首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
背景:组织工程韧带由于具有自我更新和改建能力,生物力学性能优良,从而克服了现有人造韧带的不足,有望成为理想的韧带替代物,且已成为目前韧带修复重建外科领域关注的热点。目的:通过分析和总结1998年以来采用复合培养支架移植修复损伤韧带的研究,以寻求适合组织工程韧带的新型支架材料及适用标准。方法:分别以"韧带、组织工程、支架材料、细胞外基质","Ligament、Tissue Engineering,、Scaffold material、ECM"为检索词,应用计算机检索Pubmed数据库及重庆维普期刊全文数据库1998-01/2009-12有关文章。纳入有关组织工程韧带的文献。排除与研究目的无关和内容重复者。保留31篇文献做进一步分析。结果与结论:韧带和肌腱损伤的治疗已研究较多,但对其修复重建以至完全恢复到受伤前的功能水平,迄今尚未实现。组织工程韧带的出现可能给韧带和肌腱损伤提供理想的治疗途径。组织工程支架材料研究结果报道越来越多,然而均各有利弊,绝大多数还处于研究阶段。目前仍在寻找一种完全合适的支架材料来治疗韧带损伤。  相似文献   

2.
目的:总结修复肌腱损伤的主要组织工程支架材料及研究进展。 方法:由第一作者采用电子检索的方式,在CNKI数据库中检索1902-01/2010-10有关生物材料应用于组织工程肌腱支架的研究文章,关键词为“重建肌腱,生物材料,人工肌腱,组织工程,支架材料”。排除重复研究、普通综述或Meta分析类文章,筛选纳入18篇文献进行评价。 结果:来源于自然界的天然生物材料主要有蚕丝、小肠黏膜下层、胶原、衍生肌腱支架材料等,保留了组织正常的三维网架结构,组织相容性好,但力学性能较差、降解速度快。人工合成高分子材料主要为聚乳酸和聚羟基乙酸、聚乳酸-聚羟基乙酸共聚物、聚磷酸钙纤维等,但存在亲水性低、细胞黏附性能差的不足。 结论:天然及合成高分子材料作为组织工程支架材料都有各自的优缺点,绝大多数还处于研究阶段,尚未应用于临床,因此改进支架材料的性能是目前研究的主要方向之一。  相似文献   

3.
目的:探讨纳米材料的组织工程学特性及其修复运动性韧带损伤的性能评价。方法:以"韧带损伤;纳米材料;修复;组织工程;生物力学"为中文关键词;以:"cruciateligament;nanomaterials;tissue engineering;application;ligamentre construction"为英文关键词,采用计算机检索中国期刊全文数据库(1993-01/2010-04)、PubMed数据库(1993-01/2010-04)相关文章。纳入与纳米材料修复运动性韧带损伤相关的文章;排除重复研究或Meta分析类文章。结果:共纳入相关文献16篇。临床常用的纳米材料有无机纳米材料、高分子有机材料、纳米复合材料及仿生纳米材料。各类纳米材料的组织工程学共性为:①尺寸在纳米量级。②有大量的界面或自由表面。③各纳米单元之间存在着或强或弱的相互作用。从临床应用效果来看,纳米材料可有效修复韧带的损伤。结论:纳米材料在运动性韧带损伤的修复治疗中性能良好,是最具应用潜力的生物材料之一。  相似文献   

4.
目的:评价组织工程人工皮肤替代物各种生物材料的性能和应用,寻找适合人体的替代物。方法:以"组织工程,人工皮肤,支架材料"为中文关键词,"tissue engineering,Artificial skin,intravascular stent"为英文关键词,采用计算机检索1993-01/2009-10相关文章。纳入与有关生物材料与人工皮肤修复相关的文章;排除重复研究或Meta分析类文章。以26篇文献为主重点进行了讨论组织工程人工皮肤替代物及其性能。结果:组织工程人工皮肤是应用组织工程技术将体外培养的上皮细胞和成纤维细胞扩增后,接种于具有良好生物相容性的材料上,经体外培养,形成含有与正常皮肤相似的表皮和真皮结构的皮肤替代物。然后将其移植于皮肤创面处,以实现创伤的修复和重建。将两种或两种以上的材料复合在一起,或对生物材料表面进行各种各样的修饰,促进细胞与材料之间的黏附、提高细胞的生物活性、维持生物功能成为目前组织工程生物材料研究的热点。结论:目前还没有一种人工材料能完全符合组织工程的要求。进一步提高支架材料的微观渗透性和生物活性,促进毛细血管的长入;制备结构仿生支架材料及高活性复合支架材料是今后的研究方向。  相似文献   

5.
背景:组织工程技术的发展为软骨的再生和修复提供了新的途径,根据软骨自身的结构和特点,作为人工软骨的替代材料和支架材料应具有良好的生物力学性能。 目的:总结运动性关节软骨损伤修复材料及其支架材料的应用进展及其生物替代材料的生物力学特征,评价目前组织工程软骨材料应用的性能及发展前景。 方法:以“组织工程;软骨组织;支架材料;生物相容性”为关键词,应用计算机检索维普数据库和PubMed数据库中1990-01/2011-04关于组织工程软骨应用研究的文章,纳入与有关生物材料与组织工程软骨相关的文章;排除重复研究或Meta分析类文章。以24篇文献为主重点进行了讨论组织工程软骨材料的种类、性能及其应用效果和前景。 结果与结论:目前关节软骨修复领域以自体软骨移植效果为最佳,骨髓基质干细胞在离体试验及动物实验中研究较多,在临床应用中较少,尚在探索阶段。支架材料的应用比较繁复,天然材料、人工合成材料以及复合材料都存在一定的不足,虽然复合材料成为研究的热点,但是某些性能并不能很好地符合支架要求,并且在机体内这些材料所带来的长期影响还不能预见,这就迫切需要新材料的出现,来更好地满足组织软骨织支架的要求,达到修复和重建的目的。 关键词:软骨;组织工程;软骨组织;种子细胞;支架材料 doi:10.3969/j.issn.1673-8225.2012.08.036  相似文献   

6.
背景:不同生物材料制备的复合软骨支架其修复软骨缺损也各具特点。 目的:探讨不同生物材料制备复合支架的组织工程学特性及其修复关节软骨缺损的性能评价。 方法:以“软骨组织工程,生物材料,工程软骨,复合支架”为中文关键词,以“tissue enginneering,articular cartilage,scaffold material”为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1993-01/2010-11)相关文章。纳入复合支架材料-细胞复合物修复关节软骨损伤等相关的文章,排除重复研究或Meta分析类文章。 结果与结论:复合支架是当前软骨组织工程中应用较多的支架,它是将具有互补特征的生物相容性可降解支架,按一定比例和方式组合,设计出结构与性能优化的复合支架。较单一支架材料具有更好的生物相容性和一定强度的韧性,较好的孔隙和机械强度。复合支架的制备不仅包括同一类生物材料的复合,还包括不同类别生物材料之间的交叉复合。可分为纯天然支架材料、纯人工支架材料以及天然与人工支架材料的复合等3类。复合支架使生物材料具有互补特性,一定程度上满足了理想生物材料支架应具的综合特点,但目前很多研究仍处于实验阶段,还有一些问题有待于解决,如不同材料的复合比例、复合工艺等。  相似文献   

7.
背景:膝关节交叉韧带损伤后自愈能力较差,治疗上以移植物植入重建交叉韧带为主。目的:总结膝关节前交叉韧带的功能、结构,力学特点,及其缺损后人工韧带重建研究的进展,为人工韧带的临床应用提供依据。方法:作者应用计算机检索数据库,检索关键词"人工合成材料;膝交叉韧带,韧带修复,运动,韧带重建。选择的文献内容与材料学特点、生物相容性及其膝关节韧带损伤相关领域的文章,共引用25篇文献,重点讨论重建膝关节交叉韧带的性能,及其生物材料的种类。结果与结论:前交叉韧带重建作为治疗前交叉韧带损伤的有效治疗手段,近年来发展快速。目前国内外修复前交叉韧带损伤可供选择的移植物有自体组织替代物、同种异体韧带、生物组织工程韧带以及人工韧带等。人工合成材料与组织工程韧带近几年研究较多,生物型人工韧带对膝关节韧带损伤的修复取得了很好的效果。分子生物学技术以及基因学和细胞学在韧带中的运用,为未来膝关节韧带损伤的康复及治疗提供新的研究方向。  相似文献   

8.
目的:分析膝关节韧带急性损伤生物力学特点,并对膝关节前交叉韧带损伤后人工生物材料干预下的治疗机制与康复手段进行分类与归纳。方法:采用电子检索的方式,在万方数据库中检索1996-01/2010-10有关生物材料应用于膝关节前交叉韧带修复的研究文章,关键词为"组织工程,膝关节,韧带,生物材料"。结果:膝关节是人体运动和负重的重要关节,也是落地缓冲的重要装置,由于运动中存在多种内外部因素致使膝关节前交叉韧带损伤较为常见。组织工程学人工韧带是目前研究的热点方向,人们在支架材料的选择和构建的具体方法,种子细胞的分离和培养方法,细胞因子和表面修饰的应用等方面做了大量的研究,目前运用人工材料治疗前后交叉韧带的康复手段日趋成熟和多样,但各种手段往往利弊犹存。结论:虽然目前人工韧带还存在不足之处,还不是理想的移植物,不能完全代替交叉韧带,但是人工韧带为前交叉韧带重建提供了一种选择,是交叉韧带重建进展史中重要的一步,尤其在多种利弊犹存的生物学康复手段中,选择个体适宜的康复措施尤为必要。  相似文献   

9.
背景:在作为种子细胞载体的组织工程支架材料中,纳米材料因具有利于细胞黏附、增殖等一些独特的效应,使其在脊髓损伤修复的研究中将发挥越来越大的作用。目的:通过分析和总结近几年采用纳米支架修复脊髓损伤的文献,寻求适合脊髓组织工程的纳米材料及其适用标准。方法:由第一作者于2010-09应用计算机检索PubMed数据库、万方数据库和维普数据库相关文献。英文资料的检索时间为2000/2009;中文资料的检索时间为2003-01/2010-08。英文检索词为"nanometer scaffold;materials,Spinal cord injury,repair,tissue engineering";中文检索词为"纳米支架,生物材料,脊髓损伤,修复,组织工程"。纳入标准:①纳米支架材料、制备工艺及性能的研究。②组织工程修复脊髓损伤的研究。③动物实验及临床应用方面的文献。经过阅读和筛选,共纳入30篇文章进行讨论分析。结果与结论:与传统的支架材料相比较,纳米支架具有良好的生物降解性能、无免疫原性、可塑性和适宜的力学性能等优异特性,使其在组织工程领域具有十分诱人的应用前景。随着纳米技术的成熟,制备工艺的优化,基因工程的引入,纳米材料安全性能的科学评价等将是纳米级组织工程支架材料未来临床应用的挑战。  相似文献   

10.
目的:探讨复合支架的组织工程学特性及其修复关节软骨缺损的性能评价。 方法:以“关节软骨、生物材料、工程软骨、复合材料、复合支架”为中文关键词,以“ tissue enginneering,articular cartilage,scaffold material”为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1993-01/2010-11)相关文章。纳入复合支架材料-细胞复合物修复关节软骨损伤相关的文章,排除重复研究或Meta分析类文章。 结果:共入选18篇文章进入结果分析。复合支架是当前软骨组织工程中应用较多的支架,它是将具有互补特征的生物相容性可降解支架,按一定比例和方式组合,设计出结构与性能优化的复合支架。较单一支架材料具有显著优越性,具有更好的生物相容性和一定强度的韧性,较好的孔隙和机械强度。复合支架的制备不仅包括同一类生物材料的复合,还包括不同类别生物材料之间的交叉复合。可分为纯天然支架材料、纯人工支架材料以及天然与人工支架材料的复合等3类。 结论:复合支架使生物材料具有互补特性,一定程度上满足了理想生物支架材料应具有的综合特点,但目前很多研究仍处于实验阶段,还有一些问题有待于解决,如不同材料的复合比例、复合工艺等。  相似文献   

11.
背景:阐述组织工程人工材料在韧带修复过程中生物相容性的必要性与重要性。方法:由第一作者应用计算机检索PubMed数据库与CNKI数据库中与韧带急性损伤治疗手段、材料学特点、生物相容性及其应用效果相关的文章。结果:韧带急性损伤后的修复手段中传统疗法较为保守,大多以物理疗法为主,在损伤不太严重的情况下修复效果较好,但对较为严重的韧带断裂或撕裂很难起到良好的修复效果。运用组织工程人工材料对严重的韧带断裂或撕裂进行韧带重建会起到很好的修复效果。在运用组织工程人工材料重建韧带过程中,理想生物材料的选择必须重视其良好的生物相容性,其生物相容性的好坏直接决定着韧带修复的效果,可以说良好的生物相容性应是组织工程治疗手段过程中生物材料选择的基础和必要条件。结论:随着组织工程人工材料研究的进步,在多样化的生物材料中,保证生物材料良好的生物相容性是选择理想材料的基础。  相似文献   

12.
背景:构建组织工程化肌腱的关键是寻找适于肌腱细胞黏附、生长及功能分化的支架材料。 目的:评价不同生物材料在跟腱损伤修复中的效果。 方法:以“生物材料,跟腱,修复” 为关键词在万方数据库中检索1985-01/2011-01关于生物材料治疗跟腱缺损的文章。 结果与结论:陈旧性跟腱断裂难以自行愈合及修复,易遗留疼痛及功能障碍。长期以来,不少学者对跟腱缺损的治疗进行了较多的研究,从自体肌腱移植、同种异体肌腱移植到人工肌腱移植、组织工程肌腱移植等,实践证明这些方法手段都存在一定的优点和缺点。虽然肌腱组织工程中支架材料的研究与应用已经取得了一些成功,但是目前应用的材料或存在生物相容性问题、降解性问题或存在力学性能差、难加工成型等缺陷,与理想的支架材料还存在很大差距。  相似文献   

13.
背景:交叉韧带是膝关节内的核心性稳定结构,具有制导膝关节生理活动并限制非生理性活动的功能,其中前交叉韧带的作用更为重要,其损伤的治疗已成为目前运动医学研究的热点。 目的:探讨前交叉韧带生理功能、损伤机制,综述其修复过程中组织工程化材料的研究成果。 方法:应用计算机检索1990-01/2011-02 PubMed数据库及维普数据库有关前交叉韧带组织工程研究进展、肌腱支架材料生物力学分析、生物材料在肌腱组织工程中应用及组织工程技术在修复肌腱缺损临床应用方面的相关文献,英文检索词“anterior cruciate ligament,biological materials,damage,treatment”,中文检索词“前交叉韧带,生物材料,损伤,治疗”,检索文献量总计102篇。 结果与结论:前交叉韧带损伤后组织工程化康复措施得到了较快发展,从材料的选择来看,单一移植材料难免会存在诸多不足,不利于韧带的康复,复合材料可以结合不同材料的特性对韧带组织工程化材料进行配置,可以弥补单一材料的生物相容性、降解速度、生物力学性能、材料的韧性等不足,另外,对组织工程化材料进行功能结构加工也是尤为重要,这样可以更大程度的为细胞提供吸附、成长和分化的良好环境。同时,基因技术的进步以及各种新型材料的研制,必将在更大程度上满足前交叉韧带康复的需要。  相似文献   

14.
目的:评价组织工程修复神经损伤过程中各种生物材料的性能和应用,寻找生物相容性良好的代替材料。方法:以"组织工程;神经损伤;修复;生物材料,神经细胞;胶原蛋白"为中文关键词;以:"tissue engineering,nerve injury,repair,biological material,collagen protein"为英文关键词,采用计算机检索2006-01/2010-06相关文章。纳入与有关生物材料与组织工程神经相关的文章;排除重复研究或Meta分析类文章。以30篇文献为主重点进行了讨论组织工程神经修复材料的种类及其性能。结果:虽然自体组织材料修复神经缺损效果良好,但其来源有限。同种异体或异种异体材料可扩大材料来源,但是免疫反应会影响其修复神经缺损的效果。不可降解材料往往存在具有毒性、可导致异物反应、阻碍神经生长或者压迫再生组织等缺点,常需二次手术取出,而可降解材料则能克服上述不足。但却存在亲水性不足、细胞黏附力较弱、引起无菌性炎症、机械强度不足等缺点。结论:组织工程神经支架材料近年来发展迅速,到目前为止,还没有发现一种很理想的支架材料。虽然现在天然生物材料成为研究的热点,但是物理机械性能并不能很好地符合支架要求,这就迫切需要新材料的出现,来更好地满足神经支架的要求,达到修复和重建的目的。  相似文献   

15.
背景:从大量研究资料来看,运用组织工程支架材料修复软骨损伤日趋成熟与多样,构建生物特性与正常关节软骨相似的组织工程软骨已经成为目前研究的热点。目的:对软骨生理特点及损伤因素进行探讨,对目前在关节软骨修复中的生物支架材料进行分类和归纳。方法:作者应用计算机检索PubMed数据库(http://www.ncbi.nlm.nih.gov/PubMed)及CNKI数据库(www.cnki.net/index.htm),在标题和摘要中以"Cartilage,Damage,Biological Materials,Suppor"或"软骨,损伤,生物材料,支架"为检索词进行检索。选择文章内容与软骨支架材料治疗手段、材料学特点、生物相容性及其应用效果相关,同一领域文献则选择近期发表或发表在权威杂志文章。共纳入28篇文献。结果:人体软骨组织损伤后自我康复较难,植入组织工程支架材料成为软骨组织修复的重要手段。软骨组织工程支架材料的选择与研制经历了天然材料、合成材料等由单一材料向复合材料研制的快速发展时期,可注射材料、基因技术和纳米材料以及改性修饰材料技术的运用,正成为目前研究的热点和发展趋势。  相似文献   

16.
背景:组织工程技术的发展为半月板损伤的修复和再造开辟了新的途径,利用该技术构建有功能的半月板在防治半月板切除后的并发症中有重要意义。 目的:综述了组织工程材料在半月板运动损伤修复中的可行性及特点。 方法:由第一作者检索1990/2010 PubMed数据库及中国知网数据库有关天然生物材料、人工合成材料、纳米材料修复半月板损伤的文章。英文检索词为“meniscus,sports injuries,repair,tissue engineering,material ”,中文检索词为“半月板,运动损伤,修复,组织工程,支架材料”。 结果与结论:由于半月板的血供特点,致使半月板无血运区损伤不具备愈合能力。组织工程技术的发展为半月板损伤的修复和再造开辟了新途径。目前报道较多的修复半月板支架材料主要有天然生物材料、人工合成材料、纳米材料等。组织工程化半月板的研究已取得了阶段性的成果,但对支架材料正处于研发实验阶段,还没确定出一种最理想的材料,因此寻求一种具有良好的细胞相容性,可控制的降解率并具有一定力学强度的支架材料仍是半月板组织工程的研究热点。  相似文献   

17.
目的:评价不同生物材料修复骨缺损的性能与效果,寻找适合生物材料以利于临床应用。方法:以"生物材料,骨缺损,骨髓基质干细胞,细胞因子,组织工程"为中文关键词,以"biological materials,bone defect,bone marrowstroma lcells,Cytokine,tissue engineering"为英文关键词,采用计算机检索1995-01/2010-01相关文章。纳入与有关生物材料与组织工程骨缺损修复相关的文章;排除重复研究或Meta分析类文章。以22篇文献为主重点讨论了骨缺损修复生物材料及其性能。结果:目前骨组织工程支架材料主要有两类:一类是天然生物衍生材料,由天然生物组织经一系列理化方法处理而得,如胶原、珊瑚、生物衍生骨等。另一类是人工合成材料,主要为生物陶瓷和高分子材料,如钙磷陶瓷、自固化磷酸钙、聚乳酸、聚乙内酯,聚乙烯乙二醇等。目前,单一的材料,无论是生物陶瓷还是高分子(天然或人工合成),都不能满足骨组织修复的要求,因而复合支架材料的研究备受瞩目。如纳米羟基磷灰石与胶原、羟基磷灰石与磷酸三钙、羟基磷灰石与聚乳酸-聚羟乙酸复合等。结论:复合支架材料能保证足够的强度而且能有效结合种子细胞和生长因子,有利于组织工程骨的构建。  相似文献   

18.
目的:总结组织工程技术及生物材料在防治运动性关节软骨损伤中的应用特点。 方法:以“关节软骨,组织工程技术,生物材料”为中文关键词,以“tissue enginneering, articular cartilage, scaffold material”为英文关键词,采用计算机检索Pubmed数据库(http://www.ncbi.nlm.nih.gov/PubMed)及维普数据库(http://www.cqvip.com/)1993-01/2010-10的相关文章,排除重复研究或Meta分析类文章。以23篇文献为主,重点对修复运动性关节软骨损伤种子细胞、支架材料、细胞因子及其性能进行讨论。 结果:计算机初检得到104篇文献,根据纳入排除标准,对组织工程软骨的种子细胞、生物支架材料以及用于组织工程中的细胞因子进行总结与分析。种子细胞是制约组织工程软骨进一步临床应用的首要因素,目前常采用的种子细胞有软骨细胞、骨髓基质干细胞和胚胎干细胞等;生物支架材料包括天然材料和人工合成可降解聚合物等;用于软骨组织工程的生长因子主要包括转化生长因子、骨形成蛋白、成纤维细胞生长因子、胰岛素样生长因子等。 结论:迄今为止,无论是工程软骨的种子细胞、支架材料、培养环境等还没有任何一种材料被认为最理想,寻求一种具有良好性能的组织工程化关节软骨是未来研究的重点。但目前很多研究仍处于实验阶段,还有一些问题有待于解决,特别是组织工程细胞支架材料植入体内后,材料的降解与细胞功能发挥是否同步,会不会产生遗传物质改变、基因表达或基因突变等问题,将其应用于临床更需要相关学者专家不断的实践和探索。  相似文献   

19.
目的:总结分析人工生物材料干预腕关节韧带损伤的特点。方法:作者应用计算机检索PubMed数据库(http://www.ncbi.nlm.nih.gov/PubMed)及CNKI数据库(www.cnki.net/index.htm),在标题和摘要中以"腕关节,韧带,康复,治疗"或"WristJoint,Ligament,Rehabilitation,Treatment"为检索词进行检索。选择文章内容与腕关节韧带损伤与治疗手段、材料学特点、生物相容性及其应用效果相关,同一领域文献则选择近期发表或发表在权威杂志的文章,共纳入22篇文献。结果:腕关节属于非常复杂的连接系统,由于腕关节生理结构及其生物力学的特殊性,体育运动中腕关节韧带损伤较为常见。目前,国内外已对腕关节韧带做过较多的解剖学、组织学及生物力学特性的研究,但针对腕关节韧带损伤后运用人工生物材料及组织工程学手段修复或重建方面的报告甚为少见。结论:随着细胞生物学和分子生物学方法和技术的进步,韧带组织损伤修复研究进入了崭新阶段,人工生物材料及组织工程学的兴起为腕关节韧带损伤后的治疗与康复措施提供了新的研究方向。  相似文献   

20.
背景:目前临床重建膝关节交叉韧带使用的材料包括自体移植物、异体移植物和人工合成材料。自体和异体移植物重建交叉韧带依然是目前的主流选择,但均存在各自的缺点。 目的:探讨膝关节韧带损伤人工合成材料的优化选择策略。 方法:由作者采用电子检索的方式,在万方数据库(http://www.wanfangdata.com.cn/)及PubMed数据库(http://www.ncbi.nlm.nih.gov/PubMed)中检索1988-01/2010-12有关人工韧带生物工程学设计及临床应用的研究文章,检索词为“人工韧带,材料,组织工程,重建”。经检索排除内容重复、Meta分析类文章后筛选纳入20篇文献进行评价。 结果与结论:目前组织工程人工韧带在某些方面取得了一定的进展,但在很多方面仍需进一步研究。种子细胞的选择支架材料的组织相容性和力学性质的统一,细胞和支架材料界面生物相容性的不确定性等是组织工程韧带的研究热点和趋势。随着研究的深入,组织工程人工韧带有望尽早得到临床使用。 关键词:人工韧带;膝关节;材料;组织相容性;组织工程 doi:10.3969/j.issn.1673-8225.2012.12.035  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号