首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that ciliary neurotrophic factor (CNTF) mRNA is upregulated in the rat striatum following trauma and that its peak is coincident with a peak in the number of GFAP-positive astrocytes. CNTF, or other neurotrophic factors present in the traumatized striatum, may be involved in the dopaminergic fiber sprouting seen following cavitation or graft implantation in animal models of Parkinson's disease. This study was undertaken in order to further characterize the neurotrophic activity present following trauma through the use of bioassays. Adult rats underwent stereotaxic biopsy of the right striatum, and gelatin sponge [gelfoam (GF)] was placed in the resultant cavity. GF was collected from 1 to 30 days following trauma and homogenized. GF extracts (with equal protein concentrations) were assayed using dorsal root ganglion (DRG) explants, dissociated ciliary ganglia (CG), and human dopaminergic neuroblastoma cell (SH-SY5Y) cultures. The GF extracts had significant neurite-promoting activity (NPA) for DRG, CG, and SH-SY5Y cells, with the maximum effect seen 7 days after trauma. NPA was not blocked by anti-nerve growth factor (NGF) Ab, but anti-brain-derived neurotrophic factor (BDNF) Ab significantly blocked the activity for DRG. The GF extracts protected the SH-SY5Y cells from the neurotoxins 6-OHDA and MPP+, as did NGF and BDNF. This neuroprotective effect of GF was not blocked by anti-NGF Ab. This study suggests that the neurotrophic activity in GF extracts has CNTF-like and BDNF-like components as well as another, undefined component.  相似文献   

2.
Background  Tirilazad is a non-glucocorticoid, 21-aminosteriod that inhibits lipid peroxidation. It had neuroprotective effects in experimental ischemic stroke and reduced angiographic vasospasm after experimental subarachnoid hemorrhage (SAH). Five randomized clinical trials of tirilazad were conducted in patients with SAH. We performed a meta-analysis of these trials to assess the effect of tirilazad on unfavorable outcome, symptomatic vasospasm, and cerebral infarction after SAH. Methods  Data from 3,797 patients were analyzed and modeled using random effect and Mantel-Haenszel meta-analyses and multivariable logistic regression to determine the effect of tirilazad on clinical outcome, symptomatic vasospasm, and cerebral infarction. Clinical outcome was assessed 3 months after SAH using the Glasgow outcome scale, and symptomatic vasospasm was defined by clinical criteria with laboratory and radiological exclusion of other causes of neurological deterioration. Results  The five trials were randomized, double-blind, and placebo-controlled. Tirilazad did not significantly decrease unfavorable clinical outcome on the GOS (odds ratio [OR] 1.04, 95% confidence interval [CI] 0.89–1.20) or cerebral infarction (OR 1.04, 95% CI 0.89–1.22). There was a significant reduction in symptomatic vasospasm in patients treated with tirilazad (OR 0.80, 95% CI 0.69–0.93). There was no heterogeneity across the five trials. Conclusion  Tirilazad had no effect on clinical outcome but did decrease symptomatic vasospasm in five trials of aneurysmal SAH. The dissociation between clinical outcome and symptomatic vasospasm deserves further investigation.  相似文献   

3.
The oligodendrocyte precursor cell divides a limited number of times before terminal differentiation. The timing of differentiation depends on both intracellular mechanisms and extracellular signals, including mitogens that stimulate proliferation and signals such as thyroid hormone (TH) and retinoic acid (RA) that help trigger the cells to stop dividing and differentiate. We show here that, bothin vivoandin vitro,TH is required for the normal development of rodent optic nerve oligodendrocytes, although in its absence some oligodendrocyte development still occurs, perhaps promoted by signals from axons. We also demonstrate that TH from both mother and pup plays a part in oligodendrocyte developmentin vivo.Finally, we show that precursors in embryonic nerve cultures differ from those in postnatal cultures in two ways: they respond much better to TH than to RA, and they respond more slowly to TH, suggesting that oligodendrocyte precursor cells mature during their early development.  相似文献   

4.
Recently we have shown that biglycan, a small chondroitin sulphate proteoglycan of the extracellular matrix, supports the survival of cultured neurons from the developing neocortex of embryonic day 15 rats. Here we investigate the structure-function relationship of this neurotrophic proteoglycan and show that chondroitin/dermatan sulphate chains are the active moieties supporting survival. Heparin, a highly sulphated glucosaminoglycan, is less active than the galactosaminoglycans (chondroitin-4-sulphate, chondroitin-6-sulphate and dermatan sulphate), whereas hyaluronic acid, an unsulphated glucosaminoglycan, does not support neuron survival. Galactosaminoglycans must be in direct contact with neurons to cause survival. Experiments with elevated potassium concentrations and antagonists of voltage-gated calcium channels exclude the involvement of membrane depolarization. However, genistein and an erbstatin analogue, which are inhibitors of tyrosine kinases with low specificity, abolished neuron survival in the presence of chondroitin/dermatan sulphate, whereas a selective inhibitor of neurotrophin receptor kinases (K252a) had no suppressive effect. Thus, yet unidentified tyrosine kinases are involved in the chondroitin/dermatan sulphate-dependent survival of neocortical neurons. In the embryonic stages of rat neocortical development chondroitin sulphate is mainly located in layers I, V and VI and the subplate. Chondroitin sulphate expression is maintained after birth, extends up to cortical layer IV on postnatal day 7, and is down-regulated until postnatal day 21 concomitant with the period of naturally occurring cell death. The latter observation is consistent with a putative role of chondroitin sulphate in the control of neuron survival during cortical histogenesis.  相似文献   

5.
This study was designed to determine whether or not an exogenous source of glial cell line-derived neurotrophic factor (GDNF) could be delivered continuously into the denervated/transplanted striatum and stimulate the survival, growth, and function of fetal ventral mesencephalic tissue transplants. Adult male rats with unilateral 6-hydroxydopamine lesions received transplants of fetal ventral mesencephalic tissue into the denervated striatum. Immediately thereafter, osmotic pumps [Alzet 2002, 0.5 μl/h] were attached to intracerebral cannula and either a citrate buffer alone [control] orr-methuGDNF [dissolved in sodium citrate buffer to a concentration of 0.45 μg/μl] was infused into a site ≈1.0 mm lateral to the transplant for a 2-week period; one group of lesioned animals did not receive transplants but was infused with GDNF. The effect of GDNF on tyrosine hydroxylase-positive (TH+) fiber outgrowth from transplants was variable, and image analysis revealed no significant difference between the GDNF and citrate groups. In contrast, the mean number of TH+ cells bodies in transplants infused with GDNF [2,037 ± 149,n = 8] vs citrate [663 ± 160,n = 8] was statistically significant (P < 0.001); cell counts were made in every third brain section [35 μm]. Similarly, transplants infused with GDNF showed an over-compensatory effect to amphetamine-induced rotational behavior that was significantly lower than that observed in transplanted animals receiving citrate buffer infusions. Infusions of GDNF into the denervated striatum alone had no significant effect on amphetamine-induced rotational behavior or on TH fiber morphology in the lesioned striatum. Thus, a continuous infusion of GDNF can improve the survivability of dopaminergic neurons in transplants of fetal ventral mesencephalic tissue.  相似文献   

6.
Although melatonin has been reported to influence neurohypophysial hormone release, no binding has been demonstrated in the neurohypophysial system, suggesting melatonin could affect afferent inputs. The effect of neurotransmitter receptor antagonists on the inhibitory effect of melatonin on neurohypophysial hormone release from the rat hypothalamus in vitro was therefore determined. The agents employed were atropine, a muscarinic cholinergic antagonist; mecamylamine, a nicotinic cholinergic antagonist; atenolol, a β-adrenergic antagonist; phentolamine, a nonselective α-adrenergic antagonist; prazosin, a selective α-adrenergic antagonist; haloperidol, a dopaminergic antagonist; naloxone, an opioid antagonist; and ibuprofen, a cyclooxygenase inhibitor. Rat hypothalami were incubated in either medium alone or medium containing melatonin or melatonin and antagonist, and hormone release determined. Melatonin (43 nM) significantly inhibited (p < 0.05) vasopressin and oxytocin release. Inhibition was still observed in the presence of atenolol, phentolamine, and naloxone, suggesting that neither adrenergic nor opioid pathways contribute to the response. The inhibitory effect of melatonin on vasopressin and oxytocin release was abolished (p < 0.05) in the presence of atropine (10 − 8 M), mecylamine (10 − 6 and 10 − 4 M), ibuprofen (10 − 4 M) and haloperidol (10 − 6 and 10 − 5 M). The melatonin-induced inhibition of oxytocin release was also attenuated in the presence of prazosin (10 − 8 and 10 − 6 M). This study suggests that melatonin may influence neurohypophysial hormone release through modulation of afferent pathways mediated by acetylcholine, dopamine, and/or prostaglandin.  相似文献   

7.
The isolation and expansion of human neural progenitor cells have important potential clinical applications, because these cells may be used as graft material in cell therapies to regenerate tissue and/or function in patients with central nervous system (CNS) disorders. This paper describes a continuously dividing multipotent population of progenitor cells in the human embryonic forebrain that can be propagated in vitro. These cells can be maintained and expanded using a serum-free defined medium containing basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), and epidermal growth factor (EGF). Using these three factors, the cell cultures expand and remain multipotent for at least 1 year in vitro. This period of expansion results in a 107-fold increase of this heterogeneous population of cells. Upon differentiation, they form neurons, astrocytes, and oligodendrocytes, the three main phenotypes in the CNS. Moreover, GABA-immunoreactive and tyrosine hydroxylase-immunoreactive neurons can be identified. These results demonstrate the feasibility of long-term in vitro expansion of human neural progenitor cells. The advantages of such a population of neural precursors for allogeneic transplantation include the ability to provide an expandable, well-characterized, defined cell source which can form specific neuronal or glial subtypes.  相似文献   

8.
During neuromuscular development, neuronal contact with peripheral targets is associated with an increase in synaptic vesicle protein (SVP) gene expression, suggesting that target contact and upregulation of SVP genes are causally related. To test this idea, we analyzed the developmental expression pattern of synaptotagmin (syt) mRNAs in the chick lateral motor column (LMC) usingin situhybridization. Syt I mRNA in the LMC is upregulated from Embryonic Day 4.5 (E4.5) to E5.5, coincident with the time these neurons begin to make contact with their muscle targets. In contrast, levels of mRNA for neurofilament do not change during this time. Extirpation of the limb bud prior to motor axon outgrowth eliminates the increase in syt I mRNA ipsilaterally. Later in development, there is a switch in syt isoform abundance in the LMC, with syt II mRNA being upregulated between E15 and E20 and syt I mRNA being downregulated. Our results suggest that contact with targets upregulates syt I gene expression during neuromuscular synapse formationin vivo,and that a later stage of synaptic maturation involves changes in SVP isoform abundance.  相似文献   

9.
The effects of selective blockade of group I metabotropic glutamate receptor subtype 1 (mGluR1) on neuronal cell survival and post-traumatic recovery was examined using rat in vitro and in vivo trauma models. The selective mGluR1 antagonists (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), and (S)-(+)-α-amino-4-carboxy-2-methylbezeneacetic acid (LY367385) provided significant neuroprotection in rat cortical neuronal cultures subjected to mechanical injury, in both pretreatment or posttreatment paradigms. Administration of the antagonists also attenuated glutamate-induced neuronal cell death in the cultures. Coapplication of these antagonists with the N-methyl- -aspartate (NMDA) receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) had additive neuroprotective effects in glutamate injured cultures. Intracerebroventricular administration of AIDA to rats markedly improved recovery from motor dysfunction after lateral fluid percussion induced traumatic brain injury (TBI). Treatment with mGluR1 antagonists also significantly reduced lesion volumes in rats after TBI, as evaluated by MRI. It appears that these compounds mediate their neuroprotective effect through an mGluR1 antagonist action, as demonstrated by inhibition of agonist induced phosphoinositide hydrolysis in our in vitro system. Moreover, AIDA, CPCCOEt, and LY367385, at concentrations shown to be neuroprotective, had no significant effects on the steady state NMDA evoked whole cell current. Taken together, these data suggest that modulation of mGluR1 activity may have substantial therapeutic potential in brain injury.  相似文献   

10.
Ibogaine is a natural alkaloid of Voacanga africana that is effective in the treatment of withdrawal symptoms and craving in drug addicts. As the synaptic and cellular basis of ibogaine’s actions are not well understood, this study tested the hypothesis that ibogaine and Voacanga africana extract modulate neuronal excitability and synaptic transmission in the parabrachial nucleus using the nystatin perforated patch-recording technique. Ibogaine and Voacanga africana extract dose dependently, reversibly, and consistently attenuate evoked excitatory synaptic currents recorded in parabrachial neurons. The ED50 of ibogaine’s effect is 5 μM, while that of Voacanga africana extract is 170 μg/ml. At higher concentrations, ibogaine and Voacanga africana extract induce inward currents or depolarization that are accompanied by increases in evoked and spontaneous firing rate. The depolarization or inward current is also accompanied by an increase in input resistance and reverses polarity around 0 mV. The depolarization and synaptic depression were blocked by the dopamine receptor antagonist haloperidol. These results indicate that ibogaine and Voacanga africana extract 1) depolarize parabrachial neurons with increased excitability and firing rate; 2) depress non-NMDA receptor-mediated fast synaptic transmission; 3) involve dopamine receptor activation in their actions. These results further reveal that the Voacanga africana extract has one-hundredth the activity of ibogaine in depressing synaptic responses. Thus, ibogaine and Voacanga africana extract may produce their central effects by altering dopaminergic and glutamatergic processes.  相似文献   

11.
The in vivo application of appropriate trophic factors may enhance regeneration of bulbospinal projections after spinal cord injury. Currently, little is known about the sensitivities of specific bulbospinal neuron populations to the many identified trophic factors. We devised novel in vitro assays to study trophic effects on the survival and neurite outgrowth of identified bulbospinal neurons. Carbocyanine dye crystals implanted into the cervical spinal cord of embryonic day (E)5 chick embryos retrogradely labeled developing bulbospinal neurons. On E8, dissociated cultures containing labeled bulbospinal neurons were prepared. Fibroblast growth factor (FGF)-2 (but not FGF-1) promoted the survival of bulbospinal neurons. FGF receptor expression was widespread in the E8 brainstem, but not detected in young bulbospinal neurons, suggesting that nonneuronal cells mediated the FGF-stimulated survival response. Astrocytes synthesize a variety of trophic factors, and astrocyte-conditioned medium (ACM) also promoted the survival of bulbospinal neurons. As might be expected, FGF-2 function blocking antibodies did not suppress ACM-promoted survival, nor did an ELISA detect FGF-2 in ACM. This suggests that nonneuronal cells synthesize other factors in response to exogenous FGF-2 which promote the survival of bulbospinal neurons. Focusing on vestibulospinal neurons, dissociated (survival assay) or explant (neurite outgrowth assay) cultures were prepared. FGF-2 promoted both survival and neurite outgrowth of identified vestibulospinal neurons. Interestingly, FGF-1 promoted neurite outgrowth but not survival; the converse was true of FGF-9. Thus, differential effects of specific growth factors on survival or neurite outgrowth of bulbospinal neurons were distinguished.  相似文献   

12.
Although microglial cells are well known to become activated in the pathological brain, mechanisms underlying the microglial activation are not fully understood. In the present study, with an aim to elucidate whether neurons are involved in the microglial activation, we compared the morphology and the superoxide anion (O2)-generating activity of rat microglial cells in pure culture with those of cells cocultured with rat primary cortical neurons. Microglial cells in pure culture in serum-free Eagle's minimum essential medium on poly- -lysine-coated coverslips displayed ramified morphology and suppressed activity of O2generation. In contrast, microglial cells in neuron–microglia coculture under the same conditions as those for the pure culture displayed ameboid shape and upregulated activity of O2generation. Electron microscopic observation revealed that microglial cells in coculture were more abundant in Golgi apparatus and secretory granules than those in pure culture and that some of microglial cells in the vicinity of neurites exhibited membrane specialization reminiscent of a junctional apparatus with high electron density between a microglial soma and a neurite. Microglial cells in coculture tended to tie neurites in bundles by extending processes. Medium conditioned by neurons significantly enhanced O2generation by microglia, but microglial cells in contact with or in close apposition to cocultured neurons were much more intensely activated than those remote from the neurons. Furthermore, the membrane fraction of cortical neurons activated microglial cells, and this effect was abolished by treating the neuronal membrane with trypsin or neuraminidase. In conclusion, neuronal–microglial contact may be necessary to mediate microglial activation. The present findings suggest that the contact of microglia with damaged neurons in the brain is a plausible cause to activate microglia in the neuropathological pro cesses.  相似文献   

13.
Rapsyn, a 43-kDa protein on the cytoplasmic face of the postsynaptic membrane, is essential for clustering acetylcholine receptors (AChR) at the neuromuscular junction. When transfected into nonmuscle cells (QT-6), rapsyn forms discrete membrane domains and can cluster AChR into these same domains. Here we examined whether rapsyn can cluster other ion channels as well. When expressed in QT-6 cells, the GABAAreceptor (human α1, β1, and γ2 subunits) and the skeletal muscle sodium channel were each diffusely scattered across the cell surface. Rapsyn, when co-expressed, clustered the GABAAreceptor as effectively as it clustered AChR in previous studies. Rapsyn did not cluster co-transfected sodium channel, confirming that it does not cluster ion channels indiscriminately. Rapsyn mRNA was detected at low levels in the brain by polymerase chain reaction amplification of reverse-transcribed RNA, raising the possibility of a broader role for rapsyn.  相似文献   

14.
After insult or trauma, astrocytes become activated and endeavor to restore the brain's delicately balanced microenvironment. An index of their activated state is that they become enlarged or hypertrophic. Ciliary neurotrophic factor (CNTF), a member of the alpha helical family of cytokines, is synthesized by astrocytes and is generally regarded to be an autocrine and paracrine injury signal. To determine whether CNTF might be an endogenous signal that stimulates astrocyte hypertrophyin vivo,we intracerebrally injected 200 ng of recombinant human CNTF into the adult rat neocortex. To study the astrocytes their cytosol was stained with antibodies against S100β and their nuclei were stained with propidium iodide (PI). Fluorescent images of astrocytic nuclei and somas were acquired using a confocal laser-scanning microscope and their areas were measured using the NIH image software. Within 24 h of treatment, CNTF induced a volume increase of the somas and nuclei of protoplasmic and fibrous astrocytesin vivo,and this effect persisted for at least 48 h. To determine whether CNTF activates astrocytes directly, glial cultures were treated with CNTF (10 ng/ml) and were evaluated by measuring the area of PI stained nuclei. CNTF stimulation increased the size of both polygonal and process-bearing astroglia. Since our studiesin vivohave shown that CNTF induces other key aspects of gliosis (S. W. Levisonet al.,1996;Exp. Neurol.141,256), we conclude that CNTF is a powerful activator of astrocytes and that it is likely responsible for the persistent glial hypertrophy observed following injuries and diseases of the CNS.  相似文献   

15.
目的:研究左旋多巴(L-DOPA)和多巴胺(DA)对大鼠胚胎中脑原代细胞的毒性损害以及利噜唑拮抗L-DOPA和DA的毒性作用。方法:通过体外大鼠胚胎中脑原代细胞培养,采用MTT细胞活性和[~3H]DA摄取率检测中脑原代细胞的存活数和DA能神经元的[~3H]DA摄取功能。结果:当L-DOPA和DA浓度增至500 μmol·L~(-1)时,细胞存活率明显下降(P<0.05),均呈剂量依赖性。当L-DOPA和DA浓度分别增至1mmol·L~(-1)和200μmol·L~(-1)时,[~3H]DA摄取率明显下降(P<0.05),均呈剂量依赖性。利噜唑2~10μmol·L~(-1)能抑制L-DOPA和DA对细胞存活率和[~3H]DA摄取率的影响(P<0.05)。结论:大剂量L-DOPA和DA(≥500 μmol·L~(-1))对中脑原代细胞产生毒性损害,利噜唑能拮抗L-DOPA和DA对中脑原代细胞的毒性效应,具有神经保护作用。  相似文献   

16.
This study examined the regulation of apolipoprotein E (apoE) by 17β-estradiol (E2) in brain glia, using rats with regular ovulatory cycles as anin vivomodel and cultured astrocytes and mixed glia asin vitromodels. Two brain regions were examined which had demonstrated transient synaptic remodeling during the estrous cycle. In the hippocampal CA1 region and the hypothalamic arcuate nucleus, apoE mRNA was elevated at proestrus when plasma E2 was high and synaptic density was increasing. Both astrocytes and microglia contributed to this increase in apoE mRNA.In vitro,E2 treatment had no effect on apoE mRNA levels in monotypic cultures of either astrocytes or microglia. In contrast, mixed glial cultures responded to E2 with increased apoE mRNA and protein, suggesting that heterotypic cellular interactions are important in the brain response to estrogens.In situhybridization in combination with cell-specific markers showed that E2 increased apoE mRNA levels in both astrocytes and microglia. These results, which are the first evidence of apoE mRNA localization to microgliain vivoand the control of apoE expression in brain cells by estrogens, are discussed in terms of the possible protective role of E2 in Alzheimer's disease and prior findings that emphasize the expression of apoE mRNA in astrocytes within the brain.  相似文献   

17.
The function of truncated trkB receptors during nervous system plasticity and regeneration is currently unknown. The extensive nonneuronal localization of truncated trkB-T1 receptors, coupled with their up-regulation by CNS glial cells in response to injury, has led to the speculation that these receptors may sequester BDNF and NT-4/5 to reduce their local availability and, thus, limit axonal sprouting. Conversely, trkB-T1 receptors could bind and present neurotrophins to injured axons and facilitate their regeneration in a manor analogous to that proposed for p75NTRreceptors on Schwann cells. To address this issue, we used anin vitrococulture paradigm in which wild-type 3T3 NIH fibroblasts or two different 3T3 cell clones stably expressing trkB-T1 receptors served as monolayer substrates upon which to evaluate the effect of trkB-T1 receptors on nonneuronal cells to influence neurotrophin (NGF, BDNF, NT-3, and NT-4/5)-induced neurite outgrowth from retinoic acid (RA)-treated SY5Y neuroblastoma cells. In these experiments, BDNF and NT-4/5 produce a strong phosphorylation of trk receptors on the RA-SY5Y cells and induce differentiation of the SY5Y cells (as measured by the development of neurofilament-positive neuritic processes). This ability of the trkB ligands to stimulate neurite outgrowth is dose dependent since increasing concentrations of BDNF (5, 25, and 100 ng/ml) result in an increased percentage of SY5Y cells developing neurites and in progressively longer neurites from SY5Y cells on the control 3T3 monolayers. In these experiments, BDNF and NT-4/5 induce the strongest neurite outgrowth, followed by NT-3 and then NGF. When trkB-T1 receptors are present on the 3T3 cell substratum both BDNF- and NT-4/5-induced neurite extension from the SY5Y cells are strongly inhibited. In contrast, NGF-induced neurite growth is unaffected and NT-3-associated growth is somewhat reduced. These results suggest that the inhibitory effect of the trkB-T1 receptors on the nonneuronal cell substrates is selective for neurite outgrowth that is mediated via the trkB-kinase receptors on the neuroblastoma cells. This ability of trkB-T1 receptors on the nonneuronal substratum to inhibit BDNF-induced neurite outgrowth can be overcome by the addition of high concentrations of BDNF (1 μg/ml). Binding assays using125I-BDNF suggest that this inhibitory effect could be mediated via binding and internalization of BDNF by the trkB-T1 receptors on the 3T3 cells. These results provide strong support for the hypothesis that the up-regulation of trkB-T1 receptors on astrocytes following CNS lesions enhances the sequestration of the trkB ligands, BDNF and NT- 4/5, at the site of reactive gliosis and, thus, contributes to the inhibition of CNS axonal regeneration from neurons expressing trkB-kinase receptors by removing their ligands from the extracellular environment.  相似文献   

18.
In neurons, oxidative stress can be triggered by neurotransmitter-linked mechanisms and may lead to apoptotic cell death. A simple and reproducible model of inducing oxidative stress is needed to elucidate mechanisms which link oxidative stress and neuronal apoptosis. We report here a method of inducing apoptosis in cell cultures by loading them with a photosensitive dye, rose bengal, and exposing the cultures to light, a procedure which generates reactive singlet oxygen. We used this model in primary culture of rat cerebellar granule neurons, and in a nonneuronal human embryonic kidney 293 cell line. We have measured the following: (a) metabolic activity of the mitochondria by quantitative staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), (b) DNA fragmentation by quantitative in situ terminal deoxynucleotidyl transferase assay, and (c) cell viability by a trypan blue exclusion test. The oxidative stress caused an early impairment of mitochondrial function (MTT assay). This was followed by DNA fragmentation and ultimately by cell death. Protection was obtained with an inhibitor of macromolecular synthesis, anisomycin, and with antioxidant, vitamin E. This model can be used to study the mechanism of oxidative stress-triggered neuronal apoptosis, and it may help in discovering new targets for neuroprotective drugs.  相似文献   

19.
[3H]Dopamine (DA) uptake radioautography and tyrosine hydroxylase (TH) immunocytochemistry were used to assess quantitatively the effects of the presence or absence of host mesostriatal DA afferents on the survival and fiber outgrowth from fetal ventral mesencephalic DA neurons grafted into the neostriatum of adult recipient rats. Rats received bilateral intrastriatal transplants of fetal ventral mesencephalic tissue 1 month after a unilateral injection of 6-hydroxydopamine (6-OHDA) into the right nigrostriatal bundle (denervated side). Five to six months later, some of the grafted rats received a second 6-OHDA injection in the left nigrostriatal bundle (acutely denervated or 'intact' side). After a further 7 days, slices of each hemisphere from the latter rats were incubated with [3H]DA and processed for film and high resolution radioautography. The density of the film radioautographs was measured with a computerized image analysis system and calibrated by silver grain cluster (i.e. DA terminal) counting over selected areas of the same sections in light microscope radioautographs. The brains of the remaining grafted rats were processed for TH immunoreactivity 6 - 12 months after graft surgery. Neither the size of the grafts, nor the number of surviving TH-positive graft neurons showed any significant difference between the nondenervated and the denervated sides. However, the size of the TH-positive cell bodies was significantly greater in the grafts on the denervated side. In the [3H]DA uptake radioautographs, considerable outgrowth of DA fibers was evident in the neostriatum on the 'intact' side in spite of the presence of an intact host DA innervation until 7 days before sacrifice. The overall DA fiber outgrowth was nevertheless almost two-fold greater on the denervated side, and extended deeper into the host neostriatum than on the 'intact' side; only 7% of the total neostriatal area, on average, was at background level compared to 30% on the 'intact' side, and the overall density of neostriatal DA innervation amounted to 36% of normal as compared to 20% on the 'intact' side. The correlation between the overall density of graft-derived DA innervation and the size of the grafts was linear on the 'intact' side, but reached a plateau with relatively small grafts on the denervated side. However, the ventral striatum on both sides was very poorly innervated by these grafts. These findings demonstrate that the mature neostriatal tissue can support axonal growth and innervation from grafted fetal DA neurons even in the presence of a normal complement of endogenous DA fibers. Prior removal of the host striatal DA innervation does not influence the overall size of the grafts nor the number of surviving DA neurons, but induces an increase in the cell body size and fiber outgrowth of the grafted DA neurons.  相似文献   

20.
In vitro brainstem spinal cord preparations isolated from newborn rats were used to separately test the effects of modifications of FCO2 and pH of artificial cerebrospinal fluid on the frequency and amplitude of spinal respiratory activity recorded from C2–C8 ventral roots. Different substances such as l-glutamic acid (3 · 10−3 M), N-methyl-d-aspartic acid (5 · 5 · 10−6 M), amphetamine (6 mg/100 ml), 5-hydroxytryptophane (10−3 M), or modified K+ (10−3 M) were tested for their capacity to elicit stable changes in spinal respiratory activity over a long time period (more than 30 min) and with high frequency of occurrence, i.e., in at least 50% of the cases. None of the above drugs were found to be suitable for the investigation of the chemosensitivity of the spinal respiratory generator (sRG) because they were only able to maintain spinal respiratory activity for around 15 min. Given these data, the previously used procedure of activation through initial deep diethyl ether anaesthesia of newborn rats was employed [3] to test the chemosensitivity of the sRG because this treatment resulted in the maintenance of spinal respiratory activity with a regular pattern for 30 min, even if it occurred in only 25% of the preparations. After an increase in FCO2 from 5 to 7% (at constant pH 7.4), a significant (p < 0.05) enhancement of the mean frequency was observed on spinal respiratory bursting in both brainstem spinal cord and isolated spinal cord preparations. The changes in burst amplitude, however, were quite variable from one experiment to the other. At constant FCO2 (5%), a decrease in pH from 7.4 to 7.2 enhanced spinal respiratory frequency on brainstem spinal cord or isolated spinal cord preparations, while an increase in pH from 7.4 to 7.6 decreased it. Under these pH conditions, we did not observe any reproducible variations in spinal burst amplitude. From these results, we conclude that this spinal generator is chemosensitive to both CO2 and [H+], suggesting that it belongs to the respiratory system. Our data provide evidence for the existence of spinal CO2 and/or H+ chemoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号