首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We have investigated the mechanism of regulation of 5-HT3 receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2. The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants, tau 1 (1.1 +/- 0.21s) and tau 2 (8.9 +/- 1.6s), respectively. Brief applications of 5-HT, applied at 2 min intervals, induced a decrease in the amplitude of the 5-HT3 receptor-mediated peak inward currents. 3. Buffering of intracellular calcium with the calcium chelator BAPTA (10 mM) instead of EGTA (10 mM) attenuated the 5-HT-induced loss of responsiveness of 5-HT3 receptors. Omission of calcium from the extracellular medium yielded a similar attenuation of loss of responsiveness. 4. Inclusion of the protein kinase inhibitor, staurosporine (1 microM) or of okadaic acid (1 microM), an inhibitor of protein phosphatases 1 and 2A, in the intracellular buffer solution did not affect 5-HT3 receptor sensitivity. 5. Injection of cyclosporin A-cyclophilin A complex (20 nM), which potently inhibits calcineurin, did not affect the time constants of the biphasic decay of the 5-HT response tau 1 (1.4 +/- 0.28s) and tau 2 (11.3 +/- 1.7s). The complex, however, prevented the loss of 5-HT3, receptor responsiveness upon repeated application of 5-HT. A similar, but weaker effect was observed after intracellular application of the autoinhibitory peptide domain of calcineurin (1 microM). 6. The recovery of desensitized 5-HT3 receptors upon a second application of 5-HT (1 microM) showed a half-life time (tau 1/2) of 2.6 +/- 0.12 min in control cells which was reduced to 1.6 +/- 0.09 min in cells treated with cyclosporin A-cyclophilin A (20 nM) complex. 7. We conclude that calcineurin does not affect the fast decay of the 5-HT3 receptor response but may be involved in a slower process which regulates channel activity.  相似文献   

2.
1-(m-chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist   总被引:4,自引:0,他引:4  
1-(m-Chlorophenyl)-biguanide (mCPBG) was examined and compared with three 5-HT3 receptor agonists in three 5-HT3 receptor models. mCPBG inhibited [3H]GR67330 binding to 5-HT3 receptors with high affinity (IC50 1.5 nM). mCPBG depolarized the rat vagus nerve with an EC50 one tenth of that for 5-HT (0.05 vs. 0.46 microM); the maximum depolarization was approximately half that for 5-HT. The mCPBG depolarization was potently blocked by the selective 5-HT3 antagonist, ondansetron (pKB 8.6 +/- 0.1). In anaesthetised cats, mCPBG potently evoked the Bezold-Jarisch reflex which was blocked by low doses of ondansetron (10 micrograms/kg i.v.). It is concluded that mCPBG is a potent, high affinity 5-HT3 receptor agonist.  相似文献   

3.
4.
5.
AIM: To investigate the possibility of dihydropyridine inhibition of N-type calcium channels. METHODS: Effects of nifedipine and nicardipine on the high K(+)-induced intracellular Ca2+ concentration ([Ca2+]i) increase were studied by measuring [Ca2+]i using the fluorescent indicator Fura-2. RESULTS: Pretreatment of cells with nifedipine 50 mumol.L-1 inhibited the high K(+)-induced [Ca2+]i transient by about 60% (n = 3); however, pretreatment of cells with nicardipine 10 mumol.L-1 completely prevented the high K(+)-evoked [Ca2+]i increase in dibutyryl cyclic AMP (dbcAMP)-differentiated NG 108-15 cells (n = 5). The high K(+)-induced [Ca2+]i increase was mediated by L- and N-type voltage-sensitive calcium channels (VSCC) in NG 108-15 cells. CONCLUSION: Nicardipine at micromolar range inhibited both L- and N-type VSCC in dbcAMP-differentiated NG 108-15 cells whereas nifedipine mainly inhibited L-type calcium channels.  相似文献   

6.
1. We have assessed the potency of a range of agonists and antagonists on the muscarinic receptor responsible for inhibiting the Ca-current (ICa) in NG 108-15 hybrid cells. 2. Acetylcholine (ACh), oxotremorine-M and carbachol were potent 'full' agonists (EC50 values were 0.11 microM, 0.14 microM and 2 microM, respectively). Maximum inhibition of peak high-threshold ICa by these agonists was 39.5%. (+/-)-Muscarine, methylfurmethide and arecaidine propargyl ester (APE) were 'partial' agonists, with EC50 values of 0.54 microM, 0.84 microM and 0.1 microM, respectively. 3. Atropine, pirenzepine and himbacine were potent antagonists of muscarinic inhibition of ICa, with apparent pKB values of 9.8, 7.74 and 8.83, respectively. Methoctramine was relatively weak (pKB = 7.63). Atropine and pirenzepine depressed maximum responses to agonists, probably because these antagonists have relatively slow dissociation rates. 4. The characteristic pharmacological profile found for the M4 receptors in these functional experiments (himbacine high affinity, pirenzepine moderate to high affinity, methoctramine low affinity) corresponds well with data from earlier binding experiments (Lazareno et al., 1990). Since mRNA hybridising to probes for the m4 receptor genotype can be detected in these cells, it is suggested that these pharmacological characteristics identify the equivalent expressed receptor subtype M4.  相似文献   

7.
Neuroblastoma x glioma NG 108-15 hybrid cells contain a homogeneous population of delta-opioid receptors. NG 108-15 membranes were labelled either with the opiate agonist, [3H]etorphine or the opiate antagonist [3H]diprenorphine under various conditions: absence or presence of Na+ and/or 5'-guanylylimidophosphate (GppNHp). Ultracentrifugation in linear sucrose gradients after digitonin solubilization of prelabeled receptor was performed. In the soluble extracts from NG 108-15 hybrid cell membranes, bound [3H]etorphine and bound [3H]diprenorphine sedimented in the same position, even in the presence of NaCl and/or GppNHp. These data were analyzed in terms of relative agonist potency of diprenorphine on this specific model, using equilibrium binding studies and inhibition of adenylate cyclase activity. Diprenorphine, at the concentrations used for sedimentation studies, behaving as an opiate antagonist, it is concluded that the delta-opioid receptor could be strongly precoupled to the G-protein in the NG 108-15 cell.  相似文献   

8.
Electrophysiological analysis of neuroblastoma X glioma hybrid (NG108-15) cells was used as an in vitro neuronal model system to evaluate antagonists of the K+-selective carboxylic ionophore, nigericin. Changes in membrane electrical characteristics induced by nigericin with and without the simultaneous administration of antagonists were measured using intracellular microelectrode techniques. Bath application of nigericin (3 microM) produced a severe hyperpolarization and blocked the generation of action potentials in response to electrical stimulation. Simultaneous administration of nigericin plus the Na+-K+ pump inhibitor ouabain or drugs known to influence Ca++ signaling in cells, i.e., quinidine, compound R24571, verapamil or haloperidol, was able to significantly attenuate the hyperpolarization. All antagonists acted in a concentration-dependent manner. However, nigericin plus maximally effective concentrations of ouabain (1 microM), verapamil (3 microM) and haloperidol (3 and 10 microM) resulted in moderate-to-severe depolarization by the end of 24 min. superfusions, suggesting that the concentrations of antagonists were excessive and that NG108-15 cell damage had occurred. In addition, none of the compounds studied was able to effectively prevent nigericin-induced blockade of action potentials. Thus, none of these antagonists appears suitable for transition to in vivo antidotal protection studies.  相似文献   

9.
The intracellular free calcium concentration ([Ca2+]i) was measured in single NG108-15 cells using indo-1-based microfluorimetry. In cells differentiated for 6-14 days in serum-free, forskolin (5 microM)-supplemented medium, application of micromolar concentrations of [D-Ala2,D-Leu5]-enkephalin (DADLE) inhibited Ca2+ influx mediated by voltage-gated Ca2+ channels. DADLE, at concentrations ranging from 1 nM to 1 microM, also produced rapid transient increases in [Ca2+]i (EC50 = 10 nM). The [Ca2+]i increases elicited by DADLE did not correlate with the inhibitory effects of the peptide. DADLE-induced [Ca2+]i increases were blocked by naloxone. In single cells, sequential application of selective opioid agonists (30 nM) evoked responses of the rank order DADLE = [D-Pen2,D-Pen5]-enkephalin > (trans)-(+-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzeneacetamide > [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin, consistent with activation of a delta-opioid receptor. The response was completely blocked by removal of extracellular Ca2+ or application of 1 microM nitrendipine, indicating that the increase in [Ca2+]i results from Ca2+ influx via dihydropyridine-sensitive, voltage-gated Ca2+ channels. Substitution of N-methyl-D-glucamine for extracellular Na+ or application of 1 microM tetrodotoxin greatly reduced, and in some cases blocked, the DADLE-induced [Ca2+]i increase, consistent with amplification of the response by voltage-gated Na+ channels. The [Ca2+]i increase was mimicked by both dibutyryl-cAMP and phorbol 12,13-dibutyrate. These findings are consistent with a delta-opioid-induced depolarization, possibly mediated by a second messenger, that subsequently recruits voltage-sensitive Ca2+ channels. In contrast to differentiated cells, undifferentiated cells responded to DADLE with a modest [Ca2+]i increase that was not sensitive to nitrendipine. In these cells, activation of the same second messenger system may elevate [Ca2+]i by mobilization from intracellular stores rather than influx. In addition to previously described inhibitory coupling to adenylyl cyclase and Ca2+ channels in NG108-15 cells, these results suggest that a novel, excitatory, effector system may also couple to opioid receptors.  相似文献   

10.
11.
Five separate guanine nucleotide-binding proteins (G proteins) were immunologically identified in membranes from neuroblastoma x glioma NG108-15 hybrid cells. These alpha subunit proteins were Gi2 alpha, two isoforms of Gi3 alpha, and two isoforms of Go alpha. The G proteins that interacted with delta-opioid receptors in these membranes were identified using cholera toxin (CTX)-induced ADP-ribosylation and antisera selective for various G protein alpha subunits. In the presence of delta-opioid agonists, CTX induced the incorporation of [32P]ADP-ribose into three pertussis toxin substrates. Using antisera generated against peptide sequences from G alpha subunits, these three pertussis toxin substrates were identified as Gi2 alpha, Go2 alpha, and one isoform of Gi3 alpha, which has yet to be identified. This CTX-induced labeling was demonstrated to be mediated via the delta-opioid receptor in these hybrid cells by the observation that delta agonists D-Ala2-D-Leu5-enkephalin (DA-DLE) and D-Pen2-D-Pen5-enkephalin, as well as the nonselective agonists etorphine and bremazocine, were active, but the mu agonist PL017 and the kappa agonist U-50-488H did not show this activity. This incorporation into all three substrates induced by DADLE was dose dependent, with EC50 (95% confidence interval) values ranging from 12 (3-52) to 183 (65-520) nM, which compared with the Kd value of 10 +/- 1.5 nM for this agonist, a dose that produces maximal inhibition of adenylate cyclase activity. Furthermore, pretreatment of the cells with pertussis toxin or treatment of the membranes with the antagonist naloxone blocked the incorporation induced by DADLE. Incorporation of [32P]ADP-ribose into all three substrates decreased 35-83% in membranes in which the receptors had been down-regulated by chronic treatment of the cells with DADLE. Thus, a single opioid receptor type can interact with three separate G proteins.  相似文献   

12.
Chemical modification of the 5-HT3 receptors in membranes from NG108-15 hybridoma cells was achieved using protein modifying reagents specific for various amino acid residues: N-bromosuccinimide for tryptophan, dithiothreitol for cystine, sodium tetrathionate for cysteine, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline for aspartic and glutamic acids, diethylpyrocarbonate for histidine, tetranitromethane for tyrosine and 2,3-butanedione for arginine. Among all the reagents tested, N-bromosuccinimide produced the largest alteration in the specific binding of [3H]zacopride onto 5-HT3 receptors. A significant reduction in Bmax (approximately 50%) with no change in Kd were noted on [3H]zacopride specific binding to membranes which were incubated with 40 microM N-bromosuccinimide for 60 min at 25 degrees. The occupancy of 5-HT3 receptor binding sites by various 5-HT3 agonists and antagonists (phenylbiguanide, ondansetron, granisetron, MDL 72222) prevented, at least partially, any subsequent reduction in [3H]zacopride specific binding by N-bromosuccinimide treatment. However, neither m-chloro-phenylbiguanide, among the agonists, nor zacopride, among the antagonists, were able to prevent the effect of N-bromosuccinimide, suggesting that variations might exist in the molecular mechanisms implicated in the binding of 5-HT3 ligands to the recognition site on 5-HT3 receptors. Nevertheless, these data support the suggestion that tryptophan residue(s) are probably involved in the binding of agonists and antagonists onto 5-HT3 receptors in NG108-15 cell membranes.  相似文献   

13.
1. The whole-cell patch-clamp technique was used to examine the effects of the class III antidysrhythmic agent, clofilium, on voltage-activated delayed rectifier K+ currents (IKv) in undifferentiated mouse neuroblastoma x rat glioma hybrid (NG 108-15) cells. Ca(2+)-activated K+ currents also seen in these cells were abolished by bath application of 4 mM Co2+. 2. Bath application of clofilium (0.3 to 70 microM) caused dose-dependent, irreversible inhibition of IKv in these cells. Under control conditions, activated currents were sustained during 200 ms depolarizing steps, but in the presence of clofilium, or after its wash-out, currents were reduced in amplitude and showed a time-dependent decay. 3. Clofilium blockade of IKv was voltage-dependent; the degree of current inhibition increased with increasing depolarizations. The transient nature of IKv seen in the presence of clofilium was also more apparent at higher test potentials. 4. The effects of clofilium were use-dependent: when cells were left unstimulated during drug application, and then depolarizations were resumed, several pulses were required for clofilium blockade to reach a steady level. Similar results were obtained post-clofilium, when cells were unstimulated during application and then removal of clofilium, suggesting that although the blocking action of the drug was use-dependent, it bound to the closed, delayed rectifier K+ channel. 5. High concentrations (100 or 300 microM) of sotalol, another class III antidysrhythmic agent, were without discernible effects on IKv in NG 108-15 cells. 6. The effects of clofilium on a neuronal IKv described here, and its possible mechanism of action, are compared with previously reported effects of clofilium on the cardiac IKv.  相似文献   

14.
15.
The potential modulation of opioid receptor signaling by calcium/calmodulin-dependent protein kinase II (CaMKII) has been investigated in NG108-15 cells. Both CaMKII specific inhibitors used, KN62 and KN93, time- and dose-dependently blocked inhibition of cAMP accumulation by [D-Pen2, D-Pen5]enkephalin (DPDPE), with an 50 of about 1.2 μM and 0.8 μM, respectively. In the presence of 1 μM KN62 or KN93, the DPDPE dose-response curve shifted to the right ( 50 from 0.7 to 20 nM for KN62 and from 0.65 to 10 nM for KN93, respectively), and the maximal response was also significantly reduced. KN92, an inactive analogue of KN93, showed no significant impact, while ionomycin, an activator of CaMKII, greatly potentiated the opioid receptor response, suggesting that the effects of KN62, KN93 and ionomycin were likely mediated through CaMKII. In addition, KN62 did not affect ligand binding, receptor/Gi coupling, or basal and forskolin-stimulated adenylyl cyclase activity, suggesting its possible interference in the Gi/adenylyl cyclase interaction. Furthermore, a CaMKII inhibitor potently blocked the functional responses of other Gi-coupled receptors (m4 muscarinic and alpha2 adrenergic receptors) tested, but not that of Gs-coupled receptors (prostaglandin E1 and adenosine receptors). Our results clearly demonstrate that CaMKII modulates the signaling of opioid receptor and other Gi-coupled receptors.  相似文献   

16.
The effects of different calcium-mobilizing agents on cell death were characterized in NG108-15 neuroblastoma x glioma hybrid cells. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) increased the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and caused cell death. Thapsigargin (TG) not only increased the [Ca(2+)](i) and caused cell death but also induced neurite outgrowth via activation of phospholipase A(2) and cytochrome P450 epoxygenase. In contrast, bradykinin increased the [Ca(2+)](i), but had no effect on cell morphology or cell death. Cell death occurred by two different mechanisms, one of which was caspase-3-dependent and the other caspase-3-independent. Caspase-3 activation was Ca(2+)-dependent, whereas neurite outgrowth was Ca(2+)-independent. TG- or FCCP-induced caspase-3 activation occurred at the same time, but the cell death induced by TG was delayed. TG treatment did not enhance the generation of nitric oxide or cAMP or secretion of glial-derived neurotrophic factor or neurotrophin-3, but activated sphingosine kinase. Furthermore, inhibition of sphingosine kinase accelerated TG-induced cell death, and exogenous sphingosine 1-phosphate (S1P) protected cells from FCCP-induced cell death by about 60%. These results indicate that, in these cells, depletion of intracellular nonmitochondrial or mitochondrial Ca(2+) stores causes cell death, that TG activates phospholipase A(2) and sphingosine kinase, and that arachidonic acid induces neurite outgrowth, whereas S1P delays cell death.  相似文献   

17.
According to current concepts, agonists can effect the down-regulation of cell surface receptors, whereas antagonists can cause their up-regulation. We have discovered that the opioid antagonists naltrexone, naloxone, and ICI174864 induce a transient down-regulation of delta-opioid receptors before up-regulation, in NG108-15 cells. The possibility of an apparent loss of sites due to blockade by residual antagonist was ruled out by several lines of evidence. The reduction in delta receptors was time, temperature, and antagonist concentration dependent. This down-regulation could not be induced by either the highly mu-selective opioid antagonist cyclic D-Phe-Cys-Try-D-Trp-Arg-Thr-Pen-Thr-amide or the muscarinic antagonist atropine. In the same neurohybrid cells, the opioid agonist [D-Ala2,D-Leu5]enkephalin (0.1 microM, 60 min) effected a greater down-regulation of delta-opioid receptors. Similar qualitative changes in opioid binding of subcellular fractions were elicited with [D-Ala2,D-Leu5]enkephalin and naltrexone. However, the agonist was 2-fold more effective in reducing the heavy membrane population of receptors and 4-fold more potent in increasing the light membrane sites. Because heavy membranes are enriched in plasma membrane, whereas light membranes contain intracellular sites, these findings indicate that internalization occurs in both instances. Naltrexone and the delta-specific antagonists ICI174864 and naltrindole also diminished specific activities of two lysosomal enzymes, whereas opioid agonist-induced down-regulation was accompanied by an increase in their specific activities. Pretreatment of cell cultures with concanavalin A blocked both down-regulation and alterations in the lysosomal enzyme activities elicited by agonists and antagonists, suggesting that the latter is an opioid receptor-mediated process. The up-regulation of delta-opioid receptors by antagonists appears, then, to entail down-regulation that differs from that of agonists.  相似文献   

18.
In the neuroblastoma X glioma hybrid cell line NG108-15, bradykinin (BK) receptor stimulation induced a rapid and concentration-dependent rise in cytosolic free Ca2+ levels, as measured with the Ca2(+)-sensitive fluorescent dye fura-2. The Ca2+ transient was present in the absence of extracellular Ca2+ and was associated with a concentration-dependent production of inositol phosphates, particularly inositol trisphosphate (InsP3). Pretreatment of intact NG108-15 cells with forskolin or dibutyryl-cAMP plus isobutylmethylxanthine reduced BK-stimulated InsP3 production and the increase in cytosolic free Ca2+. Membranes prepared from forskolin- and [3H]inositol-pretreated NG108-15 cells also showed a diminished production of InsP3 elicited by guanosine 5'-[gamma-thio]triphosphate, NaF, or BK plus GTP. On the other hand, the Ca2+ sensitivity of membrane-associated phosphoinositide-specific phospholipase C (PI-PLC) was unaffected by forskolin pretreatment of intact NG108-15 cells. Collectively, these results suggest that A-kinase may inhibit receptor-mediated and postreceptor stimulation of PI-PLC in neuron-like cells, perhaps by impairing the coupling between a guanine nucleotide-binding protein and PI-PLC.  相似文献   

19.
The action of a novel 5-HT3 receptor antagonist, AS-5370, has been studied on two electrophysiological models for 5-HT3 receptors: whole-cell patch-clamp recordings from mouse neuroblastoma-rat glioma (NG108-15) cells and grease-gap recordings from rat isolated vagus nerve. The 5-hydroxytryptamine (5-HT)-induced fast inward current of voltage-clamped NG108-15 cells was antagonized by 1 nM AS-5370 in an insurmountable manner. On the rat vagus, AS-5370 reduced the maximum depolarizing response to 5-HT in a concentration-dependent manner. The IC50 for AS-5370 on the rat vagus was 0.3-1.0 nM. The EC50 for 5-HT on the rat vagus was not appreciably affected by AS-5370. On the rat vagus, the (R) enantiomer of AS-5370 was about 30 times more potent than the (S) enantiomer. The antagonist action of AS-5370 on these two cell types was compared with that of (+)-tubocurarine. Unlike tubocurarine, the effect of AS-5370 on NG108-15 cells was not readily reversed during wash. On the rat vagus, tubocurarine antagonized in a competitive manner with an IC50 of 0.3-1.0 microM (pKb = 7.2). It is concluded that AS-5370 is a potent 5-HT3 receptor antagonist on both NG108-15 cells and the rat vagus, but it does not act in a competitive manner.  相似文献   

20.
The molecular mechanism of opiate receptor down-regulation and desensitization was investigated by studying the effects of cycloheximide and tunicamycin on opiate receptor activities in neuroblastoma X glioma NG108-15 hybrid cells. Cycloheximide inhibited [35S]methionine and [3H]-glucosamine incorporation by hybrid cells, while tunicamycin inhibited [3H]glucosamine incorporation only. Exposing hybrid cells to these two agents did not alter the viability of the cell. Treatment of NG108-15 cells with cycloheximide or tunicamycin produced a decrease in [3H]diprenorphine binding dependent on both time and concentrations of inhibitors, with no measurable modification in the ability of etorphine to regulate intracellular cyclic AMP production. Cycloheximide attenuated [3H]-diprenorphine binding by decreasing both the number of sites, Bmax, and the affinity of the receptor, Kd. Tunicamycin treatment produced a decrease in Bmax with no apparent alteration in Kd values. Cycloheximide and tunicamycin did not potentiate the rate or magnitude of etorphine-induced down-regulation or desensitization of opiate receptor in NG108-15 cells. Furthermore, there was an apparent antagonism in cycloheximide action on receptor down-regulation. The reappearance of opiate binding sites after agonist removal was affected by these two inhibitors. Cycloheximide and tunicamycin eliminated the increase in [3H]diprenorphine binding in the chronic etorphine-treated cells after agonist removal. These two inhibitors did not alter the resensitization of hybrid cells to etorphine. Thus, the site of opiate agonist action to induce receptor down-regulation and desensitization is not at the site of protein synthesis or protein glycosylation. These data substantiate previously reported observations that receptor down-regulation and receptor desensitization are two different cellular adaptation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号