首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 2 毫秒
1.

Background

Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC.

Methods

We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project.

Results

MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients.

Conclusions

Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients.  相似文献   

2.

Background

It is generally acknowledged that miRNAs play pivotal roles in the initiation and development of cancer. The aim of the current study is to investigate the clinicopathological role of miR-136-5p in lung adenocarcinoma and its underlying molecular mechanism.

Materials and methods

Data of a cohort of 1242 samples were provided by the Gene Expression Omnibus and The Cancer Genome Atlas to evaluate miR-136-5p expression in lung adenocarcinoma. A comprehensive meta-analysis integrating the expression data from all sources was performed, followed by a summary receiver operating curve plotted to appraise the upregulated expression of miR-136-5p in lung adenocarcinoma. Candidate targets of miR-136-5p were launched by the intersection of differentially expressed genes in The Cancer Genome Atlas and genes predicted by 12 web-based platforms. Then, hub genes were illustrated by a protein-protein interaction network. Furthermore, Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and Protein Analysis Through Evolutionary Relationships analyses of potential target genes were carried out via bioinformatics tools.

Results

MiR-136-5p expression was upregulated in lung adenocarcinoma versus normal tissues (standard mean difference?=?0.43, 95% confidence interval: 0.27-0.58). The summary receiver operating characteristic curve further verified the upregulation of miR-136-5p in lung adenocarcinoma (area under curve?=?0.7459). A total of 311 candidate target genes of miR-136-5p were gathered to create a protein-protein interaction network. Molecular mechanism analysis unveiled the potential miR-136-5p target genes participated in cell adhesion molecules, focal adhesion, complement and coagulation cascades and blood coagulation.

Conclusion

MiR-136-5p is overexpressed in lung adenocarcinoma and is involved in the molecular mechanism of lung adenocarcinoma via suppressing the expressions of downstream targets, especially claudin-18, sialophorin and syndecan 2 that participate in cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号