首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary:  The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-γ (PLC-γ), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.  相似文献   

2.
Abl tyrosine kinases in T-cell signaling   总被引:1,自引:1,他引:0  
Summary:  Stimulation of the T-cell antigen receptor (TCR) leads to the activation of signaling pathways that are essential for T-cell development and the response of mature T cells to antigens. The TCR has no intrinsic catalytic activity, but TCR engagement results in tyrosine phosphorylation of downstream targets by non-receptor tyrosine kinases. Three families of tyrosine kinases have long been recognized to play critical roles in TCR-dependent signaling. They are the Src, ζ-associated protein of 70 kDa, and Tec families of kinases. More recently, the Abelson (Abl) tyrosine kinases have been shown to be activated by TCR engagement and to be required for maximal TCR signaling. Using T-cell conditional knockout mice deficient for Abl family kinases, Abl (Abl1) and Abl-related gene (Arg) (Abl2), it was recently shown that loss of Abl kinases results in defective T-cell development and a partial block in the transition to the CD4+CD8+ stage. Abl/Arg double null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Moreover, conditional knockout mice lacking Abl and Arg in T cells exhibit impaired CD8+ T-cell expansion in vivo upon Listeria monocytogenes infection. Thus, Abl kinase signaling is required for both T-cell development and mature T-cell function.  相似文献   

3.
Mutations affecting the Tec kinases Itk and Rlk decrease T cell receptor-induced Ca(2+) mobilization and Erk kinase activation and impair both positive and negative thymic selection. Itk(-/-) and Rlk(-/-)Itk(-/-) mice also have decreased CD4:8 T cell ratios, suggestive of altered CD4:8 lineage commitment. Nonetheless, we find that CD8 single-positive (SP) thymocytes and peripheral CD8(+) T cells in these mice do not resemble conventional CD8(+) T cells. Instead, these cells express memory markers, rapidly produce interferon-gamma, and can be selected on hematopoietically derived cells, similar to MHC class Ib-restricted "innate-type" lymphocytes. Itk deficiency also greatly increases the number of cells selected by MHC class Ib. Expression of a hypersensitive Erk2 mutant partially corrects the CD8(+) T cell phenotypes in Itk(-/-) mice, arguing that altered signaling permits development of this innate-type CD8(+) cell population. Our results suggest that Tec kinases differentially regulate development of conventional versus nonconventional lymphocytes.  相似文献   

4.
Tec kinases, actin, and cell adhesion   总被引:1,自引:0,他引:1  
Summary:  The Tec family non-receptor tyrosine kinases have been recognized for their roles in the regulation of phospholipase C-γ and Ca2+ mobilization downstream from antigen receptors on lymphocytes. Recent data, however, show that the Tec family kinase interleukin-2-inducible T-cell kinase (Itk) also participates in pathways regulating the actin cytoskeleton and 'inside-out' signaling to integrins downstream from the T-cell antigen receptor. Data suggest that Itk may function in a kinase-independent fashion to regulate proper recruitment of the Vav1 guanine nucleotide exchange factor. By enhancing actin cytoskeleton reorganization, recruitment of signaling molecules to the immune synapse, and integrin clustering in response to both antigen and chemokine receptors, the Tec kinases serve as modulators or amplifiers that can increase the duration of T-cell signaling and regulate T-cell functional responses.  相似文献   

5.
Conformational snapshots of Tec kinases during signaling   总被引:1,自引:1,他引:0  
Summary:  The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein–protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function.  相似文献   

6.
Germinal center kinases (GCKs) participate in a variety of signaling pathways needed to regulate cellular functions including apoptosis, cell proliferation, polarity and migration. Recent studies have shown that GCKs are participants in both adaptive and innate immune regulation. However, the differential activation and regulatory mechanisms of GCKs, as well as upstream and downstream signaling molecules, remain to be fully defined. It remains unresolved whether and how GCKs may cross-talk with existing signaling pathways. This review stresses the progresses in research of GCKs relevant to the immune system.  相似文献   

7.
The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering signalosome assembly and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its ‘scaffolding’ function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation.  相似文献   

8.
张宇  蒋建新  王正国 《免疫学杂志》2002,18(Z1):160-163
近年来,关于脓毒症的发生机制,尤其是细胞内信号转导机制备受人们关注.目前研究表明,丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)可能在介导脓毒症时大量炎性因子的释放中起着重要作用.本文就MAPK信号转导途径在脓毒症过程中的活化、对炎症因子的调控作用以及MAPK信号通路抑制剂在脓毒症中的应用作一综述.  相似文献   

9.
T-cell receptor signaling to integrins   总被引:1,自引:0,他引:1  
Summary:  Integrin adhesion receptors are critical for antigen recognition by T cells and for regulated recirculation and trafficking into and through various tissues in the body. T-cell receptor (TCR) signaling induces rapid increases in integrin function that facilitate T-cell activation by promoting stable contact with antigen-presenting cells and extracellular proteins in the environment. In this review, we outline the molecular mechanisms by which the TCR signals to integrins and present a model that highlights four key events: (i) initiation of proximal TCR signals nucleated by the linker for activated T cells (LAT) adapter protein and involving Itk, phospholipase C-γ1, Vav1, and Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa; (ii) transmission of integrin activation signals from the LAT signalosome to integrins by protein kinase (PK) C and the adapter protein, adhesion and degranulation-promoting adapter protein; (iii) assembly of integrin-associated signaling complexes that include PKD, the guanosine triphosphatase Rap1 and its effectors, and talin; and (iv) reorganization of the actin cytoskeleton by WAVE2 and other actin-remodeling proteins. These events coordinate changes in integrin conformation and clustering that result in enhanced integrin functional activity following TCR stimulation.  相似文献   

10.
Dar WA  Knechtle SJ 《Immunology》2007,120(4):467-485
The chemokine receptor CXCR3 is critical for the function of activated T cells. We studied the molecular mechanisms of CXCR3 signalling. The addition of CXCR3 ligands to normal human T cells expressing CXCR3 led to the tyrosine phosphorylation of multiple proteins. Addition of the same ligands to Jurkat T cells engineered to express CXCR3 induced tyrosine phosphorylation of proteins with molecular weights similar to those in normal cells. Immunoblotting with phosphotyrosine-specific antibodies identified Zeta-associated protein of 70,000 molecular weight (ZAP-70), linker for the activation of T cells (LAT), and phospholipase-C-gamma1 (PLCgamma1) to be among the proteins that become phosphorylated upon CXCR3 activation. ZAP-70 was phosphorylated on tyrosine 319, LAT on tyrosines 171 and 191, and PLCgamma1 on tyrosine 783. The ZAP-70 inhibitor piceatannol reduced CXCR3-mediated tyrosine phosphorylation of ZAP-70, LAT, PLCgamma1 and mitogen-activated protein kinase Erk and it reduced CXCL10-mediated chemotaxis of both CXCR3-transfected Jurkat T cells and normal T cells expressing CXCR3. These results are consistent with the involvement of ZAP-70 in CXCR3-mediated protein tyrosine phosphorylation and CXCR3-induced T-cell chemotaxis. Studies with the Lck-deficient Jurkat T-cell line, JCAM1.6, demonstrated that phosphorylation of ZAP-70 after CXCR3 activation is a Lck-dependent process. Finally, stimulating CXCR3-expressing Jurkat T cells and normal T cells expressing CXCR3 through the T-cell receptor attenuated CXCR3-induced tyrosine phosphorylation and CXCR3-mediated T-cell migration, indicating the occurrence of cross-talk between T-cell receptor and CXCR3-signalling pathways. These results shed light on the mechanisms of CXCR3 signalling. Such information could be useful when designing therapeutic strategies to regulate T-cell function.  相似文献   

11.
Janus kinases in immune cell signaling   总被引:2,自引:1,他引:1  
Summary:  The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jaks in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical disorders, which are also evident in mouse models. A striking phenotype associated with inactivating Jak3 mutations is severe combined immunodeficiency syndrome, whereas mutation of Tyk2 results in another primary immunodeficiency termed autosomal recessive hyperimmunoglobulin E syndrome. By contrast, complete deletion of Jak1 or Jak2 in the mouse are not compatible with life and, unsurprisingly, do not have counterparts in human disease. However, activating mutations of each of the Jaks are found in association with malignant transformation, the most common being gain-of-function mutations of Jak2 in polycythemia vera and other myeloproliferative disorders. Our existing knowledge on Jak signaling pathways and fundamental work on their biochemical structure and intracellular interactions allow us to develop new strategies for controlling autoimmune diseases or malignancies by developing selective Jak inhibitors, which are now coming into clinical use. Despite the fact that Jaks were discovered only a little more than a decade ago, at the time of writing there are 20 clinical trials underway testing the safety and efficacy of Jak inhibitors.  相似文献   

12.
Previous studies have shown that a synthetic peptide (core peptide, CP) corresponding to a 9-amino-acid region in the transmembrane domain of the alpha subunit of the T-cell antigen receptor (TCR) can suppress T-cell function in vitro and in vivo. The aim of these experiments was to determine the cellular site and molecular mechanism of CP inhibition in T cells. The cytochrome c-sensitive TCR-expressing hybridoma (2B4) was stimulated with pigeon cytochrome c antigen, anti-CD3 crosslinking, or PMA and ionomycin, in the presence or absence of CP, and the resulting IL-2 produced was measured in a bioassay using an IL-2-dependent cell line (CTLL-2). In the presence of CP, IL-2 production was inhibited following antigen-induced stimulation. By contrast, when stimulated with cross-linking antibodies to the CD3 complex or with PMA and ionomycin, both of which activate T cells downstream of the TCR antigen recognition site, CP had no effect on IL-2 production. These experiments suggest that CP interferes with TCR function by inhibiting T-cell activation at the transmembrane/receptor level. In addition, we show that CP inhibits early TCR signal transduction events such as TCR zeta chain phosphorylation following stimulation with either antigen or anti-CD3-crosslinking antibodies, although this is unlikely to be the mechanism leading to the reduced IL-2 production.  相似文献   

13.
Ligation of T cell receptor (TCR) alone is insufficient to induce full activation of T lymphocytes. Additional ligand-receptor interactions (costimulation) on antigen presenting cells (APCs) and T cells are required. T cell costimulation has been shown to be essential for eliciting efficient T cell responses, involving all phases during T cell development. However, the mechanisms by which costimulation affects the function of T cells still need to be elucidated. In recent years, advances have been made in studies of costimulation as potential therapies in cancer, infectious disease as well as autoimmune disease. In this review, we discussed intracellular costimulation signals that regulate T cell proliferation, cell cycle progression, cytokine production, survival, and memory development. In general, the pathway of phosphoinositide-3 kinase (PI3K)/protein kinase B (PKB, also known as Akt)/nuclear factor κB (NF-κB) might be central to many costimulatory effects. Through these pathways, costimulation controls T-cell expansion and proliferation by maintenance of survivin and aurora B expression, and sustains long-term T-cell survival and memory development by regulating the expression of bcl-2 family members. Cellular & Molecular Immunology. 2008;5(4):239-247.  相似文献   

14.
Signal initiation in T-cell receptor microclusters   总被引:1,自引:0,他引:1  
Summary: Although dynamic imaging technologies have provided important insights into the underlying processes responsible for T-cell activation, the processes that link antigen recognition to downstream signaling remain poorly defined. Converging lines of inquiry indicate that T-cell receptor (TCR) microclusters are the minimal structures capable of directing effective TCR signaling. Furthermore, imaging studies have determined that these structures trigger the assembly of oligomeric signaling scaffolds that contain the adapters and effectors required for T-cell activation. Existing models of T-cell activation accurately explain the sensitivity and selectivity of antigen recognition. However, these models do not account for important properties of microclusters, including their peripheral formation, size, and movement on the actin cytoskeleton. Here we examine how lipid rafts, galectin lattices, and protein scaffolds contribute to the assembly, function, and fate of TCR microclusters within immune synapses. Finally, we propose a 'mechanical segregation' model of signal initiation in which cytoskeletal forces contribute to the lateral segregation of molecules and cytoskeletal scaffolds provide a template for microcluster assembly.  相似文献   

15.
Summary: Both diacylglycerol (DAG) and phosphatidic acid (PA) are important second messengers involved in signal transduction from many immune cell receptors and can be generated and metabolized through multiple mechanisms. Recent studies indicate that diacylglycerol kinases (DGKs), the enzymes that catalyze phosphorylation of DAG to produce PA, play critical roles in regulating the functions of multiple immune cell lineages. In T cells, two DGK isoforms, α and ζ, inhibit DAG-mediated signaling following T-cell receptor engagement and prevent T-cell hyperactivation. DGK α and ζ synergistically promote T-cell anergy and are critical for T-cell tolerence. In mast cells, DGKζ plays differential roles in their activation by promoting degranulation but attenuating cytokine production following engagement of the high affinity receptor for immunoglobulin E. In dendritic cells and macrophages, DGKζ positively regulates Toll-like receptor-induced proinflammatory cytokine production through its product PA and is critical for host defense against Toxoplama gondii infection. These studies demonstrate pivotal roles of DGKs in regulating immune cell function by acting both as signal terminator and initiator.  相似文献   

16.
17.
We recently reported a gene encoding the human CDw108, a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein that is preferentially expressed on activated T lymphocytes and erythrocytes. The present study investigated the expression of CDw108 on various tissues and cells, particularly on T cells during development. The murine CDw108 cDNA was cloned initially, and it was highly homologous to the human CDw108 (88.0% or 89.3% similarity at the nucleotide or amino acid level, respectively) or identical to the murine semaphorin K1/Sema7A. The CDw108 mRNA was demonstrated in a few tissues including thymus and brain with the highest expression coming on day 7 in whole embryo followed by relatively consistent expression during development. Cell-surface expression of the CDw108 during T-cell development was further examined by flow cytometry in the human umbilical cord blood and thymus. It was preferentially expressed on a CD34+ stem cell population of umbilical cord blood, and CD3dull CD34+/- CD117 (c-kit)+ CD4bright CDbright cells in the thymus that are involved in the stage of positive selection. These results suggest the contribution of CDw108 in T-cell development, especially in the stage of positive selection in the thymus.  相似文献   

18.
Acrosome reaction (AR) is an exocytotic process of fundamental importance for the spermatozoon to fertilize the oocyte. The mechanisms mediating this process are only partially defined. The aim of the present study was to investigate the role of various kinases and the extracellular signal-regulated kinase (ERK) pathway in the induction of the AR and associated phosphorylation of tyrosine (Tyr) residues and of the threonine-glutamic acid-tyrosine (Thr-Glu-Tyr) motif that occurs in 80 and 105 kDa proteins (p80/p105). Human spermatozoa were capacitated and AR was induced with lysophosphatidylcholine in the presence of inhibitors of various kinases and of the ERK pathway. Phosphorylation of Tyr and of Thr-Glu-Tyr peaked 15 min after the induction of the AR. Both phosphorylations were prevented by inhibitors of protein kinase C, MEK, phosphoinositide 3-kinase and Akt but not by protein kinase A inhibitors. Phosphorylation of Thr-Glu-Tyr, but not Tyr, was decreased by inhibitors of protein tyrosine kinase and Grb2-SH2. All the inhibitors prevented lysophosphatidylcholine-induced AR, indicating the involvement of PKC, PKA, PTK, PI3K, Akt and the ERK pathway. These results show that phosphorylation of Tyr and Thr-Glu-Tyr are associated with the AR and are differently regulated by the various kinases emphasing the complexity of this process.  相似文献   

19.
Autoimmune Lymphoproliferative Syndrome (ALPS) is a disorder of defective lymphocyte apoptosis due to mutations of the Fas receptor and other molecules in the Fas signaling pathway. In addition to accumulation of CD4(-) CD8(-) double-negative (DN) T cells, many patients display a dysregulated cytokine pattern with dysfunctional T cells, suggesting Fas defects may impact pathways of T-cell activation/differentiation. Here, we report two novel mutations in the Fas receptor resulting in an ALPS phenotype. Utilizing flow cytometry, we found anti-CD3 activated CD4(+) T cells from these patients were incapable of fully upregulating activation markers (CD25, CD69, and CD40L) or producing interferon-gamma and IL-2. Additionally, DN T cells were unable to transduce proximal T-cell antigen receptor signals or produce cytokines. Furthermore, DN T cells overexpressed CD57 and phenotypically resembled end-stage effector cells. As DN T cells were essentially anergic, the clinical manifestations of autoimmunity are more likely to be a consequence of aberrant cytokine secretion within the CD4(+) T-cell subpopulation.  相似文献   

20.
Phosphatidylcholine (PC) is the major phospholipid of pulmonary surfactant and it is hypothesized that PC and its subspecies modulate the functions of alveolar macrophages. The most abundant of these subspecies is dipalmitoylphosphatidylcholine (DPPC). This study was undertaken to determine the effect of PC on monocyte function using a human monocytic cell line, MonoMac-6 (MM6). This study showed that preincubation of MM6 cells with DPPC at 125 microg/ml for 2 h inhibited the oxidative response to either zymosan or phorbol-12-myristate-13-acetate (PMA) by 30% (P < 0.001). This inhibition with DPPC was independent of LPS priming. When DPPC was replaced with 1-palmitoyl-2-arachidonoyl phosphatidylcholine (PAPC) there was no inhibition and in contrast a significant increase in oxidant production was observed. We also demonstrated that total PC (tPC; a heterogeneous species of PC from egg) and DPPC but not PAPC significantly inhibited the release of TNF-alpha from MM6 cells (P < 0.05). DPPC did not inhibit phosphorylation of the mitogen activated protein kinases (MAPKs) p44/p42 or p38 in stimulated cells. Measurements of membrane fluidity with spin label EPR spectroscopy indicate that DPPC incorporation significantly alters the membrane fluidity of MM6 cells. These results suggest that DPPC, the major component of pulmonary surfactant, may play a role in modulating leucocyte inflammatory responses in the lung. This may in part be related to membrane effects but does not include alterations in p44/p42 or p38 MAPK signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号