首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
We have investigated the potential effect of estrogens in the control of GH secretion in rat anterior pituitary cells in primary culture. We have found that a 72-h preincubation with 17 beta-estradiol (E2) caused an approximately 2- to 3-fold stimulation of basal and GH-releasing factor (GRF)-induced GH release as well as cellular GH content at EC50 values of 44, 35, and 15 pM, respectively. Estrone and estriol also increased GH release at respective EC50 values of 100 and 250 pM. The stimulatory effects of these steroids on GH release and cellular GH content were competitively blocked by simultaneous incubation with the antiestrogen LY156758. In contrast to thyroid and glucocorticoid hormones, a 72-h pretreatment with E2 failed to potentiate GRF-induced cAMP accumulation or enhance the sensitivity of the GH response to GRF. However, E2 increased the stimulatory effect of submaximal concentrations of dexamethasone on spontaneous and GRF-induced GH release as well as on total GH, but did not further increase the effect of maximal dexamethasone concentrations. As determined by a 60-min pulse labeling with [35S]methionine performed after a 72-h preincubation with E2, GH and PRL synthesis were increased by about 50% above control values (P less than 0.005). The present data clearly indicate for the first time that E2, at physiological concentrations, exerts a stimulatory effect on spontaneous and GRF-induced GH release as well as on cellular GH content, probably resulting, at least in part, from stimulation of GH synthesis.  相似文献   

3.
Vasoactive intestinal peptide (VIP) stimulates both adenosine 3',5'-cyclic monophosphate (cAMP) accumulation and prolactin release in normal rat pituitary cells in culture. cAMP accumulation is significant (P less than 0.01) at VIP concentrations as low as 1 nM and reaches a maximum with 0.1 microM. Addition of dexamethasone as early as 15 min before VIP inhibits VIP stimulation of both cAMP production and PRL secretion. The rapid inhibition is dose-dependent: it appears at doses as low as 0.01 pM and is complete at 1 pM dexamethasone. Increasing concentrations of dexamethasone induce a noncompetitive type of inhibition, as shown by the decrease in Vmax with no change in the apparent Km for VIP. Cycloheximide (1 mM) counteracts the inhibitory effect of dexamethasone on VIP-induced cAMP production, which suggests the involvement of a rapid protein synthesis mechanism. Ru-26988, a specific glucocorticoid devoid of any mineralocorticoid activity and which does not bind to intracellular transcortin-like component, also produces an inhibition of VIP-induced cAMP accumulation. Corticosterone also inhibits VIP-induced cAMP production but at concentrations higher than those of dexamethasone. In contrast, aldosterone, progesterone, estradiol, and testosterone have no effect. These results demonstrate that, in normal rat pituitary cells in culture, glucocorticoids at physiological concentrations rapidly inhibit the cAMP production and prolactin release induced by VIP by acting through specific glucocorticoid receptors.  相似文献   

4.
W Robberecht  C Denef 《Endocrinology》1988,122(4):1496-1504
Rat pituitary cell aggregates cultured in serum-free chemically defined medium, single cells, and hemipituitaries were used in a perifusion system to study the influence of angiotensin II (AII) on GH release. In aggregates the peptide displayed both stimulatory and inhibitory effects on GH release, depending on the hormonal conditions of the culture medium and the age of the animal. When cultured in the absence of glucocorticoid, a modest but statistically significant stimulation was seen in aggregates from immature as well as adult animals. In aggregates from 5-day-old animals, dexamethasone (DEX) strongly enhanced the GH-releasing activity of AII in a dose-dependent way; in aggregates from 14- and 25-day-old rats, the same pattern was found, although the stimulatory action was weaker than the effect in 5-day-old rats. In aggregates from adult animals, the glucocorticoid established an inhibitory effect of AII on GH release, an effect seen with both low and high concentrations of DEX. These age- and DEX-dependent effects were not found for AII stimulation of PRL release. In the presence of DEX, AII also inhibited GRF-induced GH release in aggregates from adult animals, while it was synergistic with GRF in aggregates from developing animals. The effects of AII on GH release disappeared when aggregates were redispersed into single cells. However, in these single cell preparations AII strongly stimulated PRL release. In hemipituitaries from 1-, 5-, and 14-day-old animals, AII also stimulated GH release, but no effect was seen in hemipituitaries from 25-day-old and adult animals. These data indicate that AII has dual effects on GH release depending on the developmental stage of the animal and the hormonal environment. Furthermore, since no effect of AII was seen after redispersion of aggregates into single cells, both stimulatory and inhibitory effects seem to be based on an intercellular signaling system.  相似文献   

5.
6.
Accumulating evidence suggests that vasoactive intestinal peptide (VIP) may be a physiological PRL-releasing factor. In the present study, we examined a possible involvement of VIP in the neonatal androgenization (NA)-induced hyperprolactinemia. Twenty-four hours after birth, newborn female rats were injected sc with 1,000 micrograms of testosterone (NA) or with oil vehicle only (control). Both groups were sacrificed at 8 weeks of age. Compared to controls, NA rats showed significantly higher plasma PRL levels (7.3 fold), anterior pituitary (AP) PRL content (2.1 fold) and plasma estradiol levels (2.1 fold). AP VIP content was extremely higher (61 fold) in NA rats than in controls. However, NA did not affect VIP content in the suprachiasmatic nucleus, paraventricular nucleus or median eminence. These results suggest that the NA-induced hyperprolactinemia may be mediated, at least in part, by paracrine and/or autocrine effects of the increased AP VIP on PRL secretion. However, since the potentiation by NA of the AP VIP content was extremely marked compared to those of the other parameters, the possibility was also raised that the increased AP VIP may be involved in other endocrine and/or nonendocrine events occurring in the AP.  相似文献   

7.
The activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by vasoactive intestinal peptide (VIP) was used as a model to investigate the molecular mechanisms triggered by the occupancy of dopamine recognition sites in rat anterior pituitary. Dopamine failed to change the basal enzyme activity, but it inhibited the stimulation of adenylate cyclase elicited by VIP. Apomorphine, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, and 2-bromo-alpha-ergocryptine mimicked the effect of dopamine, whereas (-)-sulpiride and and classical neuroleptics antagonized it. Dopamine failed to modulate the activation of pituitary adenylate cyclase by prostaglandin E1, which does not increase prolactin secretion. From these results we infer that stimulation of D-2 (dopamine) receptors may affect pituitary secretion by inhibiting the activation of anterior pituitary adenylate cyclase by VIP or other secretagogues.  相似文献   

8.
M Baes  C Denef 《Endocrinology》1987,120(1):280-290
Epinephrine (Epi) evoked a strong concentration-dependent (1-1000 nM) rise of GH release from perifused rat anterior pituitary cells cultured as aggregates in a serum-free defined culture medium. Dexamethasone (Dex), added to the culture medium, enhanced the secretory response to Epi. Aggregates of pituitary cells separated by gradient sedimentation at unit gravity widely differed in responsiveness to Epi, provided Dex was added to the culture medium. The poorest response was seen in aggregates composed of a population highly enriched in large somatotrophs from adult male rats even when cultured in the presence of 80 nM Dex. However, when these large somatotrophs were coaggregated with various somatotroph-poor cell populations, all of which were enriched in lactotrophs, the GH response to Epi increased by a factor of 3-4. The latter populations also enhanced GH secretion stimulated by vasoactive intestinal peptide (1-10 nM). In contrast, the GH response to rat GH-releasing factor (GRF, 0.01-0.1 nM) was not significantly potentiated in the coaggregates. The facilitation of the GH response to Epi was not seen when Dex was omitted from the culture medium. All of the lactotroph-enriched populations enhancing the response to Epi also contained corticotrophs, but none were highly enriched in the latter cell type. The magnitude of the Epi effect on GH release was not affected when the large somatotrophs were coaggregated with enriched populations of gonadotrophs, thyrotrophs, or folliculostellate cells. However, coaggregation with GH3 tumor cells provoked some stimulation. The present data suggest that GH release stimulated by Epi is modulated by facilitatory interactions of somatotrophs with other cells, the latter being most likely lactotrophs, although participation of corticotrophs in this interactions cannot be unequivocally excluded. Facilitatory interactions also modulate GH secretion in response to vasoactive intestinal peptide, but the GH response to GRF weakly, if at all.  相似文献   

9.
Cachectin (tumor necrosis factor) is a powerful macrophage hormone released during infection, which circulates in blood to produce diverse effects in the organism. We examined the effect of cachectin on release of anterior pituitary hormones from either hemipituitaries or dispersed pituitary cells incubated in vitro. The action of cachectin on dispersed cells was demonstrable only after 2 hr of incubation. With this incubation time, the protein produced a dose-related stimulation of release of adrenocorticotropin (ACTH), growth hormone (GH), and thyrotropin (TSH), but not of prolactin (Prl), from both hemipituitaries and dispersed cells. The doses required for stimulation were low in the case of hemipituitaries, usually of the order of 10(-12) M, whereas they were higher by one or two orders of magnitude with the dispersed pituitary cells. This may be related either to loss of receptors for the protein during the dispersion procedure or to the fact that in the hemipituitary system cell interactions are facilitated because the cells are close to each other. In the dispersed cell system cachectin evoked a dose-related decrease in cyclic AMP content. Incubation with somatostatin lowered the cyclic AMP content of the cells and depressed GH output without altering output of TSH or Prl. When somatostatin and cachectin were incubated together with the cells, the suppression of cyclic AMP production was abolished; TSH and Prl release were stimulated, but the action of cachectin to stimulate GH release was blocked. The stimulation of Prl release by cachectin in the presence of somatostatin may be related to the elevation of cyclic AMP, a known stimulator of Prl release. The cyclooxygenase inhibitor indomethacin nearly completely blocked the stimulatory effect of cachectin on release of GH and TSH from dispersed pituitary cells but had only a slight and nonsignificant attenuating effect on its ACTH-releasing action. These results suggest that at least part of the stimulatory action of the peptide on pituitary hormone release is brought about by prostaglandins. The failure of indomethacin to block the release of ACTH induced by cachectin suggests that other mechanisms may be involved in the release of ACTH induced by this peptide. Since the concentrations of cachectin required to stimulate pituitary hormone release are similar to those that are encountered in plasma during infection, it is likely that this direct pituitary action has pathophysiological significance.  相似文献   

10.
Bradykinin (BK), a nonapeptide, originally discovered in blood, is also present in neurons and fibers of the hypothalamus. We tested the putative releasing factor properties of BK on prolactin (PRL) release from anterior pituitary cells in vitro. BK stimulated the release of PRL in a dose-dependent manner, the threshold concentration being in the range. 0.1-1.0 nM. The release of PRL induced by BK at 1 nM concentration was about 2-fold, delayed and sustained over many minutes. Higher concentrations of BK stimulated PRL release in two phases. The shape of the BK-induced PRL release was superficially similar to that induced by thyrotropin-releasing hormone (TRH). 10 nM BK and 10 nM TRH induced about a 4-fold increase in PRL release within 5 min, followed by a gradual recovery to basal secretion. These results indicate that this peptide can act directly at the anterior pituitary gland to release PRL. Phorbol ester also promoted PRL release over the range of 1-10 nM, but the time course of the release was somewhat different.  相似文献   

11.
Reciprocal interactions of somatostatin (SRIF) and vasoactive intestinal peptide (VIP) or TRH on in vitro PRL and GH release from male rats hemipituitaries were investigated. SRIF did not modify basal PRL release, but TRH- or VIP-induced release was inhibited by SRIF in a dose-dependent manner [effective concentration-fifty (EC50) = 1.7 +/- 0.9 nM for SRIF inhibition of TRH stimulation and EC50 = 0.8 +/- 0.5 nM for SRIF inhibition of VIP stimulation]. VIP and TRH did not affect GH release by themselves, but reduced the inhibition of GH secretion elicited by SRIF (EC50 = 7.6 +/- 3.4 nM for TRH blockade of SRIF inhibition and EC50 = 4.6 +/- 3.1 nM for VIP blockade of SRIF inhibition). Secretin, a partial structural analog of VIP, also blocked SRIF-induced inhibition of GH and stimulated PRL release. Secretin stimulation of PRL release was also prevented by SRIF. [D-Trp8,D-Cys14]SRIF, a potent analog of SRIF, antagonized VIP stimulation of PRL secretion with the same apparent affinity as the native peptide. The maximal stimulation, but not the apparent affinity of VIP action on prolactin release was reduced by SRIF, suggesting that the interaction is of a noncompetitive nature. This conclusion as further substantiated by the observation that neither TRH nor VIP were able to displace specific 125I-labeled [Tyr1] SRIF high affinity binding to pituitary membranes. The three peptides tested thus appear to exhibit reciprocal interactions mediated by independent receptor sites on GH as well as on PRL-producing cells.  相似文献   

12.
A 2.5-fold stimulation of cyclic AMP cellular content is measured 60 sec after addition of 100 nM synthetic ovine corticotropin-releasing factor (C-RF; corticoliberin) to rat anterior pituitary cells in culture. A maximal response of cyclic AMP content at 400% above control is observed between 2 and 30 min after addition of the peptide, whereas an 8-fold stimulation of cyclic AMP released into the incubation medium is measured between 10 and 180 min. A linear 7-fold increase of corticotropin release is observed for up to 3 hr. Preincubation from 18 hr with the potent glucocorticoid dexamethasone has no effect on C-RF-induced cyclic AMP accumulation. The same treatment with dexamethasone causes an 80% inhibition of corticotropin release induced by both C-RF and the cyclic AMP derivative 8-bromoadenosine 3',5'-cyclic monophosphate. The present data show that ovine C-RF is a potent stimulator of cyclic AMP accumulation in rat anterior pituitary cells and that the process is insensitive to the action of dexamethasone. The marked inhibition by dexamethasone of corticotropin secretion induced by a cyclic AMP derivative indicates that glucocorticoids exert their potent inhibitory effects on corticotropin secretion at a step distant to cyclic AMP formation.  相似文献   

13.
T Aizawa  P M Hinkle 《Endocrinology》1985,116(3):909-919
The sequence of PRL and GH release from GH4C1 cells was studied in perifusion and static culture systems. The secretory pattern elicited by TRH differed from those caused by depolarizing concentrations of KCl (Ca2+-initiated secretion), vasoactive intestinal peptide (VIP), 8-bromo-cAMP, and forskolin (cAMP-mediated secretion), and 12-O-tetradecanoylphorbol-13-acetate (TPA) (protein kinase C activation). TRH, K+, VIP, and TPA all caused secretion within 1 min in the perifusion system but the peak response to TRH and depolarization occurred earlier than the peak responses to TPA and VIP. PRL and GH release in response to a pulsatile application of TRH (0.4-min pulse every 5 min for 25 min) did not decline with a low dose, indicating that acute desensitization does not occur, but did decrease with a high concentration. When cells in the perifusion system were subjected to continuous stimulation, TRH caused a biphasic response with a 2- to 3-min period of high secretion followed by a second phase in which GH and PRL secretion were 60-70% the rates in the first phase. KCl caused predominantly first-phase secretion, and TPA caused a biphasic secretory pattern with a delay in its peak of action. VIP caused a modest but prolonged response whether administered in a pulsatile or sustained manner. When GH-cells were exposed to 100 nM TRH for 2 days, [3H] [N3-methyl-His2]TRH binding was decreased (down-regulation), intracellular PRL was increased (170% of control), and intracellular GH was decreased (65% of control). In these down-regulated cells, baseline PRL and GH secretion were changed in proportion to the relative intracellular hormone content. The responsiveness to TRH, KCl, and TPA during the initial 10-min period (first phase) was reduced; however, the responsiveness to these substances in the subsequent 50-min period (second phase) was unchanged. The ED50 for TRH stimulation of hormone release was increased 2- to 4-fold in down-regulated cells, but the dose-response curves for other secretagogues were not shifted. These data suggest that the initial burst of hormone release caused by TRH is mediated by Ca2+, and that prolonged exposure to TRH causes homologous desensitization.  相似文献   

14.
In hypophysectomized rats on day 1 of dioestrus, as well as on day 4 of pseudopregnancy, alpha-MSH (continuous infusion of 1 microgram/h) failed to maintain serum concentrations of progesterone. On the other hand, alpha-MSH did not modify the increase induced by ACTH (1 microgram/microliter as an infusion plus two additional daily injections of 30 micrograms/microliter), prolactin (200 micrograms/0.2 ml at 12-h intervals) or GH (300 micrograms/0.2 ml twice daily) on serum concentrations of progesterone in such rats. However, in intact rats alpha-MSH caused a significant rise in serum concentrations of GH on day 1 and day 2 of dioestrus. Continuous infusion of alpha-MSH produced an increase in serum concentrations of GH at 12.00 and 14.00 h on day 1 of dioestrus and at 07.00 h on day 2. It is therefore suggested that alpha-MSH may exert its effect by facilitating the secretion of GH, which in turn may induce the release of progesterone.  相似文献   

15.
T C Liu  G L Jackson 《Endocrinology》1987,121(5):1589-1595
We studied the effects of protein kinase C (PKC) activators on LH glycosylation and release and the effect of 17 beta-estradiol on PKC activator-induced LH release. Rat anterior pituitary cells were incubated for 4 h with diluent, GnRH, and the PKC activators, phorbol 12-myristate 13-acetate (PMA), L-alpha-1,2-dioctanoyl glycerol (C8), and 1-oleoyl-2-acetyl-glycerol. LH translation and glycosylation were monitored by measuring incorporation of [14C]alanine ([14C]A) and [3H]glucosamine ([3H]GA), respectively, into total (medium + cell) immunoprecipitable LH. Immunoreactive LH (IRLH) was measured by RIA. PMA (10(-9) M) and 1-oleoyl-2-acetyl-glycerol (50-200 microM) had no significant effects. PMA at 10(-7) M elevated (P less than 0.01) medium IRLH, medium and total [3H]GA-LH, and medium but not total [14C]A-LH. PMA at 10(-7) M increased (P less than 0.01) uptake and incorporation of [3H]GA, but not [14C]A, into total pituitary protein. C8 increased both medium IRLH and total [3H]GA-LH (P less than 0.01) without altering total [14C]A-LH. Two hundred micromolar C8 increased medium concentrations of [3H]GA-LH (P less than 0.01) and [14C]A-LH (P less than 0.05). C8 (50-200 microM) had no detectable effects on uptake and incorporation of precursors into protein. GnRH (1 nM) enhanced (P less than 0.01) both medium IRLH and total [3H]GA-LH, but had no effect on total [14C]A-LH. Pretreatment of pituitary cells with 17 beta-estradiol (6 X 10(-10) M) greatly enhanced LH release induced by C8. In conclusion, PMA and C8, like GnRH, stimulated both LH glycosylation and release. These results suggest that PKC may regulate both LH release and glycosylation and may be important in estrogen modulation of LH release.  相似文献   

16.
We examined whether peptide histidine methionine (PHM) induces a paradoxical rise in plasma GH in patients with acromegaly. PHM (100 micrograms) was given as an iv bolus to eight patients with active acromegaly, and plasma GH levels were measured before and at intervals up to 120 min after the injection. For comparison, the effects of TRH (500 micrograms) and vasoactive intestinal peptide (VIP, 100 micrograms), peptides known to paradoxically stimulate GH secretion in acromegalics, were assessed in all of the patients. A paradoxical rise (greater than 50% above the basal) in plasma GH was observed in five patients after both TRH and VIP administrations, although TRH responders were not always VIP responders, nor did VIP responders always respond to TRH. In two patients, the GH response to PHM fulfilled the criteria of a paradoxical increase. Both of these patients were also TRH and VIP responders. These results suggest that PHM may be another hypothalamic hormone capable of paradoxically stimulating GH secretion in at least some acromegalics, although PHM appears to be a less potent stimulator of GH release than TRH and VIP. The pathophysiological significance of this phenomenon is yet to be determined.  相似文献   

17.
We investigated the effects of glucocorticoid on the expression of the vasoactive intestinal peptide (VIP) gene, a neuropeptide and an established prolactin (PRL)-releasing factor, in the rat brain and pituitary. The mRNA and peptide contents of VIP in the cerebral cortex, hypothalamus and anterior pituitary of male Sprague-Dawley rats were quantitated 4 weeks after adrenalectomy or sham-operation. Following adrenalectomy, VIP mRNA content increased in the anterior pituitary but showed no significant change in the cerebral cortex and hypothalamus. Dexamethasone treatment for 10 days abolished the effect of adrenalectomy and decreased significantly pituitary VIP mRNA content in sham-operated rats. In the cerebral cortex, however, dexamethasone treatment resulted in an enhancement in VIP mRNA levels in both sham-operated and adrenalectomized animals. Hypothalamic VIP mRNA content remained unchanged. These changes in VIP mRNA levels were accompanied by parallel changes in VIP concentrations in the tissues studied, suggesting that glucocorticoid regulates the synthesis of VIP in the cerebral cortex and anterior pituitary. On the other hand, serum PRL level increased after adrenalectomy but became suppressed following dexamethasone administration, in parallel with changes in pituitary VIP synthesis. These findings suggest that the effect of glucocorticoid on PRL secretion may be mediated, at least in part, via changes in VIP synthesis and secretion. We conclude that glucocorticoid regulates the expression of VIP in the rat brain, resulting in divergent changes in the cerebral cortex and pituitary. Changes in VIP synthesis and secretion may contribute to the disturbances in brain function and PRL secretion in conditions of glucocorticoid excess.  相似文献   

18.
We have shown that pituitary vasoactive intestinal peptide (VIP) mediates the effects of estrogen on lactotrope hyperplasia, angiogenesis and hyperprolactinemia, and reduces the pituitary content of transforming growth factor beta beta1 (TGF-beta1, an inhibitor of lactotrope proliferation). Dopamine agonists reverse lactotrope hyperplasia and hyperprolactinemia and also reduce the pituitary VIP content in hyperestrogenized rats. To elucidate the interaction of bromocriptine (BC) and pituitary VIP, a VIP receptor antagonist (VA), BC, or both drugs were administered for 5 days to F344 rats treated with diethylstilbestrol (DES). Both BC and VA similarly blocked the effects of DES on pituitary weight and pituitary content of prolactin (PRL), proliferating cell nuclear antigen, and vascular endothelial growth factor, without evidence of synergism. The estrogen effect on pituitary TGF-beta1 was completely inhibited by VA, but only partially by BC. On the contrary, serum PRL was close to the normal levels in the BC group 2 h after the first dose, while VA only reduced serum PRL after 5 days. DES increased VIP and VIP mRNA levels specifically at the pituitary, this effect being partially blocked by BC. These data suggest that the dopamine agonists inhibit lactotrope proliferation and angiogenesis by blocking the autocrine/paracrine action of VIP. On the other hand, the dopamine agonists inhibit the estrogen-induced hyperprolactinemia by acting through different pathways than those implicated in the proliferative process.  相似文献   

19.
Vasopressin and 41-residue corticotrophin-releasing factor (CRF-41) are physiological mediators of the hypothalamic control of pituitary ACTH secretion, whilst adrenocortical glucocorticoids are the major inhibitory factors regulating ACTH output. In the present study it was investigated in vitro whether the characteristics of early glucocorticoid inhibition of stimulated ACTH secretion would differ depending on the nature of the stimulus and the temporal relationship between secretagogue and steroid. The experiments were carried out using perifused segments of rat adenohypophysis obtained from randomly cycling female rats. Repeated pulses (5 min) of CRF-41 or vasopressin were given at 1-h intervals for up to 7 h. The net release of ACTH became stable after the second secretagogue pulse. Administration of 0.1 mumol corticosterone/l 30 min before and during a 5-min pulse of 10 nmol CRF-41/l inhibited CRF-41-stimulated ACTH release to 60% of control. Stimulated hormone release remained suppressed at 90 min after the start of the corticosterone infusion and returned to control levels by 150 min. If corticosterone treatment (35 min total exposure) was started simultaneously with the CRF-41 pulse, no inhibitory effect of the steroid was observed at any subsequent time-point examined (60, 90, 120 and 150 min). In contrast, vasopressin-stimulated ACTH release was inhibited by approximately 50% when corticosterone was applied before, or simultaneously with, a 5-min pulse of 10 nmol vasopressin/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Protracted critical illness is marked by protein wasting resistant to feeding, by accumulation of fat stores, and by suppressed pulsatile release of GH and TSH. We previously showed that the latter can be reactivated by brief infusion of GH-releasing peptide (GHRP-2) and TRH. Here, we studied combined GHRP-2 and TRH infusion for 5 days, which allowed a limited evaluation of the metabolic effectiveness of this novel trophic endocrine strategy. Fourteen patients (mean +/- SD age, 68 +/- 11 yr), critically ill for 40 +/- 28 days, were compared to a matched group of community-living control subjects at baseline and subsequently received 5 days of placebo and 5 days of GHRP-2 plus TRH (1 + 1 microg/kg x h) infusion in random order. At baseline, impaired anabolism, as indicated by biochemical markers (osteocalcin and leptin), was linked to hyposomatotropism [reduced pulsatile GH secretion, as determined by deconvolution analysis, and low GH-dependent insulin-like growth factor and binding protein (IGFBP) levels]. Biochemical markers of accelerated catabolism (increased protein degradation and bone resorption) were related to tertiary hypothyroidism and the serum concentration of IGFBP-1, but not to hyposomatotropism. Metabolic markers were independent of elevated serum cortisol. After 5 days of GHRP-2 plus TRH infusion, osteocalcin concentrations increased 19% vs. -6% with placebo, and leptin had rose 32% vs. -15% with placebo. These anabolic effects were linked to increased IGF-I and GH-dependent IGFBP, which reached near-normal levels from day 2 onward. In addition, protein degradation was reduced, as indicated by a drop in the urea/creatinine ratio, an effect that was related to the correction of tertiary hypothyroidism, with near-normal thyroid hormone levels reached and maintained from day 2 onward. Concomitantly, a spontaneous tendency of IGFBP-1 to rise and of insulin to decrease was reversed. Cortisol concentrations were not detectably altered. In conclusion, 5-day infusion of GHRP-2 plus TRH in protracted critical illness reactivates blunted GH and TSH secretion, with preserved pulsatility, peripheral responsiveness, and feedback inhibition and without affecting serum cortisol, and induces a shift toward anabolic metabolism. This provides the first evidence of the metabolic effectiveness of short term GHRP-2 plus TRH agonism in this particular wasting condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号