首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intranasal route has been shown to be effective for immunization. However, immunization via this route may require the use of potent and safe adjuvant. The construction of non-toxic mutants of heat labile enterotoxin of Escherichia coli (LT), which is a potent mucosal adjuvant, is a major breakthrough for the development of mucosal vaccines. In this study we have assessed the ability of an LT mutant (LTK63) to act as an adjuvant following intranasal co-immunization with a peptide corresponding to a measles virus cytotoxic T lymphocyte (CTL) epitope. LTK63 was more effective at potentiating the in vivo induction of peptide-specific and measles virus-specific CTL responses than was administration of the peptide in saline. A concentration of 10 micrograms/dose of LTK63 was found to be the most effective in potentiating the in vivo priming of peptide-specific and measles virus-specific CTL responses. These findings highlight the potential of the non-toxic mutant of LT as a safe mucosal adjuvant for use in humans.  相似文献   

2.
The adjuvanticity and immunogenicity of the heat-labile enterotoxin (LT) of Escherichia coli and of its non-toxic mutant, LTK63, was evaluated after intranasal administration of CBA mice with recombinant measles virus nucleoprotein (rMVNP) with or without LT or LTK63. Both LT and LTK63 were shown to be highly immunogenic with higher responses observed 4 weeks after the booster immunization. Although the nucleoprotein was immunogenic on its own, mice immunized with the nucleoprotein plus wild type LT produced significantly high antibody responses (p<0.01). Mice that received the rMVNP with LTK63 also generated strong antibody responses to rMVNP. These antibodies were also significantly higher than those of rMVNP alone (p< 0.05). No significant differences were observed between groups of mice immunized intranasally with rMVNP plus LT or LTK63 (p> 0.05). Data on IgG antibody isotype profiles showed that IgG 1 and IgG 2a were predominant in mice immunized with rMVNP + LT or LTK63 whereas IgG 1 predominated when rMVNP was given on its own implying that LT and LTK63 induce both Th1 and Th2-type immune responses. These results highlight the great potential of this non-toxic mutant of LT as a safe vaccine adjuvant.  相似文献   

3.
Effective protection against intestinal pathogens requires both mucosal and systemic immune responses. Intranasal administration of antigens induces these responses but generally fails to trigger a strong protective immunity. Mucosal adjuvants can significantly enhance the immunogenicities of intranasally administered antigens. Cholera toxin (CT) and heat-labile enterotoxin (LT) are strong mucosal adjuvants with a variety of antigens. Moreover, the toxicities of CT and LT do not permit their use in humans. Two nontoxic mutant LTs, LTR72 and LTK63, were tested with Toxoplasma gondii SAG1 protein in intranasal vaccination of CBA/J mice. Vaccination with SAG1 plus LTR72 or LTK63 induced strong systemic (immunoglobulin G [IgG]) and mucosal (IgA) humoral responses. Splenocytes and mesenteric lymph node cells from mice immunized with LTR72 plus SAG1, but not those from mice immunized with LTK63 plus SAG1, responded to restimulation with a T. gondii lysate antigen in vitro. Gamma interferon and interleukin 2 (IL-2) production by splenocytes and IL-2 production by mesenteric lymph node cells were observed in vitro after antigen restimulation, underlying a Th1-like response. High-level protection as assessed by the decreased load of cerebral cysts after a challenge with the 76K strain of T. gondii was obtained in the group immunized with LTR72 plus SAG1 and LTK63 plus SAG1. They were as well protected as the mice immunized with the antigen plus native toxins. This is the first report showing protection against a parasite by using combinations of nontoxic mutant LTs and SAG1 antigen. These nontoxic mutant LTs are now attractive candidates for the development of mucosally delivered vaccines.  相似文献   

4.
Application of antigens with an adjuvant onto bare skin is a needle-free and pain-free immunization procedure that delivers antigens to the immunocompetent cells of the epidermis. We tested here the immunogenicity and adjuvanticity of two mutants of heat-labile enterotoxin (LT) of Escherichia coli, LTK63 and LTR72. Both mutants were shown to be immunogenic, inducing serum and mucosal antibody responses. The application of LTK63 and LTR72 to bare skin induced significant protection against intraperitoneal challenge with a lethal dose of LT. In addition, both LT mutants enhanced the capacity of peptides TT:830-843 and HA:307-319 (representing T-helper epitopes from tetanus toxin and influenza virus hemagglutinin, respectively) to elicit antigen-specific CD4(+) T cells after coapplication onto bare skin. However, only mutant LTR72 was capable of stimulating the secretion of high levels of gamma interferon. These findings demonstrate that successful skin immunization protocols require the selection of the right adjuvant in order to induce the appropriate type of antigen-specific immune responses in a selective and reliable way. Moreover, the use of adjuvants such the LTK63 and LTR72 mutants, with no or low residual toxicity, holds a lot of promise for the future application of vaccines to the bare skin of humans.  相似文献   

5.

Background

A lot of pathogens enter the body via the nasal route. The construction of non-toxic mutants of heat labile Escherichia coli enterotoxin (LT), which is a potent mucosal adjuvant, represents a major breakthrough for the development of mucosal vaccines.

Objective

This study was undertaken to critically evaluate the adjuvanticity of the mutant of LT (LTK63) on the cellular immune responses to intranasally co-administered recombinant measles virus nucleoprotein (rMVNP).

Methods

Groups of CBA mice were immunized intranasally with rMVNP with or without LT or LTK63 as adjuvants. Another group was immunized subcutaneously with rMVNP in Freund''s adjuvant. rMVNP and measles virus (MV) were used in a proliferation assay to test the LTK63 potentiating ability to induce T cell responses. Subsequently MVNP synthetic peptides spanning the length of the N protein were used with a proliferation assay to identify the T cell epitopes.

Results

Splenocytes from mice immunized intranasally with rMVNP plus LT or LTK63, showed strong dose dependent proliferative responses to both the MVNP and MV. However, proliferative responses from the latter group were significantly lower than the former group (P < 0.05). Splenocytes tested recognized peptides 20, 21, 28, 31, 39, 40 and 50, suggesting these to be among important epitopes. Subcutaneous route was not effective in priming for T cell responses to rMVNP.

Conclusion

These data further demonstrate the great potential of LTK63 as a safe mucosal vaccine adjuvant.  相似文献   

6.
Mucosal delivery of vaccines is dependent on the identification of safe and effective adjuvants that can enhance the immunogenicity of protein antigens administered by nasal or oral routes. In this study we demonstrate that two mutants of Escherichia coli heat-labile toxin (LT), LTK63, which lacks ADP-ribosylating activity, and LTR72, which has partial enzyme activity, act as potent mucosal adjuvants for the nasal delivery of an acellular pertussis (Pa) vaccine. Both LTK63 and LTR72 enhanced antigen-specific serum immunoglobulin G (IgG), secretory IgA, and local and systemic T-cell responses. Furthermore, using the murine respiratory challenge model for infection with Bordetella pertussis, we demonstrated that a nasally delivered diphtheria, tetanus, and acellular pertussis (DTPa) combination vaccine formulated with LTK63 as an adjuvant conferred a high level of protection, equivalent to that generated with a parenterally delivered DTPa vaccine formulated with alum. This study also provides significant new information on the roles of the binding and enzyme components of LT in the modulation of Th1 and Th2 responses. LTK63, which lacks enzyme activity, promoted T-cell responses with a mixed Th1-Th2 profile, but LTR72, which retains partial enzyme activity, and the wild-type toxin, especially at low dose, induced a more polarized Th2-type response and very high IgA and IgG antibody titers. Our findings suggest that the nontoxic AB complex has broad adjuvant activity for T-cell responses and that the ADP-ribosyltransferase activity of the A subunit also appears to modulate cytokine production, but its effect on T-cell subtypes, as well as enhancing, may be selectively suppressive.  相似文献   

7.
There is an urgent need for prophylactic and therapeutic vaccines against human immunodeficiency virus (HIV). Mucosal immunization strategies have great potential to elicit both mucosal and systemic cellular immunity required to protect against HIV-induced acquired immune deficiency syndrome (AIDS). However, mucosal immunizations with soluble protein antigens generally require adjuvants. In this study, we tested two mutants of the heat-labile enterotoxin (LT) from Escherichia coli, LTK63: with no measurable ADP-ribosyltransferase activity, and LTR72: with residual ADP-ribosyltransferase activity, as mucosal adjuvants for induction of cytotoxic T lymphocyte (CTL) responses to coadministered HIV gag p55 protein. We found that intranasal (i.n.) immunizations with HIV gag p55 protein coadministered with LTK63 or LTR72 induced systemic CTL responses comparable to that obtained following intramuscular (i. m.) immunizations with the same adjuvants. Moreover, oral coadministration of LTR72, but not LTK63, resulted in local as well as systemic p55-specific CTL responses in mesenteric lymph nodes (MLN) and spleens (SP) of the immunized mice. These data have important implications for current efforts to develop a safe vaccine against HIV.  相似文献   

8.
Immunization of the female reproductive tract is important for protection against sexually transmitted diseases and other pathogens of the reproductive tract. However, intravaginal immunization with soluble antigens generally does not induce high levels of secretory immunoglobulin A (IgA). We recently developed safe mucosal adjuvants by genetically detoxifying Escherichia coli heat-labile enterotoxin, a molecule with a strong mucosal adjuvant activity, and here we describe the use of the nontoxic mutant LTK63 to induce a response in the mouse vagina against ovalbumin (Ova). We compared intravaginal and intranasal routes of immunization for induction of systemic and vaginal responses against LTK63 and Ova. We found that LTK63 is a potent mucosal immunogen when given by either the intravaginal or intranasal route. It induces a strong systemic antibody response and IgG and long-lasting IgA in the vagina. The appearance of vaginal IgA is delayed in the intranasally immunized mice, but the levels of vaginal anti-LTK63 IgA after repeated immunizations are higher in the intranasally immunized mice than in the intravaginally immunized mice. LTK63 also acts as a mucosal adjuvant, inducing a serum response against Ova, when given by both the intravaginal and intranasal routes. However, vaginal IgA against Ova is stimulated more efficiently when LTK63 and antigen are given intranasally. In conclusion, our results demonstrate that LTK63 can be used as a mucosal adjuvant to induce antigen-specific antibodies in vaginal secretions and show that the intranasal route of immunization is the most effective for this purpose.  相似文献   

9.
In this study a novel prime-boost immunisation strategy was evaluated. Priming of BALB/c mice by the intranasal route with plasmid DNA encoding beta-galactosidase (LacZ) with or without heat-labile enterotoxin (LT) of Escherichia coli as a mucosal adjuvant, resulted in the induction of weak serum antibody and proliferative T-cell responses. However, following an intraperitoneal booster injection with the beta-galactosidase protein (beta-gal), strong antibody and proliferative T-cell responses were induced in all the mice. These responses were highest in mice primed intranasally with a mixture of LacZ+LT as compared to those mice primed with DNA (LacZ) or protein (beta-gal) alone. Moreover, LacZ+LT primed mice produced high avidity antibodies and the subclasses of serum antibodies were IgG1 and IgG2a, suggesting a mixed Th1/Th2-type response. Priming of mice with either protein (beta-gal) or DNA (LacZ) alone, produced predominantly IgG1 antibodies, suggesting a Th2-type response. These findings suggest that the use of a heterologous DNA-prime, protein-boost immunisation scheme combining different routes of administration, might be an advantageous strategy for the induction of accelerated immune responses.  相似文献   

10.
Detoxified mutants of the Escherichia coli heat-labile toxin (LT) act as mucosal adjuvants to intranasally presented coadministered antigens. Here, we compare the adjuvant activity of a panel of detoxified derivatives of LT, using both intranasal (i.n.) and oral (p.o.) routes of administration. The mutants used as adjuvants varied in sensitivity to proteases and toxicity. With keyhole limpet hemocyanin (KLH) as the bystander antigen, the immune responses to i. n. immunizations were consistently higher than the equivalent p.o. -delivered proteins. LT-G192, a mutant which demonstrates a 10-fold reduction in toxicity in vitro, demonstrated wild-type adjuvant activity both i.n. and p.o., inducing similar titers of KLH specific antibody in the sera and immunoglobulin A in local mucosal secretions as wild-type LT. In line with previous data, the nontoxic holotoxoid LT-K63 induced intermediate immune responses in both the serum and mucosal secretions which were lower than those achieved with wild-type LT but at least 10-fold higher than those measured when the antigen was administered with LT-B. Although significant levels of local and systemic anti-KLH antibodies were induced following p.o. immunization with LT-K63, cellular proliferative responses to KLH was poor or undetectable. In contrast, LT and LT-G192 induced significant T-cell responses to KLH following p.o. immunization. These proliferating cells secreted both gamma interferon and interleukin-5, suggesting that the type of immune response induced following p.o. coimmunization with LT and purified protein is a mixed Th1/Th2 response.  相似文献   

11.
Genetically manipulated bacterial toxin as a new generation mucosal adjuvant   总被引:30,自引:0,他引:30  
Cholera toxin (CT) and heat-labile toxin (LT) of Escherichia coli act as adjuvants for the enhancement of mucosal and serum antibody (Ab) responses to mucosally co-administered protein antigen (Ag). Both LT and CT induce B7-2 expression on antigen-presenting cells (APCs) for subsequent co-stimulatory signalling to CD4+ T cells. CT directly affects CD4+ T cells activated via the TCR-CD3 complex with selective inhibition of Th1 responses whereas LT maintains Th1 cytokine responses with inhibition of interleukin (IL)-4 production. Interestingly, while CT failed to induce mucosal adjuvant activity in the absence of IL-4, LT did so. Nontoxic mutant (m)CTs (S61F and E112K) retain adjuvant properties by inducing CD4+ Th2 cells, which provided effective help for the Ag-specific mucosal immunoglobulin (Ig)A, as well as serum IgG1, IgE and IgA Ab responses. The mCT E112K has been shown to exhibit two distinct mechanisms for its adjuvanticity. Firstly, mCT enhanced the B7-2 expression of APCs. Secondly, this nontoxic CT derivative directly affected CD4+ T cells and selectively inhibited Th1 cytokine responses. Thus, several lines of evidence indicate that enzyme activity can be separated from adjuvant properties of CT and this offers promise for the development of safe delivery of vaccines for mucosal IgA responses.  相似文献   

12.
Synthetic peptide vaccines which are derived from functional domains of Streptococcus mutans glucosyltransferases (GTF) have been shown to induce protective immunity in Sprague-Dawley rats after subcutaneous injection in the salivary gland region. Since mucosal induction of salivary immunity would be preferable in humans, we explored methods to induce mucosal antibody in the rat to the GTF peptide vaccines HDS and HDS-GLU after intranasal administration. Several methods of facilitation of the immune response were studied: the incorporation of peptides in bioadhesive poly(D,L-lactide-coglycolide) (PLGA) microparticles, the use of monoepitopic (HDS) or diepitopic (HDS-GLU) peptide constructs, or the use of mucosal adjuvants. Salivary immunoglobulin A (IgA) responses were not detected after intranasal administration of diepitopic HDS-GLU peptide constructs in alum or after incorporation into PLGA microparticles. However, significant primary and secondary salivary IgA and serum IgG antibody responses to HDS were induced in all rats when cholera holotoxin (CT) or a detoxified mutant Escherichia coli heat-labile enterotoxin (R192G LT) were intranasally administered with HDS peptide constructs in PLGA. Coadministration of LT with HDS resulted in predominantly IgG2a responses in the serum, while coadministration with CT resulted in significant IgG1 and IgG2a responses to HDS. Serum IgG antibody, which was induced to the HDS peptide construct by coadministration with these adjuvants, also bound intact mutans streptococcal GTF in an enzyme-linked immunosorbent assay and inhibited its enzymatic activity. Thus, immune responses which are potentially protective for dental caries can be induced to peptide-based GTF vaccines after mucosal administration if combined with the CT or LT R192G mucosal adjuvant.  相似文献   

13.
In several experimental models, synthetic peptides were shown to activate efficiently cytotoxic T-lymphocyte (CTL) responses and therefore represent an attractive strategy to develop new vaccines. However, the mechanisms by which they induce CTL responses are not yet fully understood. Several studies using 15 16-mer peptides previously demonstrated that CD4 helper T cells are required to induce optimal CTL responses with synthetic peptides. However, recently it was suggested that shorter 8 12-mer peptides could have an increased in vivo immunogenicity. In the present study, we therefore investigated if such optimal-length peptides still require CD4+ T-cell help to activate CTL responses. To address this question three synthetic peptides containing different viral CTL epitopes were injected into mice depleted of CD4+ or CD8+ T cells using specific monoclonal antibodies or into mice genetically deficient in those T-cell populations. Our results clearly established that activation of CTL responses by those short optimal peptides does not require CD4+ T-cell help and therefore suggested that high-density binding of peptides to major histocompatibility complex class I molecules on the surface of antigen-presenting cells is required for direct activation of CD8+ T cells, independently of CD4+ T-cell help.  相似文献   

14.
In this study, the potential of the bare skin as a non-invasive route for vaccination was examined. Following application of heat-labile enterotoxin (LT) of Escherichia coli onto bare skin of BALB/c mice, strong serum anti-LT antibody responses were observed, and mucosal immunoglobulin A (IgA) and IgG antibodies were measured in vagina washes. In addition, LT enhanced the serum and mucosal antibody and proliferative T-cell responses to the model protein antigen beta-galactosidase (beta-gal) when coadministered onto bare skin, highlighting its potential to exert an adjuvant effect. When a peptide representing a T-helper epitope (aa 307-319) from the haemagglutinin of influenza virus was applied onto bare skin with LT or cholera toxin (CT), it primed effectively peptide- and virus-specific T cells, as measured in vitro by the interleukin-2 (IL-2) secretion assay. LT was shown to be as immunogenic as CT. Binding activity to GM1 gangliosides was essential for effective induction of anti-CT serum and mucosal antibody responses. Finally, mice immunized onto bare skin with LT were protected against intraperitoneal challenge with a lethal dose of the homologous toxin. These findings give further support to a growing body of evidence on the potential of skin as a non-invasive route for vaccine delivery. This immunization strategy might be advantageous for vaccination programmes in Third World countries, because administration by this route is simple, painless and economical.  相似文献   

15.
Parenteral injection of a lipopeptide containing a human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T-lymphocyte (CTL) epitope from the human cytomegalovirus (HCMV) immunodominant matrix protein pp65 efficiently induces systemic CTL responses in HLA-A*0201 transgenic mice. In this study, we demonstrate that intranasal (i.n.) administration of this lipopeptide, covalently linked to a universal T helper (Th) epitope (PADRE), also induces potent systemic CTL responses. Immune responses were substantially reduced when the unlipidated peptide analogue was used (P<0.01). The induced CTL were CD8+, major histocompatibility complex (MHC) class I-restricted and CMV specific. Moreover, i.n. administration of this lipidated peptide elicited both systemic and local mucosal CD4+ T-cell proliferative responses, as well as antigen-specific delayed type hypersensitivity (DTH) immune responses. In contrast, mice receiving the unlipidated peptide analogue developed substantially reduced Th or DTH responses (P<0.05). These results highlight the usefulness and potential of lipopeptides delivered via mucosal routes as painless, safe, and non-invasive vaccines.  相似文献   

16.
Linear B- and T-cell epitopes spanning all 103 amino acids of the Escherichia coli heat-labile toxin B subunit (LT-B) were assessed in mice orally immunized with native LT or with recombinant Salmonella enteritidis expressing LT-B. Oral administration of native LT induced mucosal immunoglobulin A (IgA) antibodies reactive with an epitope at residues 85 to 91, while IgA induced by recombinant Salmonella LT-B reacted with an epitope at residues 36 to 44. Serum IgG anti-LT-B antibodies from mice orally immunized with either LT or with recombinant Salmonella LT-B were directed to both epitopes. A single T-cell epitope spanning residues 34 to 42 was identified by T-cell proliferative and cytokine responses. When a 20-mer peptide (residues 26 to 45) with B- and T-cell epitopes was given orally to BALB/c (H-2(d)) and B10 congenic (I-A(d), I-A(b), and I-A(k)) mice, significant fecal IgA and serum IgG anti-LT-B antibodies were induced. The peptide also induced LT-B-specific T-cell proliferative responses in these mice. Orally administered LT-B peptide (residues 26 to 45) induced a cytokine profile indicative of both T helper 1- and 2-type cells. The remarkable immunogenicity of this 20-mer peptide makes it a candidate for a vaccine to protect against enterotoxigenic E. coli.  相似文献   

17.
Conjugated polysaccharide vaccines protect against serogroup C meningococci. However, this approach cannot be applied to serogroup B, which is still a major cause of meningitis. We evaluated the immunogenicity of three surface-exposed proteins from serogroup B Neisseria meningitidis (App, NhhA, and NadA) identified during whole-genome sequencing. Mice were immunized intranasally with individual proteins in the presence of wild-type Escherichia coli heat-labile enterotoxin (LTwt), LTR72, a partially inactivated mutant, or LTK63, a completely nontoxic mutant, as the adjuvant. Each of the meningococcal proteins induced significant cellular responses; NhhA and NadA induced strong antibody responses, but only NadA induced bactericidal antibody when administered intranasally with mucosal adjuvants. In addition, immunoglobulin A and bactericidal antibodies were detected in the respiratory tract following intranasal delivery of NadA. Analysis of antigen-specific cytokine production by T cells from immunized mice revealed that intranasal immunization with NadA alone failed to generate detectable cellular immune responses. In contrast, LTK63, LTR72, and LTwt significantly augmented NadA-specific gamma interferon, interleukin-4 (IL-4), IL-5, and IL-10 production by spleen and lymph node cells, suggesting that both Th1 and Th2 cells were induced in vivo. The strongest cellular responses and highest bactericidal antibody titers were generated with LTR72 as the adjuvant. These findings demonstrate that the quality and magnitude of the immune responses generated by mucosal vaccines are influenced by the antigen as well as the adjuvant and suggest that nasal delivery of NadA with mucosal adjuvants has considerable potential in the development of a mucosal vaccine against serogroup B meningococci.  相似文献   

18.
The aim of the present study was to identify murine T-cell epitopes on pertussis toxin subunit S4. Six mouse strains with five different haplotypes at the H-2 locus were immunized with the pertussis toxin B oligomer. Lymph node lymphocytes were isolated and stimulated in an in vitro proliferation assay with pertussis toxin components and 11 overlapping synthetic peptides synthesized on the basis of the primary sequence of S4. In vitro proliferative responses to the synthetic peptides revealed the presence of four distinct murine T-cell epitopes on subunit S4. The recognition of the peptides was major histocompatibility complex restricted. Immunizing four of the six mouse strains with the synthetic peptides showed that the peptides which were demonstrated to contain T-cell epitopes following immunization with the B oligomer were able to induce proliferative responses to detoxified pertussis toxin and pertussis toxin components containing subunit S4. One of the identified murine T-cell epitopes corresponded to one of the major human T-cell epitopes previously identified on subunit S4. It is hoped that this murine model system will facilitate the development of a synthetic immunogen mimicking the protective properties of pertussis toxin.  相似文献   

19.
Host defenses against Streptococcus pneumoniae depend largely on phagocytosis following opsonization by polysaccharide-specific immunoglobulin G (IgG) antibodies and complement. Since colonization of the respiratory mucosa is the first step in pneumococcal pathogenesis, mucosal immune responses may play a significant role. In addition to inducing systemic immune responses, mucosal vaccination with an effective adjuvant has the advantage of inducing mucosal IgA antibodies. The heat-labile enterotoxin (LT) of Escherichia coli is a well-studied mucosal adjuvant, and adjuvant activity of nontoxic LT mutants has been demonstrated for several protein antigens. We investigated the immunogenicity of pneumococcal polysaccharide conjugate vaccines (PNC) of serotypes 1 and 3 in mice after intranasal (i.n.) immunization by using as an adjuvant the nontoxic LT mutant LT-K63 or LT-R72, which has minimal residual toxicity. Pneumococcal serotype-specific antibodies were measured in serum (IgM, IgG, and IgA) and saliva (IgA), and vaccine-induced protection was evaluated by i.n. challenge with virulent pneumococci of the homologous serotype. When administered with LT mutants, i.n. immunization with both conjugates induced systemic and mucosal immune responses, and serum IgG antibody levels were significantly higher than after subcutaneous immunization. All mice immunized i.n. with PNC-1 and LT mutants were protected against bacteremia and cleared the pneumococci from the lung 24 h after i.n. challenge; pneumococcal density correlated significantly with serum IgG antibody levels. Similarly, the survival of mice immunized i.n. with PNC-3 and LT mutants was significantly prolonged. These results demonstrate that i.n. vaccination with PNC and potent adjuvants can protect mice against invasive and lethal pneumococcal infections, indicating that mucosal vaccination with PNC may be an alternative vaccination strategy for humans.  相似文献   

20.
Cholera toxin and Escherichia coli heat-labile enterotoxin are powerful mucosal adjuvants but their high toxicity hampers their use in humans. Site-directed mutagenesis has allowed the generation of several cholera toxin and E. coli heat-labile enterotoxin mutants with abolished or strongly reduced toxicity that still retain strong mucosal adjuvanticity. Among them, LTK63 (Ser to Lys substitution at position 63 in the A subunit) is completely nontoxic and LTR72 (Ala to Arg at position 72) retains a very low residual enzymatic activity. Both of them have been shown to be safe and effective in enhancing the immunogenicity of intranasally coadministered vaccines, also resulting in protective responses in several animal models. Clinical grade preparations of these mutants have now been produced, tested in animals and proven to be totally safe. Indeed, they did not induce any inflammatory event in the respiratory tract nor, more importantly, in the olfactory bulbs and in the meninges. The fully nontoxic LTK63 mutant has now been successfully tested in human volunteers with a trivalent subunit influenza vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号