首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omenn syndrome (OS) is a form of severe combined immunodeficiency (SCID) characterized by erythrodermia, hepatosplenomegaly, lymphadenopathy, and alopecia. In patients with OS, B cells are mostly absent, T-cell counts are normal to elevated, and T cells are frequently activated and express a restricted T-cell receptor (TCR) repertoire. Thus far, inherited hypomorphic mutations of the recombination activating genes either 1 or 2 (RAG1/2) have been detected in most OS patients. We have recently experienced a rare case of OS showing the revertant mosaicism due to multiple second-site mutations leading to typical OS clinical features with RAG1-deficient SCID. In this review, we will focus on the variation of several phenotypes of OS.  相似文献   

2.
Omenn syndrome (OS) is a rare primary immunodeficiency characterized by the presence of activated/oligoclonal T cells, eosinophilia, and the absence of circulating B cells. OS patients carry leaky mutations of recombination activating genes (RAG1 or RAG2) resulting in partial V(D)J recombination activity, whereas null mutations cause severe combined immunodeficiency with absence of mature T and B cells (T-B- SCID). Here we describe somatic mosaicism due to multiple second-site mutations in a patient with RAG1 deficiency. We found that he is homozygous for a single base deletion in the RAG1 gene, which results in frameshift and likely abrogates the protein function. However, the patient showed typical OS features. Molecular analysis revealed that several second-site mutations, all of which restored the RAG1 reading frame and resulted in missense mutations, were demonstrated in his T cells. These findings suggest that his revertant T-cell mosaicism is responsible for OS phenotype switched from T-B- SCID.  相似文献   

3.
Severe Combined Immunodeficiency (SCID), characterized by a profound decrease in both the number and function of T cells, is related to more than 20 different mutations. Recombination-activating gene (RAG) 1 and 2 seem to be two of the most common forms presenting with various manifestations, including typical SCID, Omenn syndrome (OS), atypical SCID (AS), or delayed onset combined immunodeficiency with granulomas. One interesting manifestation in RAG mutation is the change in the immunophenotype over time, even after hematopoietic stem cell transplantation (HSCT). As bone marrow transplantation (BMT) is the only curative treatment of SCID, it is necessary to differentiate between SCID and OS due to the different conditioning regimens (CR). We present a novel case of atypical SCID (SCID manifestations with more than 300 CD3+T cells) caused by RAG 2 gene mutation whose immunophenotype changed to atypical Omenn syndrome (all Omenn syndrome manifestations except rash, eosinophilia, and elevated IgE) over time.Differentiation of leaky SCID, SCID and Omenn syndrome in RAG mutation genes and overlap manifestations is important in treatment plan and prognosis.  相似文献   

4.
Severe combined immunodeficiency (SCID) comprises a heterogeneous group of primary immunodeficiencies, a proportion of which are due to mutations in either of the 2 recombination activating genes (RAG)-1 and -2, which mediate the process of V(D)J recombination leading to the assembly of antigen receptor genes. It is reported here that the clinical and immunologic phenotypes of patients bearing mutations in RAGs are more diverse than previously thought and that this variability is related, in part, to the specific type of RAG mutation. By analyzing 44 such patients from 41 families, the following conclusions were reached: (1) null mutations on both alleles lead to the T-B-SCID phenotype; (2) patients manifesting classic Omenn syndrome (OS) have missense mutations on at least one allele and maintain partial V(D)J recombination activity, which accounts for the generation of residual, oligoclonal T-lymphocytes; (3) in a third group of patients, findings were only partially compatible with OS, and these patients, who also carried at least one missense mutation, may be considered to have atypical SCID/OS; (4) patients with engraftment of maternal T cells as a complication of a transplacental transfusion represented a fourth group, and these patients, who often presented with a clinical phenotype mimicking OS, may be observed regardless of the type of RAG gene mutation. Analysis of the RAG genes by direct sequencing is an effective way to provide accurate diagnosis of RAG-deficient as opposed to RAG-independent V(D)J recombination defects, a distinction that cannot be made based on clinical and immunologic phenotype alone.  相似文献   

5.
Mutations of the RAG1 or RAG2 protein that eliminate their recombination activity result in T-B-severe combined immunodeficiency (SCID), whereas mutations retaining partial recombination activity lead to Omenn syndrome, a peculiar SCID characterized by increased host T cells and absence of circulating B cells. The prognosis of this disease is fatal, unless hematopoietic stem cell transplantation is performed. This study reports a case of atypical SCID, carrying RAG1 mutations. The patient survived for 6 years without hematopoietic stem cell transplantation. The missense mutation, tested by in vivo recombination assay, revealed residual recombination activity. By the age of 5 years, the patient developed host B cells, but not T cells, possibly due to engrafted maternal T cells. In addition, the host B cells were able to produce antibodies, including anti-herpes simplex virus-antibodies. The fact that host B cells could produce antibodies in this patient could explain not only the mild phenotype observed but also, at least in part, how patients with Omenn syndrome produce immunoglobulin E and sometimes immunoglobulin M, as the same missense mutation of RAG1 gene has been reported in a patient with Omenn syndrome.  相似文献   

6.
Omenn syndrome (OS) is a rare disorder within the combined immunodeficiency family that is characterized by a diffuse exudative, erythematous rash, lymphadenopathy, hepatosplenomegaly, alopecia, and failure to thrive. Specific lab findings unique to OS include hypereosinophilia, elevated IgE, excess production of oligoclonal T-cells and near-to-absent B-cells. Much remains elucidated about the underlying genetic cause of OS. Until recently, it was felt that the disease was primarily caused by mutations of the RAG1 or RAG2 genes. The type of mutation of the RAG1 and RAG2 genes in patients with OS affects the degree of functioning variable (diversity) joining [V(D)J] recombination activity, which is critical to the development of lymphoid cell receptor diversity. New work has also shown that thymic tissue in OS patients demonstrates a severe defect in the expression of the autoimmune regulator element. This may contribute to the development of autoreactive T-cells that are felt to be the causative agent of a number of the clinical hallmarks unique to OS. The genetic spectrum of OS was further expanded when a patient with clinical and immunologic features consistent with OS, without RAG mutation, was found to have mutations in both alleles coding for ARTEMIS, a key V(D)J recombination/DNA repair factor. Regardless of the underlying cause, early recognition is critical because patients die at a very young age without bone marrow transplantation. We describe an infant diagnosed with OS post-mortem in which death was directly related to the development of necrotizing enterocolitis.  相似文献   

7.
Hypomorphic mutations of the RAG genes in humans are associated with a spectrum of clinical and immunologic presentations that range from T(-) B(-) severe combined immune deficiency (SCID) to Omenn syndrome. In most cases, residual V(D)J recombination activity allows for development of few T-cell clones, which expand in the periphery and infiltrate target organs, resulting in tissue damage. Invariant natural killer T (iNKT) cells play an important immunoregulatory role and have been associated with protection against autoimmunity. We now report on 5 unrelated cases of combined immune deficiency due to hypomorphic RAG mutations, and demonstrate the absence of iNKT cells in all 5 patients. These findings suggest that lack of this important immunoregulatory cell population may contribute to the pathophysiology of Omenn syndrome.  相似文献   

8.
Ege M  Ma Y  Manfras B  Kalwak K  Lu H  Lieber MR  Schwarz K  Pannicke U 《Blood》2005,105(11):4179-4186
Omenn syndrome (OS) is characterized by severe combined immunodeficiency (SCID) associated with erythrodermia, hepatosplenomegaly, lymphadenopathy, and alopecia. In patients with OS, B cells are mostly absent, T-cell counts are normal to elevated, and T cells are frequently activated and express a restricted T-cell receptor (TCR) repertoire. Thus far, inherited hypomorphic mutations of the recombination activating genes 1 and 2 (RAG1/2) have been described in OS. We report on a first patient with clinical and immunologic features of OS caused by hypomorphic ARTEMIS mutations. The patient's T cells expressed alpha/beta receptors with an oligoclonal repertoire but normal V(D)J recombination coding joints. Sequencing of the ARTEMIS gene revealed a compound heterozygosity in this nonhomologous end-joining (NHEJ) factor, explaining the enhanced radiosensitivity of the patient's primary dermal fibroblasts. The maternal allele contained a null mutation within the active center, whereas the expression of the paternal allele with a start codon (AUG to ACG) mutation partially restored V(D)J recombination and ARTEMIS function in vivo and in vitro.  相似文献   

9.
The proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the 5' part of the RAG1 gene. The patient carrying this 631delT RAG1 gene mutation died at the age of 5 weeks from an Omenn syndrome-like T(+)/B(- )severe combined immunodeficiency disease. The high number of blood T-lymphocytes (55 x 10(6)/mL) showed an almost polyclonal TCR gene rearrangement repertoire not of maternal origin. In contrast, B-lymphocytes and immunoglobulin gene rearrangements were hardly detectable. We showed that the 631delT RAG1 gene can give rise to an N-terminal truncated RAG1 protein, using an internal AUG codon as the translation start site. Consistent with the V(D)J recombination in T cells, this N-terminal truncated RAG1 protein was active in a plasmid V(D)J recombination assay. Apparently, the N-terminal truncated RAG1 protein can recombine TCR genes but not immunoglobulin genes. We conclude that the N-terminus of the RAG1 protein is specifically involved in immunoglobulin gene rearrangements.  相似文献   

10.
Recombination activating gene (RAG) 1 and RAG2 together catalyze V(D)J gene rearrangement in lymphocytes as the first step in the assembly and maturation of antigen receptors. RAG2 contains a plant homeodomain (PHD) near its C terminus (RAG2-PHD) that recognizes histone H3 methylated at lysine 4 (H3K4me) and influences V(D)J recombination. We report here crystal structures of RAG2-PHD alone and complexed with five modified H3 peptides. Two aspects of RAG2-PHD are unique. First, in the absence of the modified peptide, a peptide N-terminal to RAG2-PHD occupies the substrate-binding site, which may reflect an autoregulatory mechanism. Second, in contrast to other H3K4me3-binding PHD domains, RAG2-PHD substitutes a carboxylate that interacts with arginine 2 (R2) with a Tyr, resulting in binding to H3K4me3 that is enhanced rather than inhibited by dimethylation of R2. Five residues involved in histone H3 recognition were found mutated in severe combined immunodeficiency (SCID) patients. Disruption of the RAG2-PHD structure appears to lead to the absence of T and B lymphocytes, whereas failure to bind H3K4me3 is linked to Omenn Syndrome. This work provides a molecular basis for chromatin-dependent gene recombination and presents a single protein domain that simultaneously recognizes two distinct histone modifications, revealing added complexity in the read-out of combinatorial histone modifications.  相似文献   

11.
Omenn syndrome (OS) is an atypical primary immunodeficiency characterized by severe autoimmunity because of activated T cells infiltrating target organs. The impaired recombinase activity in OS severely affects expression of the pre-T-cell receptor complex in immature thymocytes, which is crucial for an efficient development of the thymic epithelial component. Anti-CD3ε monoclonal antibody (mAb) treatment in RAG2(-/-) mice was previously shown to mimic pre-TCR signaling promoting thymic expansion. Here we show the effect of anti-CD3ε mAb administration in the RAG2(R229Q) mouse model, which closely recapitulates human OS. These animals, in spite of the inability to induce the autoimmune regulator, displayed a significant amelioration in thymic epithelial compartment and an important reduction of peripheral T-cell activation and tissue infiltration. Furthermore, by injecting a high number of RAG2(R229Q) progenitors into RAG2(-/-) animals previously conditioned with anti-CD3ε mAb, we detected autoimmune regulator expression together with the absence of peripheral immunopathology. These observations indicate that improving epithelial thymic function might ameliorate the detrimental behavior of the cell-autonomous RAG defect. Our data provide important therapeutic proof of concept for future clinical applications of anti-CD3ε mAb treatment in severe combined immunodeficiency forms characterized by poor thymus function and autoimmunity.  相似文献   

12.
A girl presented during childhood with a single course of extensive chickenpox and moderate albeit recurrent pneumonia in the presence of idiopathic CD4+ T lymphocytopenia (ICL). Her clinical condition remained stable over the past 10 years without infections, any granulomatous disease, or autoimmunity. Immunophenotyping demonstrated strongly reduced naive T and B cells with intact proliferative capacity. Antibody reactivity on in vivo immunizations was normal. T-cell receptor-Vβ repertoire was polyclonal with a very low content of T-cell receptor excision circles (TRECs). Kappa-deleting recombination excision circles (KRECs) were also abnormal in the B cells. Both reflect extensive in vivo proliferation. Patient-derived CD34+ hematopoietic stem cells could not repopulate RAG2(-/-)IL2Rγc(-/-) mice, indicating the lymphoid origin of the defect. We identified 2 novel missense mutations in RAG1 (p.Arg474Cys and p.Leu506Phe) resulting in reduced RAG activity. This report gives the first genetic clue for ICL and extends the clinical spectrum of RAG mutations from severe immune defects to an almost normal condition.  相似文献   

13.
SCID disorder is major failure of the immune system, usually genetic. The aim of this study was on mutations detection of RAG1, RAG2, and IL7RG genes in SCID cases. Mutation detection was performed by PCR sequencing. Our results indicated that 13 mutations were found through cases which include 4 mutations in IL7R gene (T661I, I138V, T56A, C57W), 7 mutations in RAG1 (W896X, W204R, M324V, T731I, M1006V, K820R, and R249H), and 2 mutations in RAG2 gene (R229W, ΔT251).  相似文献   

14.
The highly diversified repertoire of antigen receptors in the vertebrate immune system is generated via proteins encoded by the recombination activating genes (RAGs) RAG1 and RAG2 by a process known as variable, diversity, and joining [V(D)J] gene recombination. Based on the study of vertebrate RAG proteins, many hypotheses have been proposed regarding the origin and evolution of RAG. This issue remains unresolved, leaving a significant gap in our understanding of the evolution of adaptive immunity. Here, we show that the amphioxus genome contains an ancient RAG1-like DNA fragment (bfRAG1L) that encodes a virus-related protein that is much shorter than vertebrate RAG1 and harbors a region homologous to the central domain of core RAG1 (cRAG1). bfRAG1L also contains an unexpected retroviral type II nuclease active site motif, DXN(D/E)XK, and is capable of degrading both DNA and RNA. Moreover, bfRAG1L shares important functional properties with the central domain of cRAG1, including interaction with RAG2 and localization to the nucleus. Remarkably, the reconstitution of bfRAG1L into a cRAG1-like protein yielded an enzyme capable of recognizing recombination signal sequences and performing V(D)J recombination in the presence of mouse RAG2. Moreover, this reconstituted cRAG1-like protein could mediate the assembly of antigen receptor genes in RAG1-deficient mice. Together, our results demonstrate that amphioxus bfRAG1L encodes a protein that is functionally equivalent to the central domain of cRAG1 and is well prepared for further evolution to mediate V(D)J recombination. Thus, our findings provide unique insights into the evolutionary origin of RAG1.The adaptive immune system, with the high degree of antigen receptor diversity, gives the host the potential to recognize and evade any invader. Antigen receptor genes are assembled from variable (V), diversity (D), and joining (J) gene segments in a somatic DNA rearrangement reaction termed V(D)J recombination (1, 2), a process mediated by the recombination signal sequences (RSSs) and the proteins encoded by the recombination activating genes (RAGs) RAG1 and RAG2. RSSs that flank the V, D, and J gene segments consist of well conserved heptamer and nonamer sequences that are separated by relatively nonconserved spacer region of 12 or 23 base pairs (12-RSS or 23-RSS, respectively) (3), whereas RAG1 and RAG2 (thereafter referred to as RAG) proteins are responsible for sequence-specific DNA recognition and DNA cleavage. During V(D)J recombination, RAG1 binds to nonamer through its nonamer binding domain (NBD) and RAG2 acts as a regulator for the formation of RSS/RAG complex. Double-strand breaks are then introduced at the heptamer-coding flank border by the RAG1 enzymatic activity, generating covalently sealed hairpin coding ends and blunt 5′-phosphorylated signal ends. Finally, the signal and coding ends are repaired by nonhomologous end joining (NHEJ) machinery (4, 5).RAG-mediated V(D)J recombination is the main mechanism for generating antigen receptor diversity and is the hallmark of jawed vertebrate-specific adaptive immunity (6). Although SpRAG1L and SpRAG2L, a pair of RAG-like genes from the invertebrate purple sea urchin (Strongylocentrotus purpuratus), have been shown to represent ancient homologs of vertebrate RAG1 and RAG2 (7), the earliest known RAG-mediated adaptive immune system was demonstrated in cartilaginous fish, e.g., the horned shark (8). Thus far, no evidence has been provided that supports the existence of functional RAG in either invertebrates or jawless vertebrates.It has been reported that the hypothetical gene bfRAG1L, from the invertebrate amphioxus (Branchiostoma floridae), is a vertebrate RAG1-like DNA fragment (9). Here, we combined bioinformatic and experimental approaches to explore the relationship between bfRAG1L and vertebrate mouse RAG1 from basic structure to recombination function. We showed that bfRAG1L contains a retroviral type II nuclease active site motif, DXN(D/E)XK, and is capable of degrading both DNA and RNA. Moreover, bfRAG1L shares important functional properties with the central domain of cRAG1, and the reconstitution of bfRAG1L into a cRAG1-like protein yielded an enzyme capable of recognizing RSSs and performing V(D)J recombination together with mouse RAG2. Moreover, this reconstituted cRAG1-like protein could mediate antigen receptor gene assembly in RAG1-deficient mice. Our findings suggest that the bfRAG1L DNA fragment is likely an ancient predecessor of vertebrate RAG1 and, thus, provide unique insights into the evolutionary origin of RAG1.  相似文献   

15.
The protein products of the recombination activating genes (RAG1 and RAG2) initiate the formation of immunoglobulin (Ig) and T-cell receptors, which are essential for B- and T-cell development, respectively. Mutations in the RAG genes result in severe combined immunodeficiency disease (SCID), generally characterized by the absence of mature B and T lymphocytes, but presence of natural killer (NK) cells. Biochemically, mutations in the RAG genes result either in nonfunctional proteins or in proteins with partial recombination activity. The mutated RAG genes of 9 patients from 7 families were analyzed for their recombination activity using extrachromosomal recombination substrates, rearrangement of endogenous Ig loci in RAG gene-transfected nonlymphoid cells, or the presence of Ig gene rearrangements in bone marrow (BM). Recombination activity was virtually absent in all 6 patients with mutations in the RAG core domains, but partial activity was present in the other 3 RAG-deficient patients, 2 of them having Omenn syndrome with oligoclonal T lymphocytes. Using 4-color flow cytometry, we could define the exact stage at which B-cell differentiation was arrested in the BM of 5 RAG-deficient SCID patients. In 4 of 5 patients, the absence of recombination activity was associated with a complete B-cell differentiation arrest at the transition from cytoplasmic (Cy) Igmu(-) pre-B-I cells to CyIgmu(+) pre-B-II cells. However, the fifth patient showed low frequencies of precursor B cells with CyIgmu and surface membrane IgM, in line with the partial recombination activity of the patient's mutated RAG gene and the detection of in-frame Ig gene rearrangements in BM.  相似文献   

16.
Omenn's syndrome is an autosomal recessive primary immunodeficiency characterized by variable numbers of T lymphocytes of limited clonality, hypereosinophilia, and high IgE levels with a paradoxical absence of circulating B lymphocytes. We have previously attributed this disorder to missense mutations that render the RAG1/RAG2 recombinase only partially active. Here we report seven Omenn's patients with a novel class of genetic lesions: frameshift mutations within the 5' coding region of RAG1. Interestingly, we demonstrate in transient expression experiments that these frameshift deletion alleles remain partially functional for both deletional and inversional recombination and can hence explain the partial rearrangement phenotype observed in these patients. The rearrangement activity is mediated by truncated RAG1 proteins that are generated by alternative ATG usage 3' to the frameshift deletion and that demonstrate improper cellular localization. Taken together, our results suggest a novel mechanism for the development of immunodeficiency in a subset of Omenn's syndrome patients.  相似文献   

17.
The variable domains of Ig and T-cell receptor genes in vertebrates are assembled from gene fragments by the V(D)J recombination process. The RAG1–RAG2 recombinase (RAG1/2) initiates this recombination by cutting DNA at the borders of recombination signal sequences (RSS) and their neighboring gene segments. The RAG1 protein is also known to contain a ubiquitin E3 ligase activity, located in an N-terminal region that is not strictly required for the basic recombination reaction but helps to regulate recombination. The isolated E3 ligase domain was earlier shown to ubiquitinate one site in a neighboring RAG1 sequence. Here we show that autoubiquitination of full-length RAG1 at this specific residue (K233) results in a large increase of DNA cleavage by RAG1/2. A mutational block of the ubiquitination site abolishes this effect and inhibits recombination of a test substrate in mouse cells. Thus, ubiquitination of RAG1, which can be promoted by RAG1’s own ubiquitin ligase activity, plays a significant role in governing the level of V(D)J recombination activity.V(D)J recombination plays a central role in the production of antigen receptors by recombining V, D, and J gene segments from their genomic clusters to give rise to the highly varied populations of immunoglobulins and T-cell receptors (1). Recombination starts with the introduction of double-strand breaks by the RAG1/RAG2 protein complex at a pair of recombination signal sequences (RSS) (2, 3), distinguished by the length of the spacer DNA separating their conserved heptamer and nonamer elements. Recombination requires one RSS with a 12-base pair spacer and another with a 23-base pair spacer. Each pair of breaks is then processed by the nonhomologous DNA end-joining group of proteins to produce a junction of two segments of coding sequence (a coding joint) and a junction of the two RSSs (a signal joint) (4). The purified RAG1/2 protein complex displays the correct specificity for pairs of RSSs (5, 6), and has thus been used as a model for the initiation of V(D)J recombination. Until recently, the RAG proteins used for these studies have generally been minimal “core” regions of RAG1 and RAG2 (amino acids 384–1,008 of 1,040 in mouse RAG1 and 1–387 of 527 in RAG2), which are sufficient for specific binding and cleavage activity in a purified cell-free system. Ectopic expression of these truncated proteins supports V(D)J recombination in suitable cell lines, although with differences from the full-length proteins that will be discussed here.A complex composed of core RAG1 and RAG2 is more active than its full-length counterpart in cleavage of extrachromosomal substrates in a hamster cell line, but overall recombination is reported to be lower (7), indicating a defect in the stages of recombination subsequent to DNA cleavage. Similarly, mice or pre-B cells missing the RAG2 C-terminal noncore region are defective in the V to DJ recombination step of Ig heavy chain joining, although the earlier D to J joining step is normal (8). The mice also display an increased prevalence of lymphomas (9). A plant homeo domain (PHD) within the RAG2 C terminus is known to bind to chromatin, and specifically to histone 3 trimethylated on lysine 4 (H3K4me3), which is presumably an important step in directing RAG1/2 to loci bearing this “activating” modification (10). The lack of this domain may largely explain the defective functions of the RAG2 core protein. Similarly, although core RAG1 can support D to J rearrangement at the Ig heavy chain locus in RAG1−/− pro-B cells, the level is reduced compared with that of full-length RAG1 (FLRAG1) (11), and deletions of certain smaller regions within the RAG1 N terminus have even greater effects (11). Some naturally occurring truncations of the RAG1 N terminus lead to human immunodeficiency (12). The functions of the parts of RAG1 and RAG2 outside of the catalytically essential cores have been reviewed (13). There is also evidence that the RAG1 and RAG2 C termini interact: DNA cleavage by RAG1/2 combinations containing both regions was greatly reduced but was restored upon addition of an H3K4me3-containing peptide (14). Relief of this autoinhibition may synergize with the chromatin-binding effect of the PHD domain to target recombination to the appropriate loci.The significant modulation of recombination in cells, and/or of DNA cleavage in vitro, by these “dispensable” regions of both RAG1 and RAG2 is further modified by covalent modifications of the proteins, which affect their stability or activity. RAG2 becomes phosphorylated at a specific site in its C terminus (T490) at the G1/S stage of the cell cycle, and is then ubiquitinated by the Skp2-SCF ubiquitin ligase, a central regulator of cell cycle progression, leading to its degradation in S phase (15, 16). Phosphorylation of RAG1 at residue S528 by the AMP-dependent protein kinase has also been described (17), in this case leading to increased activity of RAG1/2 both for cell-free DNA cleavage and for recombination in cells.The N terminus of RAG1 contains a Zn-binding motif (amino acids 264–389) that includes a C3HC4 RING (really interesting new gene) finger motif closely associated with an adjacent C2H2 Zn finger. This domain was shown to have ubiquitin ligase (E3) activity (18, 19), a common feature of RING finger domains, when combined with ubiquitin, the ubiquitin-activating (E1) enzyme, and an appropriate ubiquitin-conjugating (E2) enzyme. A naturally occurring human mutation in this RING finger motif (C328Y) was found to cause the primary immunodeficiency disease Omenn’s syndrome (20). A study of the equivalent mutation in mouse RAG1 (C325Y) showed that it greatly reduced recombination of an extrachromosomal plasmid, as did mutation of the neighboring residue (P326G) (21). Other RING finger residues critical for ubiquitin ligase activity appeared to contribute to robust recombination of extrachromosomal substrates (22). In biochemical experiments carried out with an N-terminal fragment of RAG1 (residues 218–389), the principal site of autoubiquitination was found to be a residue neighboring the RING finger, K233; mutation of this residue (K233M) essentially abolished autoubiquitination of the fragment (18).In this article, we assess the site or sites and extent of autoubiquitination of RAG1, the consequences of this modification for RAG1/RAG2 activity in a cell-free system and in cells, and the functional relationship between this modification and the histone-recognizing PHD domain of RAG2. We prepare FLRAG1 in complex with either full-length RAG2 (FLRAG2) or core RAG2 and find that FLRAG1 undergoes autoubiquitination specifically at K233. The ubiquitination of RAG1 protein enhances coupled cleavage by the RAG1/RAG2 complex of a 12/23 RSS pair by about fivefold. RAG1 autoubiquitination also ap-pears to be important for supporting V(D)J recombination in cells.  相似文献   

18.
Assembly of functional Ig and T cell receptor genes by V(D)J recombination depends on site-specific cleavage of chromosomal DNA by the RAG1/2 recombinase. As RAG1/2 action has mechanistic similarities to DNA transposases and integrases such as HIV-1 integrase, we sought to determine how integrase inhibitors of the diketo acid type would affect the various activities of RAG1/2. Both of the inhibitors we tested interfered with DNA cleavage and disintegration activities of RAG1/2, apparently by disrupting interaction with the DNA motifs bound specifically by the recombinase. The inhibitors did not ablate RAG1/2's transposition activity or capture of nonspecific transpositional target DNA, suggesting this DNA occupies a site on the recombinase different from that used for specific binding. These results further underscore the similarities between RAG1/2 and integrase and suggest that certain integrase inhibitors may have the potential to interfere with aspects of B and T cell development.  相似文献   

19.
V(D)J recombination, the rearrangement of gene segments to assemble Ig and T cell receptor coding regions, is vital to B and T lymphocyte development. Here, we demonstrate that the V(D)J recombinase protein RAG1 undergoes ubiquitylation in cells. In vitro, the RING finger domain of RAG1 acts as a ubiquitin ligase that mediates its own ubiquitylation at a highly conserved K residue in the RAG1 amino-terminal region. Ubiquitylation is best supported by a specific ubiquitin-conjugating enzyme, UbcH3/CDC34, and requires an intact RAG1 RING finger motif. Disruption of the RING finger and certain RAG1 N-terminal truncations are associated with immunodeficiency in human patients, suggesting that RAG1's ubiquitin ligase is required for its biological role in lymphocyte development.  相似文献   

20.
Gene assembly of the variable domain of antigen receptors is initiated by DNA cleavage by the RAG1-RAG2 protein complex at sites flanking V, D, and J gene segments. Double-strand breaks are produced via a single-strand nick that is converted to a hairpin end on coding DNA and a blunt end on the neighboring recombination signal sequence. We demonstrate that the C-terminal regions of purified murine RAG1 (aa 1009-1040) and RAG2 (aa 388-520, including a plant homeodomain [PHD domain]) collaborate to inhibit the hairpinning stage of DNA cleavage. The C-terminal region of RAG2 stabilizes the RAG1/2 heterotetramer but destabilizes the RAG-DNA precleavage complex. This destabilization is reversed by binding of the PHD domain to a histone H3 peptide trimethylated on lysine 4 (H3K4me3). The addition of H3K4me3 likewise alleviates the RAG1/RAG2 C-terminus-mediated inhibition of hairpinning and the PHD-mediated inhibition of transposition activity. Thus a negative regulatory function of the noncore regions of RAG1/2 limits the RAG endonuclease activity in the absence of an activating methylated histone tail bound to the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号