首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian sex chromosomes are thought to be descended from a homologous pair of autosomes: a testis-determining allele which defined the Y chromosome arose, recombination between the nascent X and Y chromosomes became restricted and the Y chromosome gradually lost its non-essential genetic functions. This model was originally inferred from the occurrence of few Y-linked genetic traits, pairing of the X and Y chromosomes during male meiosis and, more recently, the existence of X- Y homologous genes. The comparative analysis of such genes is a means by which the validity of this model can be evaluated. One well-studied example of an X-Y homologous gene is the ubiquitin activating enzyme gene ( UBE1 ), which is X-linked with a distinct Y-linked gene in many eutherian ('placental') and metatherian (marsupial) mammals. Nonetheless, no UBE1 homologue has yet been detected on the human Y chromosome. Here we describe a more extensive study of UBE1 homologues in primates and a prototherian mammal, the platypus. Our findings indicate that UBE1 lies within the X-Y pairing segment of the platypus but is absent from the human Y chromosome, having been lost from the Y chromosome during evolution of the primate lineage. Thus UBE1 illustrates the key steps of 'autosomal to X-specific' evolution of genes on the sex chromosomes.   相似文献   

2.
All therian mammals (eutherians and marsupials) have an XX female/XY male sex chromosome system or some variant of it. The X and Y evolved from a homologous pair of autosomes over the 166 million years since therian mammals diverged from monotremes. Comparing the sex chromosomes of eutherians and marsupials defined an ancient X conserved region that is shared between species of these mammalian clades. However, the eutherian X (and the Y) was augmented by a recent addition (XAR) that is autosomal in marsupials. XAR is part of the X in primates, rodents, and artiodactyls (which belong to the eutherian clade Boreoeutheria), but it is uncertain whether XAR is part of the X chromosome in more distantly related eutherian mammals. Here we report on the gene content and order on the X of the elephant (Loxodonta africana)—a representative of Afrotheria, a basal endemic clade of African mammals—and compare these findings to those of other documented eutherian species. A total of 17 genes were mapped to the elephant X chromosome. Our results support the hypothesis that the eutherian X and Y chromosomes were augmented by the addition of autosomal material prior to eutherian radiation. Not only does the elephant X bear the same suite of genes as other eutherian X chromosomes, but gene order appears to have been maintained across 105 million years of evolution, perhaps reflecting strong constraints posed by the eutherian X inactivation system.  相似文献   

3.
The freshwater pufferfish Tetraodon nigroviridis (TNI) has become highly attractive as a compact reference vertebrate genome for gene finding and validation. We have mapped genes, which are more or less evenly spaced on the human chromosomes 9 and X, on Tetraodon chromosomes using fluorescence in situ hybridization (FISH), to establish syntenic relationships between Tetraodon and other key vertebrate genomes. PufferFISH revealed that the human X is an orthologous mosaic of three Tetraodon chromosomes. More than 350 million years ago, an ancestral vertebrate autosome shared orthologous Xp and Xq genes with Tetraodon chromosomes 1 and 7. The shuffled order of Xp and Xq orthologs on their syntenic Tetraodon chromosomes can be explained by the prevalence of evolutionary inversions. The Tetraodon 2 orthologous genes are clustered in human Xp11 and represent a recent addition to the eutherian X sex chromosome. The human chromosome 9 and the avian Z sex chromosome show a much lower degree of synteny conservation in the pufferfish than the human X chromosome. We propose that a special selection process during vertebrate evolution has shaped a highly conserved array(s) of X-linked genes long before the X was used as a mammalian sex chromosome and many X chromosomal genes were recruited for reproduction and/or the development of cognitive abilities. [Sequence data reported in this paper have been deposited in GenBank and assigned the following accession no: AJ308098.]  相似文献   

4.
SINE-R elements are a class of retroposon derived from the human endogenous retrovirus HERV-K that has been active in hominoid evolution and may include some members that are Homo sapiens specific. Both SINE-R elements and the HERV-K class of element have potential relevance to recent genome change. Here we report on sequences in the SINE-R class that can be detected on human chromosomes 7 and 17 and compare them with sequences that we have previously reported on the X chromosome and in hominoid primates. The retroposons on chromosomes 7 and 17 showed a high degree of sequence homology (88-96%) with other human retroposons (SINE-R.C2, 11, 14, 19, and HS307/HS408). Phylogenetic analysis using the neighbour-joining method revealed that SINE-R-type retroposons on chromosomes 7 and 17 were inter-related with those of hominoid primates, suggesting that various sub-classes of these retroposons have been evolving independently during hominoid evolution. One element (17-11) on chromosome 17 shares one hundred per cent identity with a 7-11 element on chromosome 7 which suggests either recent transposition or a chromosomal translocation. Thus further investigation of the chromosomal locations of SINE-R elements that together with the HERV-K LTR sequence from which they are derived have the capacity to influence the function of neighbouring cellular genes may be expected to clarify the potential role of these elements in recent hominoid evolution.  相似文献   

5.
Zhang W  Wang X  Yu Q  Ming R  Jiang J 《Genome research》2008,18(12):1938-1943
Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2–3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans ~13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution.  相似文献   

6.
Comparative gene mapping of human X-borne genes in marsupials defined an ancient conserved region and a recently added region of the eutherian X, and the separate evolutionary origins of these regions was confirmed by their locations on chicken chromosomes 4p and 1q, respectively. However, two groups of genes, from the pericentric region of the short arm of the human X (at Xp11) and a large group of genes from human Xq28, were thought to be part of a third evolutionary block, being located in a single region in fish, but mapping to chicken chromosomes other than 4p and 1q. We tested this hypothesis by comparative mapping of genes in these regions. Our gene mapping results show that human Xp11 genes are located on the marsupial X chromosome and platypus chromosome 6, indicating that the Xp11 region was part of original therian X chromosome. We investigated the evolutionary origin of genes from human Xp11 and Xq28, finding that chicken paralogs of human Xp11 and Xq28 genes had been misidentified as orthologs, and their true orthologs are represented in the chicken EST database, but not in the current chicken genome assembly. This completely undermines the evidence supporting a separate evolutionary origin for this region of the human X chromosome, and we conclude, instead, that it was part of the ancient autosome, which became the conserved region of the therian X chromosome 166 million years ago.  相似文献   

7.
Among the medaka fishes of the genus Oryzias, most species have homomorphic sex chromosomes, while some species, such as Oryzias hubbsi and Oryzias javanicus, have heteromorphic ZW sex chromosomes. In this study, a novel family of repetitive sequence was molecularly cloned from O. hubbsi and characterized by chromosome in situ and filter hybridization, respectively. This repetitive element, which we designated as a BstNI family element, localized at heterochromatin regions on the W chromosome, as well as on two pairs of autosomes. Homologous sequences to this element were found only in O. javanicus, which is a sister species of O. hubbsi, suggesting that this repeated element originated in the common ancestor of these two species. However, the intensity of the hybridization signals was lower in O. javanicus than in O. hubbsi, and the chromosomal location of this element in O. javanicus was confined to heterochromatin regions on one pair of autosomes. Thus, we hypothesize that this repetitive element was extensively amplified in the O. hubbsi lineage, especially on its W chromosome, after the separation of the O. javanicus lineage. In addition, we also found the W chromosomal location of the 18S–28S ribosomal RNA genes in both O. hubbsi and O. javanicus. Our previous studies showed no linkage homology of the sex chromosomes in these species, indicating that the RNA genes were shared between W chromosomes of different origins. This situation may be explained by a translocation of the sex-determining region with the ribosomal RNA genes in either species or an independent accumulation of the RNA genes as a convergent process during W chromosome degeneration.  相似文献   

8.
9.
To search for human X-chromosome-specific probes useful for molecular mapping, we studied recombinant clones isolated from a human cDNA library. DNA preparations from 150 randomly selected clones were labeled and annealed to XY and 4XY human DNA, and to DNA from a human-mouse hybrid cell line that had retained only the human X-chromosome (A9/HRBC2). cDNA clones sharing homology with DNA from the X chromosome annealed to A9/HRBC2-DNA and hybridized more intensely to 4XY DNA than to XY DNA. Eleven such clones were identified. Of these, three hybridized only to X chromosomal DNA while the rest also annealed to DNA from one or more autosomes. Chromosomal assignment of the autosomal DNA fragments showed that, in addition to hybridization to X chromosomal DNA, four of the clones hybridized to DNA sequences from chromosome 2 and two clones to chromosome 7. Subregional mapping of the relevant X chromosomal DNA fragments indicated that one clone is homologous to DNA sequences located at Xp21-Xp22, whereas the others are located in the telomeric region of the long arm. The cDNA clones were used to search for restriction fragment length polymorphisms. Several restriction-site polymorphisms were detected. Some corresponded to variants of X chromosomal DNA sequences while others were from autosomes such as chromosomes 2 and 7.  相似文献   

10.
Recombinants containing human repetitive DNA sequences were identified by dot hybridization and classified with respect to presence on the X chromosome and homology to mouse DNA. Using genomic probes that differ in number of X chromosomes, we observed extensive homology between human autosomal and X sequences. Hybridization to genomic probes that differ in species of origin indicate that these reiterated sequences have diverged between mouse and man. Eleven recombinants, each containing a different reiterated sequence(s), were hybridized in situ to metaphase chromosomes of mouse and man. These studies indicate that reiterated DNA which is homologous to the human X chromosome is more similar to DNA of human autosomes than to any murine chromosome. Therefore, it seems that reiterated DNA sequences on the human X chromosome have diverged as much during mammalian evolution as sequences on human autosomes. Moreover, the extensive modification of the original mammalian X has not interferred with the X inactivation process.  相似文献   

11.
There are regional variations of sex chromosome morphologies in the Japanese wrinkled frog, Rana rugosa (2n = 26): heterogametic ZZ/ZW-type and XX/XY-type sex chromosomes, and two different types of homomorphic sex chromosomes. To search for homology between the ZW and XY sex chromosomes and the chromosome rearrangements that have occurred during sex chromosomal differentiation in R. rugosa, we performed chromosome mapping of sexual differentiation genes for R. rugosa by FISH. Three genes, AR, SF-1/Ad4BP and Sox3, were localized to both the ZW and XY chromosomes, and their locations were all different between the Z and W and between the X and Y. AR and SF-1/Ad4BP were located on the short arms of the W and X and the long arms of Z and Y, and Sox3 was mapped to the different locations on the long arms between the Z and W and between the X and Y, probably as a result of multiple rearrangements that occurred during the process of sex chromosome differentiation. However, the chromosomal locations of three genes were almost consistent between the Z and Y and between the W and X, indicating that the Z and Y chromosomes and the W and X chromosomes were respectively derived from the same origins. Dmrt1, which is located on avian sex chromosomes, was localized to autosomes in R. rugosa with both the ZW and XY sex chromosomes, suggesting that Dmrt1 might not be related to sex determination in this species.  相似文献   

12.
A distinctive feature of the avian genome is the large heterogeneity in the size of chromosomes, which are usually classified into a small number of macrochromosomes and numerous microchromosomes. These chromosome classes show characteristic differences in a number of interrelated features that could potentially affect the rate of sequence evolution, such as GC content, gene density, and recombination rate. We studied the effects of these factors by analyzing patterns of nucleotide substitution in two sets of chicken-turkey sequence alignments. First, in a set of 67 orthologous introns, divergence was significantly higher in microchromosomes (chromosomes 11-38; 11.7% divergence) than in both macrochromosomes (chromosomes 1-5; 9.9% divergence; P = 0.016) and intermediate-sized chromosomes (chromosomes 6-10; 9.5% divergence; P = 0.026). At least part of this difference was due to the higher incidence of CpG sites on microchromosomes. Second, using 155 orthologous coding sequences we noted a similar pattern, in which synonymous substitution rates on microchromosomes (13.1%) were significantly higher than were rates on macrochromosomes (10.3%; P = 0.024). Broadly assuming neutrality of introns and synonymous sites, or constraints on such sequences do not differ between chromosomal classes, these observations imply that microchromosomal genes are exposed to more germ line mutations than those on other chromosomes. We also find that dN/dS ratios for genes located on microchromosomes (average, 0.094) are significantly lower than those of macrochromosomes (average, 0.185; P = 0.025), suggesting that the proteins of genes on microchromosomes are under greater evolutionary constraint.  相似文献   

13.
Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to identify a human autosomal locus that controls this replication timing program in cis. We show that Cre/loxP-mediated rearrangements at a discrete locus at 6q16.1 result in delayed replication of the entire chromosome. This locus displays asynchronous replication timing that is coordinated with other mono-allelically expressed genes on chromosome 6. Characterization of this locus revealed mono-allelic expression of a large intergenic non-coding RNA, which we have named asynchronous replication and autosomal RNA on chromosome 6, ASAR6. Finally, disruption of this locus results in the activation of the previously silent alleles of linked mono-allelically expressed genes. We previously found that chromosome rearrangements involving eight different autosomes display delayed replication timing, and that cells containing chromosomes with delayed replication timing have a 30-80-fold increase in the rate at which new gross chromosomal rearrangements occurred. Taken together, these observations indicate that human autosomes contain discrete cis-acting loci that control chromosome-wide replication timing, mono-allelic expression and the stability of entire chromosomes.  相似文献   

14.
Crocodilians have several unique karyotypic features, such as small diploid chromosome numbers (30–42) and the absence of dot-shaped microchromosomes. Of the extant crocodilian species, the Siamese crocodile (Crocodylus siamensis) has no more than 2n = 30, comprising mostly bi-armed chromosomes with large centromeric heterochromatin blocks. To investigate the molecular structures of C-heterochromatin and genomic compartmentalization in the karyotype, characterized by the disappearance of tiny microchromosomes and reduced chromosome number, we performed molecular cloning of centromeric repetitive sequences and chromosome mapping of the 18S-28S rDNA and telomeric (TTAGGG) n sequences. The centromeric heterochromatin was composed mainly of two repetitive sequence families whose characteristics were quite different. Two types of GC-rich CSI-HindIII family sequences, the 305 bp CSI-HindIII-S (G+C content, 61.3%) and 424 bp CSI-HindIII-M (63.1%), were localized to the intensely PI-stained centric regions of all chromosomes, except for chromosome 2 with PI-negative heterochromatin. The 94 bp CSI-DraI (G+C content, 48.9%) was tandem-arrayed satellite DNA and localized to chromosome 2 and four pairs of small-sized chromosomes. The chromosomal size-dependent genomic compartmentalization that is supposedly unique to the Archosauromorpha was probably lost in the crocodilian lineage with the disappearance of microchromosomes followed by the homogenization of centromeric repetitive sequences between chromosomes, except for chromosome 2.  相似文献   

15.
There is a predominant theory for the evolution of the mammalian Y chromosome. This theory hypothesizes that genes for sex determination and male-specific traits, as well as sequences for X-Y meiotic pairing, are conserved on the mammalian Y chromosome across all lineages and that all other Y chromosomal genes or sequences have been or will be lost in each mammalian lineage. There are effects of mouse Y chromosomal genes on behaviors and other traits that are not male specific. Under the predominant theory, these Y chromosomal genes could be the same as the conserved genes for sex determination or malespecific traits, or they could be genes that have been lost from the Y chromosomes of other mammalian lineages and that will eventually be lost from the Y chromosome of the rodent lineage. Recently, the evolution of the primate and rodent Y chromosomes has been studied at the DNA level. These studies are summarized and reviewed in this article. The findings of these studies are not fully consistent with the predominant theory for the evolution of the mammalian Y chromosome. Also, they imply that there are other possibilities for the phylogenetic history of Y chromosomal genes of mice with effects on behavior. These are that Y chromosomal genes with effects on mouse behaviors or other traits could be conserved genes other than those for sex determination or malespecific traits or that they could be novel genes on the Y chromosome of the rodent orMus lineage.  相似文献   

16.
Most avian Z genes are expressed more highly in ZZ males than ZW females, suggesting that chromosome-wide mechanisms of dosage compensation have not evolved. Nevertheless, a small percentage of Z genes are expressed at similar levels in males and females, an indication that a yet unidentified mechanism compensates for the sex difference in copy number. Primary DNA sequences are thought to have a role in determining chromosome gene inactivation status on the mammalian X chromosome. However, it is currently unknown whether primary DNA sequences also mediate chicken Z gene compensation status. Using a combination of chicken DNA sequences and Z gene compensation profiles of 310 genes, we explored the relationship between Z gene compensation status and primary DNA sequence features. Statistical analysis of different Z chromosomal features revealed that long interspersed nuclear elements (LINEs) and CpG islands are enriched on the Z chromosome compared with 329 other DNA features. Linear support vector machine (SVM) classifiers, using primary DNA sequences, correctly predict the Z compensation status for >60% of all Z-linked genes. CpG islands appear to be the most accurate classifier and alone can correctly predict compensation of 63% of Z genes. We also show that LINE CR1 elements are enriched 2.7-fold on the chicken Z chromosome compared with autosomes and that chicken chromosomal length is highly correlated with percentage LINE content. However, the position of LINE elements is not significantly associated with dosage compensation status of Z genes. We also find a trend for a higher proportion of CpG islands in the region of the Z chromosome with the fewest dosage-compensated genes compared with the region containing the greatest concentration of compensated genes. Comparison between chicken and platypus genomes shows that LINE elements are not enriched on sex chromosomes in platypus, indicating that LINE accumulation is not a feature of all sex chromosomes. Our results suggest that CpG islands are not randomly distributed on the Z chromosome and may influence Z gene dosage compensation status.  相似文献   

17.
Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller’s chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.  相似文献   

18.
In the haploid dioecious liverwort, Marchantia polymorpha, the X chromosome, but not the Y, carries a cluster of ribosomal RNA genes (rDNAs). Here we show that sequences of 5S, 17S, 5.8S and 26S rDNAs are highly conserved (>99% identity) between the X chromosomal and autosomal rDNA repeat units, but the intergenic spacer sequences differ considerably. The most prominent difference is the presence of a 615-bp DNA fragment in the intergenic spacer, X615, which has accumulated predominantly in the rDNA cluster of the X chromosome. These observations suggest that the rDNA repeat unit on the X chromosome evolved independently of that on autosomes, incorporating sex chromosome-specific sequences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9?+?Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号