with spikes to stimulation of only one branch, usually of LN. Reflex spike responses appeared with a latency of 5.6–14.6 ms to LN stimulation, 6.4–15.7 ms to IO stimulation and 6.0–26.0 ms to IA stimultion. Impulses of both Aβ and Aδ afferent fibres of the trigeminal nerve were found to be effective for activation of salivatory neurons.  相似文献   

16.
Porcine lumbosacral dorsal root ganglion (DRG) neurons were neurochemically characterized by using six neuronal markers: calcitonin gene‐related peptide (CGRP), substance P (SP), neuronal nitric oxide synthase (nNOS), neurofilament 200kDa (NF200), transient receptor potential vanilloid 1 (TRPV1), and isolectin B4 (IB4) from Griffonia simplicifolia. In addition, the phenotype and cross‐sectional area of DRG neurons innervating the urinary bladder trigone (UBT) were evaluated by coupling retrograde tracer technique and immunohistochemistry. Lumbar and sacral DRG neuronal subpopulations were immunoreactive (IR) for CGRP (30 ± 3% and 29 ± 3%, respectively), SP (26 ± 8% and 27 ± 12%, respectively), nNOS (21 ± 4% and 26 ± 7%, respectively), NF200 (75 ± 14% and 81 ± 7%, respectively), and TRPV1 (48 ± 13% and 43 ± 6%, respectively), and labeled for IB4 (56 ± 6% and 43 ± 10%, respectively). UBT sensory neurons, which were distributed from L2 to Ca1 DRG, had a segmental localization, showing their highest density in L4–L5 and S2–S4 DRG. Lumbar and sacral UBT sensory neurons expressed similar percentages of NF200 immunoreactivity (64 ± 33% and 58 ± 12%, respectively) but showed a significantly different immunoreactivity for CGRP, SP, nNOS, and TRPV1 (56 ± 9%, 39 ± 15%, 17 ± 13%, 62 ± 10% vs. 16 ± 6%, 16 ± 11%, 6 ± 1%, 45 ± 24%, respectively). Lumbar and sacral UBT sensory neurons also showed different IB4 labeling (67 ± 19% and 48 ± 16, respectively). Taken together, these data indicate that the lumbar and sacral pathways probably play different roles in sensory transmission from the UBT. The findings related to cell size also reinforced this hypothesis, because lumbar UBT sensory neurons were significantly larger than sacral ones (1,112 ± 624 μm2 vs. 716 ± 421 μm2). J. Comp. Neurol. 521:342–366, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Eph receptor tyrosine kinases and their ephrin ligands participate in the control of neuronal growth and migration in a variety of contexts, but the mechanisms by which they guide neuronal motility are still incompletely understood. By using the enteric nervous system (ENS) of the tobacco hornworm Manduca sexta as a model system, we have explored whether Manduca ephrin (MsEphrin; a GPI-linked ligand) and its Eph receptor (MsEph) might regulate the migration and outgrowth of enteric neurons. During formation of the Manduca ENS, an identified set of approximately 300 neurons (EP cells) populates the enteric plexus of the midgut by migrating along a specific set of muscle bands forming on the gut, but the neurons strictly avoid adjacent interband regions. By determining the mRNA and protein expression patterns for MsEphrin and the MsEph receptor and by examining their endogenous binding patterns within the ENS, we have demonstrated that the ligand and its receptor are distributed in a complementary manner: MsEphrin is expressed exclusively by the migratory EP cells, whereas the MsEph receptor is expressed by midline interband cells that are normally inhibitory to migration. Notably, MsEphrin could be detected on the filopodial processes of the EP cells that extended up to but not across the midline cells expressing the MsEph receptor. These results suggest a model whereby MsEphrin-dependent signaling regulates the response of migrating neurons to a midline inhibitory boundary, defined by the expression of MsEph receptors in the developing ENS.  相似文献   

18.
Retrograde and transganglionic transport of horseradish peroxidase has been used to study the cell bodies of origin and the central projections of neurons innervating the rat masseter muscle. Labeled cell bodies were observed both in the trigeminal ganglion and in the mesencephalic trigeminal nucleus. Major central projections from mesencephalic trigeminal neurons were traced to the supratrigeminal nucleus and to the brainstem reticular formation. Smaller projections from these neurons could be followed to the borders of the solitary tract and hypoglossal nuclei as well as to lamina V of nucleus caudalis and corresponding areas in the dorsal horn at C1−C2 spinal cord segments. Labeling from trigeminal ganglion neurons was observed close to the trigeminal tract in all subdivisions of the trigeminal sensory nuclear complex and in the dorsal horn lamina I at C1 and C2 levels.  相似文献   

19.
Location of the neurons in the trigeminal mesencephalic nucleus innervating stretch receptors of the lateral pterygoid muscle and the mode of their synaptic connection on the lateral pterygoid motoneurons of the guinea pig were studied physiologically as well as morphologically, in comparison with the trigeminal mesencephalic neurons innervating muscle spindles in the superficial masseter muscle, with the following results: stimulation of the caudal half of the trigeminal mesencephalic nucleus evoked monosynaptic excitatory postsynaptic potentials in the ipsilateral lateral pterygoid motoneurons. Stimulation of the lateral pterygoid nerve directly evoked spike potentials in the neurons located in the caudal half of the ipsilateral trigeminal mesencephalic nucleus, which responded with increased firing to stretch, and with silent period to twitch, of the ipsilateral lateral pterygoid muscle. Averaging of intracellular potentials of the lateral pterygoid motoneurons with extracellular spike potentials of these trigeminal mesencephalic neurons revealed excitatory postsynaptic potentials after a monosynaptic latency, but no inhibitory postsynaptic potentials. Injection of horseradish peroxidase into the lateral pterygoid muscle labeled 15-20 cells in the caudal half of the ipsilateral trigeminal mesencephalic nucleus, while 174-228 cells retrogradely labeled by horseradish peroxidase were found throughout the whole rostrocaudal extent of the ipsilateral trigeminal mesencephalic nucleus following injection of horseradish peroxidase into the masseter muscle. It was concluded that neurons in the caudal half of the trigeminal mesencephalic nucleus send their peripheral processes to stretch receptors, presumably muscle spindles, in the ipsilateral lateral pterygoid muscle and that their central processes have excitatory synapses on ipsilateral lateral pterygoid motoneurons, thus comprising the afferent limb of a monosynaptic stretch reflex arc of the lateral pterygoid muscle of the guinea pig.  相似文献   

20.
Crossed extension reflexes (CERs) recorded from the right quadriceps femoris in acutely decerebrated cats were consistently evoked by single stimuli applied to the left sciatic nerve if the cats were placed with the right body side on the table surface. In contrast, CERs were observed to follow repetitive stimulation only if the left body side was on the table. Sustained CERs, evoked by repetitive stimulation, were inhibited by (i) rotating the head to the left, (ii) flexing the left forelimb, and (iii) placing a weighted surface on the left body side. The reflexes were facilitated by rotation of the head to the right. Ventriflexion, dorsiflexion, or lateral flexion of the neck had no effect on the CER. These data are not consistent with several earlier reports that the CER can be evoked only by repetitive stimulation in the acutely decerebrated preparation. The changes in excitability of the CER described here are all consistent with involvement of the right quadriceps group in righting and postural reflexes induced by various proprioceptive and other mechanoreceptive stimuli. Such effects on the CER were associated only with such stimuli that have opposite actions on extensor neurons supplying the two hind limbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号