首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two phthalate esters, di-(C(7)-C(9) alkyl) phthalate (D79P) and di-(C(9)-C(11) alkyl) phthalate (D911P), have been assessed for their potential to cause developmental toxicity in the rat. Groups of 22 timed-mated Sprague-Dawley rats were administered 250, 500, or 1000 mg/kg D79P or D911P daily by oral gavage (5 ml/kg) between gestation days (GD) 1 and 19. Control animals received the vehicle (olive oil) alone. On GD20, the animals were sacrificed and the fetuses examined. Treatment resulted in no signs of maternal toxicity, as assessed by adjusted maternal bodyweight gain throughout gestation and clinical examinations, and no effects upon litter size, fetal survival or bodyweight. Pups of the high dose D79P and intermediate and high dose D911P groups showed increased incidences of supernumerary lumbar ribs. There was a significant increase in dilated renal pelves in pups of the low dose D79P and high dose D911P groups, but only for D911P was there a significant trend. Consequently, the no observed adverse effect level (NOAEL) for maternal toxicity for both D79P and D911P is 1000 mg/kg/day. The NOAEL values for developmental toxicity are 500 mg/kg/day D79P and 250 mg/kg/day D911P.  相似文献   

2.
The short-term hepatic effects of DINP (CAS 68515-48-0, designated DINP-1) in rats and mice were evaluated at tumorigenic and nontumorigenic doses from previous chronic studies. Groups of male F344 rats were fed diets with DINP-1 at concentrations of 0, 1000, or 12,000 ppm and male B6C3F1 mice at 0, 500, or 6000 ppm DINP-1. After 2 or 4 weeks of treatment, changes in liver weight, gap junctional intercellular communication (GJIC), peroxisomal beta-oxidation (PBOX), and replicative DNA synthesis were examined. In addition, hepatic and serum concentrations of the parent compound and major metabolites were determined. Relative to controls in both species, increased liver weight and PBOX at the high dose of DINP-1 were consistent with peroxisomal proliferation. Hepatic GJIC was inhibited and DNA synthesis was increased at the high dose of DINP-1, which is also consistent with the tumorigenic response in rats and mice reported in other chronic studies at these doses. These hepatic effects were not observed at the low doses of DINP-1. At comparable low doses of DINP-1 in other chronic studies, no liver tumors were observed in rats and mice. The monoester metabolite (MINP-1) was detected in the liver at greater concentrations in mice than rats. This result is also consistent with the dose-response observations in rat and mouse chronic studies. Additionally, other structurally similar dialkyl phthalate esters ranging from C7 to C11 were evaluated using a similar protocol for comparison to DINP-1; these included an alternative isomeric form of DINP (DINP-A), di-isodecyl phthalate (DIDP), di-isoheptyl phthalate (DIHP), di-heptyl, nonyl undecyl phthalate (D711P), and di-n-octyl phthalate (DNOP). Collectively, these data indicate that in rats and mice, DINP-1 and other C7-C11 phthalates exhibit a threshold for inducing hepatic cellular events. Further, where previous chronic data were available for these compounds, these phthalates elicited hepatic effects at doses that correlated with the tumorigenic response. Overall, these studies suggest a good correlation between the inhibition of GJIC when compared with the data on production of liver tumors in chronic studies.  相似文献   

3.
A study was conducted on the effect of oral administration of either di(2-ethylhexyl) phthalate (DEHP) or dialkyl 79 phthalate (DA79P) at a dose level of 2500 mg/kg/day for 7 and 21 days in young male and female Wistar albino rats. Both DEHP and DA79P increased liver size in both sexes and reduced the relative weitht of testes in male rats. Liver enlargement was accompanied by alterations in several marker enzyme activities. Both DEHP and DA79P depressed mitochondrial succinate dehydrogenase in male but not in female animals. While certain parameters of hepatic xenobiotic metabolism were elevated in female rats receiving either DEHP or DA79P, a marked inhibition of xenobiotic metabolism was observed in male rats treated with DA79P. Parallel morphological investigations revealed histological evidence of liver damage in maie rats given DA79P and ultrastructural investigation revealed changes in the structure of the nuclei, mitochondria, and endoplasmic reticulum. These effects were largely absent from female animals. DEHP produced no hepatic histological changes in either sex but ultratructural studies indicated proliferation of the smooth endoplasmic reticulum, an increase in the numbers of microbodies (peroxisomes), and mitochondrial changes. Treatment of rats with either DEHP or DA79P resulted in hepatic changes, although the effects were not necessarily common to both agents. Male animals appeared to be more susceptible than female animals. Finally, both agents.caused testicular atrophy as indicated by decreased testicular weight and atrophy of seminiferous tubules in male rats treated for 21 days.  相似文献   

4.
Di-(5-hexenyl)- and di-(9-decenyl) phthalates were administered to male CD rats by gavage. The urinary metabolites retaining the phthalate moiety were identified by chromatographic and mass-spectrometric techniques. Di-(5-hexenyl) phthalate gave rise to epoxide and vicinal diol metabolites not previously seen with phthalic acid esters of saturated alcohols. Neither epoxide nor diol were detected when di-(9-decenyl) phthalate was fed. The distributions of carboxyl-terminated metabolites suggested that somewhat different pathways were followed for the two test compounds. The formation of epoxides from these unsaturated phthalate esters may have relevance to their potential toxicities. Like the metabolites of di-n-butyl phthalate, the metabolites of di-(5-hexenyl) phthalate included glucuronide conjugates; like the metabolites of di-(2-ethylhexyl) phthalate, those of di-(9-decenyl) phthalate did not.  相似文献   

5.
1. Di-(5-hexenyl)- and di-(9-decenyl) phthalates were administered to male CD rats by gavage. The urinary metabolites retaining the phthalate moiety were identified by chromatographic and mass-spectrometric techniques.

2. Di-(5-hexenyl) phthalate gave rise to epoxide and vicinal diol metabolites not previously seen with phthalic acid esters of saturated alcohols. Neither epoxide nor diol were detected when di-(9-decenyl) phthalate was fed. The distributions of carboxyl-terminated metabolites suggested that somewhat different pathways were followed for the two test compounds. The formation of epoxides from these unsaturated phthalate esters may have relevance to their potential toxicities.

3. Like the metabolites of di-n-butyl phthalate, the metabolites of di-(5-hexenyl) phthalate included glucuronide conjugates; like the metabolites of di-(2-ethylhexyl) phthalate, those of di-(9-decenyl) phthalate did not.  相似文献   

6.
The aim of this study was to evaluate dose-related effects on external genitalia of adult male offspring rats by maternal exposure to di-(2-ethylhexyl) phthalate (DEHP) plasticizer. Timed-pregnant rats were given DEHP by gastric intubation at doses of 0, 500, 750 or 1000 mg/kg body weight/day from gestation day 12–19 to establish a hypospadiac rat model. The hypospadias was observed and the incidence in three DEHP dosage levels was 10.7%, 30.6% and 37.0%, respectively. With exposed dose increased, mild, moderate and severe hypospadiac rats were distinguished and an increased incidence of severe hypospadias was observed. The other reproductive lesions like reduced penile length and anogenital distance/body weight were observed. The results indicated the dose-related external genitalia teratogenic toxicity, and graded hypospadias on male offspring was resulted from high dosage DEHP maternal exposure.  相似文献   

7.
The potential reproductive toxicity of di-isononyl phthalate (DINP: CAS RN 68515-48-0) was assessed in one- and two-generation reproductive toxicity studies. Groups of 30 male and female CRL : CD(SD)BR rats were given DINP via dietary administration at levels of either 0.0, 0.5, 1, or 1.5% (one-generation study) or 0.0, 0.2, 0. 4, or 0.8% (two-generation study). There were no changes in any of the classic reproductive parameters, i.e. mating, male or female fertility, fecundity, gestational index, or length of gestation in either study. The overall NOAELs for these effects were the highest Dietary Level (%)s tested, approximately 500 mg/kg/day in the two-generation study and 1000 mg/kg/day in the one-generation study. There were no testicular effects in parental animals exposed as juveniles and young adults at 960 mg/kg/day in the one-generation study. In the two-generation study, there were no testicular effects in either the P(1) males, exposed as juveniles and young adults or the P(2) (F(1)) offspring exposed in utero, through lactation, and continuously to terminal sacrifice. The NOAEL was 470 mg/kg/day. Offspring survival was reduced at the 1.5% level ( approximately 1100 mg/kg/day) but unaffected at the 1% level ( approximately 760 mg/kg/day). There were decreased offspring body weights both at postnatal day (PND) 0 and during lactation; however, the PND 0 effects were only clearly related to treatment at the 1.5% level. Weights of offspring during lactation were significantly reduced but within the historical control range at Dietary Level (%)s below 1%. As there was rapid recovery at the lower levels, even though treatment continued, the toxicologic significance is unclear. Adult survival was unaffected at any level in either study, but weight gain was significantly reduced at the 1% level ( approximately 600 mg/kg/day). Liver and kidney weights were elevated at Dietary Level (%)s above approximately 110 mg/kg/day, consistent with evidence from other studies of peroxisomal proliferation at these levels. This study showed that DINP treatment does not affect fertility or male reproductive development at doses of up to approximately 1000 mg/kg/day.  相似文献   

8.
FD & C Red No. 3 was fed to Charles River CD rats as a dietary admixture in two long-term toxicity/carcinogenicity studies. The studies consisted of an in utero and an F1 phase. In the former, the compound was administered to five groups of the F0 generation rats (60 of each sex/group) at levels of 0.0, 0.0, 0.1, 0.5 or 1.0% ('original study') and 0.0 or 4.0% ('high-dose study'). The concurrent control groups received the basal diet. After random selection of the F1 animals, the long-term phase was initiated using the same dietary levels and 70 rats of each sex/group, including the three control groups. Rats were exposed for a maximum of 30 months. No compound-related effects were noted in the in utero phase. Mean body weights of the female F1 rats on 4.0% FD & C Red No. 3 (3029 mg/kg/body weight/day) were significantly lower than those of controls (P less than 0.01) throughout the study. Food consumption increased in all treated groups in a dose-related manner. There were no significant effects on the haematology, serum chemistry and urinalysis and no compound-related effects on survival. In male rats receiving 4.0% FD & C Red No. 3 (2464 mg/kg/day) thyroid weights were increased, with a mean weight of 92 mg compared to 44 mg for controls, and statistically significant increases in the incidence of thyroid follicular cell hypertrophy, hyperplasia and adenomas were recorded. A numerically increased incidence of thyroid follicular adenomas in female rats given 0.5, 1.0 or 4.0% FD & C Red No. 3 was not statistically significant. The no-observed-adverse-effect levels established in these studies were 0.5% (251 mg/kg/day) for male rats and 1.0% (641 mg/kg/day) for females.  相似文献   

9.
Effects of di-(2-ethylhexyl)phthalate (DEHP) on the detoxification mechanisms of xenobiotics were investigated in neonatal rat pups of mothers receiving 2000 mg phthalate/kg daily from day 1 of birth. The nursing rat pups of mothers exposed to DEHP showed decreases in body weight gain and activities of aniline hydroxylase, ethylmorphine N-demethylase, and arylhydrocarbon hydroxylase and decreased levels of cytochrome P-450 at 21 days of age. Significant quantities of DEHP were also detected in the liver of pups in this interval. These results suggest that the livers of developing animals could be affected by the lactational transfer of DEHP, a commonly used plasticizer.  相似文献   

10.
Di-n-octyl phthalate (DnOP) is found as a component of mixed C6-C10 linear-chain phthalates used as plasticizers in various polyvinyl chloride applications, including flooring and carpet tiles. Following exposure and absorption, DnOP is metabolized to its hydrolytic monoester, mono-n-octyl phthalate (MnOP), and other oxidative products. The urinary levels of one of these oxidative metabolites, mono-(3-carboxypropyl) phthalate (MCPP), were about 560-fold higher than MnOP in Sprague-Dawley rats dosed with DnOP by gavage. Furthermore, MCPP was also found in the urine of rats dosed with di-isooctyl phthalate (DiOP), di-isononyl phthalate (DiNP), di-isodecyl phthalate (DiDP), di-(2-ethylhexyl) phthalate, and di-n-butyl phthalate (DBP), although at concentrations considerably lower than in rats given similar concentrations of DnOP. The comparatively much higher urinary concentrations of MCPP than of the hydrolytic monoesters of the high-molecular-weight phthalates DiOP, DiNP, and DiDP in the exposed rats suggest that these monoesters may be poor biomarkers of exposure to their precursor phthalates and may explain the relatively low frequency of detection of these monoester metabolites in human populations. MCPP and MnOP were also measured in 267 human urine samples. The frequent detection and higher urinary concentrations of MCPP than MnOP suggest that exposure to DnOP might be higher than previously thought based on the measurements of MnOP alone. However, because MCPP is also a minor metabolite of DBP and other phthalates in rats, and the metabolism of phthalates in rodents and humans may differ, additional data on the absorption, distribution, metabolism, and elimination of MCPP are needed to completely understand the extent of human exposure to DnOP from the urinary concentrations of MCPP.  相似文献   

11.
The effects of six iv infusions of an emulsion containing the plasticizer di(2-ethylhexyl) phthalate (DEHP) on the liver and testes were investigated in 40-day-old rats. Groups of five to six animals received the emulsion every other day in doses of 0, 5, 50 or 500 mg DEHP/kg body weight. Liver effects were studied by histological examination and by measuring bromsulfophthalein clearance, peroxisomal proliferation and certain enzymes in serum. Testicular effects were evaluated by light and electron microscopy. To investigate the possibility of an age-related effect on the testis, five 25-day-old rats were given six infusions of 500 mg DEHP/kg.Compared with control animals, the high-dose group showed a 36% increase in relative liver weight and a 41% increase in the number of peroxisomes. In Epon-embedded testicular material from animals given the highest dose, which is about 100 times the highest estimated human exposure, some altered Sertoli cells and some degenerated primary spermatocytes were observed.No age-related effect on the testis similar to that found following oral administration of DEHP was observed in this study.  相似文献   

12.
In two separate studies with exposure duration 9 weeks or 4 weeks, male Wistar rats were dosed with di(2-ethylhexyl)phthalate (DEHP) by gavage and exposed to drinking water with or without acetone (0.5% wt/v in the 9-week study, 1.0% wt/v in the 4-week study). In the 9-week study the doses of DEHP were 0, 125, 250, 500 or 1000 mg/kg b.wt. In the 4-week study the doses of DEHP were increased to 1000, 5000 and 10,000 mg/kg b.wt. In the 9-week study, the relative liver weight was increased in the rats exposed to 500 and 1000 mg/kg b.wt. No interaction of DEHP and acetone was observed in any of the measured parameters. In the 4-week study DEHP, at the highest dose level, resulted in severe general toxicity. The group exposed to DEHP in combination with acetone was more affected. Male fertility was decreased. Body weight was decreased, and the relative weight of the liver, kidney, heart, brain and adrenals increased. The relative weight of the testes decreased in the 5000 and 10,000 mg/kg b.wt. groups. The weight of seminal vesicles and epididymals decreased at 10,000 mg/kg b.wt. In animals exposed to 5000 and 10,000 mg DEHP/kg b.wt. a severe atrophy of the seminiferous tubules and a slight diffuse Leydig's cell hyperplasia was observed. The cellular debris and conglomerates of desquamated cells found in the lumen of the seminiferous tubules were immunostained positive for vimentin. This indicates that Sertoli cell cytoplasm is included in the conglomerates an interesting finding not previously described. No specific interaction of DEHP and acetone was observed in any of the measured parameters.  相似文献   

13.
Di-(2-propylheptyl) phthalate (DPHP) is a high molecular weight polyvinyl chloride plasticizer. Since increasing production volume and broad utility may result in human exposure, an oral reference dose (RfD) was derived from laboratory animal data due to the lack of human data. In addition to liver and kidney, target organs were the thyroid, pituitary and adrenal glands in rats, recognizing that reproductive performance was not altered in two successive generations of DPHP-exposed rats. DPHP caused a reduction in pup and maternal body weights but not developmental or testicular effects typical of “phthalate syndrome.” DPHP was not genotoxic. Due to the lack of carcinogenicity data, there is inadequate information to assess carcinogenic potential. The RfD of 0.1 mg/kg-day was derived from the human equivalent BMDL10 of 10 mg/kg-day for thyroid hypertrophy/hyperplasia in male F1 adults from the two-generation study. While in utero exposure did not alter sensitivity to thyroid lesions compared to subchronic exposures beginning at 6 weeks of age, F1 adult males were the longest-term exposed population. The total uncertainty factor of 100x was comprised of intraspecies (10x), study duration (3x), and database (3x) factors but not an interspecies factor since rodents are more sensitive than humans to thyroid gland effects.  相似文献   

14.
A target-organ study of the effects of the phthalate ester di-(2-ethylhexyl) phthalate (DEHP) has been conducted in mature male albino ferrets. DEHP treatment caused a loss of body weight when administered as a 1% (w/w) diet for 14 months. Additionally, marked liver enlargement with associated morphological and biochemical changes was observed. These changes consisted of liver cell enlargement, lysosomal changes, dilatation of the endoplasmic reticulum and the depression of a number of marker enzyme activities. The only other tissue observed to be affected by DEHP treatment was the testes where histological evidence of tissue damage was observed in some animals.Studies on the metabolism of [14C]DEHP in the ferret indicated that the diester was metabolised to derivatives of mono-(2-ethylhexyl) phthalate which were excreted in the urine both unconjugated and as glucuronides.The results obtained have been compared with previous studies in the rat and it is concluded that DEHP is hepatotoxic in both species.  相似文献   

15.
The reproductive effects of in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP) in adult male offspring rats were investigated. The selected endpoints included reproductive organ weights, testicular function, hormonal status, sexual behaviour and fertility. Two wide ranges of doses, low and high, were tested. Female Wistar rats were treated daily with DEHP and peanut oil (vehicle control) by gavage from gestation day 6 to lactation day 21. The low-doses were 0.015, 0.045, 0.135, 0.405 and 1.215 mg DEHP/kg body weight (bw)/day, and the high-doses were 5, 15, 45, 135 and 405 mg DEHP/kg bw/day. A reduction in daily sperm production of 19-25% in relation to control was observed in animals exposed to 15, 45, 135 and 405 mg/kg/day. Quantitation of specific cell types shows that the observed effects in daily sperm production are not related to changes in the number of Sertoli cells or their capability to support early stages spermatocytes. A low incidence of cryptorchidism was observed in DEHP exposed groups with a lowest observed adverse effect level of 5mg/kg/day. Serum testosterone concentration was similar to control at most doses but was significantly increased at 0.045, 0.405 and 405 mg DEHP/kg/day. In spite of this effect, the weight of seminal vesicle with coagulating glands was significantly reduced at 405 mg/kg/day. Testis, epididymis and prostate weights were similar among groups. Fertility and sexual behaviour were not affected by DEHP treatment at any dose. Overall, our results show that in utero and lactational DEHP exposure reduces daily sperm production and has the potential to induce reproductive tract abnormalities (of which cryptorchidism seems to be the most sensitive in our rat strain) in male offspring rats. The lowest observed adverse effect levels (LOAELs) for these effects were 15 and 5 mg/kg/day, respectively. Therefore, the no observed adverse effect level (NOAEL) for this study can be set at 1.215 mg/kg/day.  相似文献   

16.
The disposition of the plasticizer di-(2-ethylhexyl) phthalate (DEHP) and four of its major metabolites was studied in male rats given single infusions of a DEHP emulsion in doses of 5, 50 or 500 mg DEHP/kg body weight. Plasma concentrations of DEHP and metabolites were followed for 24 h after the start of the infusion. The kinetics of the primary metabolite mono-(2-ethylhexyl) phthalate (MEHP) was studied separately.The concentrations of DEHP in plasma were at all times considerably higher than those of MEHP, and the concentrations of MEHP were much higher than those of the other investigated metabolites. In animals given 500 mg DEHP/kg, the areas under the plasma concentration-time curves (AUCs) of the other investigated metabolites were at most 15% of that of MEHP. Parallel decreases in the plasma concentrations of DEHP, MEHP and the and (-1) oxidized metabolites indicated that the elimination of DEHP was the rate-limiting step in the disposition of the metabolites. This was partly supported by the observation that the clearance of MEHP was higher than that of DEHP. Nonlinear increases in the AUCs of DEHP and MEHP indicated saturation in the formation as well as the elimination of the potentially toxic metabolite MEHP.  相似文献   

17.
F344 male rats were given five consecutive weekly subcutaneous injections of folic acid for induction of chronic renal dysfunction and then di(2-ethylhexyl)phthalate (DEHP) or di(2-ethylhexyl)adipate (DEHA) in the diet at a concentration of 0, 6000 or 25,000 ppm for 4 weeks in order to investigate whether male reproductive toxicity of the two chemicals might be enhanced under conditions of renal disease. Control animals also received DEHP or DEHA in the same manner but without folic acid pretreatment. Decreased testicular weights, seminiferous atrophy with vacuolization of sertoli cells and diminished sperm counts were more prominent in rats given folic acid and then 25,000 ppm DEHP as compared to those exposed to DEHP alone. No such reproductive toxicity was evident in rats given 6000 ppm DEHP or either dose of DEHA. An increased concentration of the mono-derivative of DEHP (mono(2-ethylhexyl)phthalate, MEHP) in the blood, testis and urine was considered relevant to the enhanced reproductive toxicity observed with DEHP.  相似文献   

18.
Chronic toxicity of di(2-ethylhexyl)phthalate in mice.   总被引:4,自引:0,他引:4  
B6C3F1 mice were treated with 0, 100, 500, 1500, or 6000 ppm di(2-ethylhexyl)phthalate (DEHP) in the diet for up to 104 weeks. Blood and urine were analyzed at Weeks 26, 52, 78, and 104 from 10 animals per sex per group. Body weights and food consumption were measured weekly for the first 16 weeks, then monthly thereafter. Survival was reduced for mice receiving 6000 ppm DEHP. Overall weight gains were significantly lower for the 6000-ppm male group, but there was no difference among female groups. Food consumption was not affected by exposure. No biologically significant changes in clinical chemistry, hematology, or urinalysis were observed. After 104 weeks of exposure, kidney weights for the 500- and 1500-ppm male, and 6000-ppm male/female groups were significantly lower than for the controls. Significantly higher liver weight was seen for the 500-, 1500-, and 6000-ppm male groups and the 6000-ppm female group of mice. Testis weights for the 500-, 1500-, and 6000-ppm males were significantly lower than for the controls. Uterine weights for the 6000-ppm group were significantly lower than for the controls. All organs were examined for histopathology. The incidence of hepatocellular lesions has been reported separately (R. M. David et al., 1999. Toxicol. Sci. 50, 195-205). Tumors were observed at > or = 500-ppm dosages, where peroxisome proliferation was significantly increased. A NOEL for both tumors and peroxisome proliferation was 100 ppm. In the study presented here, bilateral hypospermia in the testes of male mice, hepatocyte pigmentation and cytoplasmic eosinophilia in the liver, and chronic progressive nephropathy of male and female mice were observed at 6000 ppm. Hypospermia and chronic progressive nephropathy were also observed at 1500 ppm, where peroxisome proliferation was 2.7-6.8-fold higher than controls. Many lesions observed in rats were not seen in mice. A dose level of 500 ppm (98.5-116.8 mg/kg/day) was identified as a no-observed-adverse-effect level (NOAEL) for noncarcinogenic effects.  相似文献   

19.
Butyl benzyl phthalate (BBP) was administered in the diet at 0, 750, 3750, and 11,250 ppm ad libitum to 30 rats per sex per dose for two offspring generations, one litter/breeding pair/generation, through weaning of F2 litters. Adult F0 systemic toxicity and adult F1 systemic and reproductive toxicity were present at 11,250 ppm (750 mg/kg per day). At 11,250 ppm, there were reduced F1 and F2 male anogenital distance (AGD) and body weights/litter during lactation, delayed acquisition of puberty in F1 males and females, retention of nipples and areolae in F1 and F2 males, and male reproductive system malformations. At 3750 ppm (250 mg/kg per day), only reduced F1 and F2 offspring male AGD was present. There were no effects on parents or offspring at 750 ppm (50 mg/kg per day). The F1 parental systemic and reproductive toxicity no observable adverse effect level (NOAEL) was 3750 ppm. The offspring toxicity NOAEL was 3750 ppm. The offspring toxicity no observable effect level (NOEL) was 750 ppm, based on the presence of reduced AGD in F1 and F2 males at birth at 3750 ppm, but no effects on reproductive development, structures, or functions.  相似文献   

20.
In an attempt to establish which compound or compounds are responsible for the testicular damage observed after administration of di-(2-ethylhexyl) phthalate (DEHP) in rats, the effects of the parent compound and five of its major metabolites (mono-(2-ethylhexyl) phthalate (MEHP), 2-ethylhexanol (2-EH), mono-(5-carboxy-2-ethylpentyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate and mono-(2-ethyl-5-hydroxyhexyl) phthalate) were investigated in vivo and in vitro. The concentrations of MEHP and the three MEHP-derived metabolites in plasma were determined after single and multiple oral doses of DEHP. The plasma concentrations and areas under the plasma concentration-time curves (AUC's) of each of the MEHP-derived metabolites were considerably lower than those of MEHP both after single and after repeated administration of 2.7 mmol of DEHP/kg body weight. The mean elimination half-life of MEHP was significantly shorter in animals given repetitive doses than in those given a single dose, but there was no statistically significant difference between the mean AUC values. No testicular damage was observed in young rats given oral doses of 2.7 mmol of DEHP or 2-EH/kg body weight daily for five days. In animals which received corresponding doses of MEHP the number of degenerated spermatocytes and spermatids was increased, whereas no such effects were found in animals given the MEHP-derived metabolites. MEHP was also the only compound that enhanced germ cell detachment from mixed primary cultures of Sertoli and germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号