首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
W Byrd  S Kadis 《Infection and immunity》1989,57(12):3901-3906
Highly purified lipopolysaccharide (LPS) preparations obtained from seven Actinobacillus pleuropneumoniae strains representative of seven different serotypes were used to determine the structure and monosaccharide composition of the polysaccharide components of each lipopolysaccharide. An indication of the structure of each LPS was obtained by procedures that included sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining and gel chromatographic fractionation of acetic acid-hydrolyzed LPS. The polysaccharide components of the LPSs were analyzed by gas-liquid chromatography. The LPSs of the strains of serotypes 2, 4, and 7 were of the smooth type, and those of the strains of serotypes 3 and 6 were of the rough type; the LPSs of the strains of serotypes 1 and 5 could be considered semirough. Rhamnose was present only in the O polysaccharide of the smooth-type and semirough-type LPSs, whereas galactose was present only in the O polysaccharide of the smooth-type LPS and in the core oligosaccharides of the rough-type and semirough-type LPSs. Glucoheptose and mannoheptose were present in the core oligosaccharides of all the LPSs except for the strain of serotype 3, in which only mannoheptose was detected. N-Acetylglucosamine was detected only in the O polysaccharides of the strains of serotypes 1 and 5.  相似文献   

2.
Actinobacillus pleuropneumoniae strains of serotypes 4 and 7 were studied for their antigenic properties by means of agglutination, coagglutination, indirect hemagglutination, immunodiffusion, and counterimmunoelectrophoresis tests. Strains of serotype 4 showed cross-reactivity with those of serotype 7 in various serological tests. Serotype 7 strains were antigenically heterogeneous and shared common antigens with several other serotypes. By using boiled whole-cell saline extract as the antigen in the immunodiffusion test, serotype 7 strains could be divided into four subgroups. Subgroup I strains did not have antigens in common with other serotypes, whereas subgroup II strains had antigens in common with serotype 4; subgroup III strains had antigens in common with serotype 10, and subgroup IV had antigens in common with serotypes 1, 9, and 11. The indirect hemagglutination test using unheated whole-cell saline extract as the antigen detected serotype-specific activity. Quantification of serotype-specific and group-specific antigens by coagglutination and immunodiffusion tests was found useful for identifying strains that belonged to serotype 4 or 7.  相似文献   

3.
Actinobacillus pleuropneumoniae strains of serotypes 1 and 9 were studied for their serological properties by means of agglutination, coagglutination (CoA), indirect hemagglutination (IHA), Co-IHA, ring precipitation (RP), and immunodiffusion (ID) tests. Particulate and soluble antigens of unheated and heat-treated bacterial cells were used in various serological tests. Agglutination, CoA, and RP tests demonstrated common antigens between strains of serotypes 1 and 9. Quantitative estimation of serotype-specific antigenic activity by CoA, RP, and ID tests proved useful in differentiating strains of serotypes 1 and 9. IHA and Co-IHA tests using sheep erythrocytes sensitized with unheated or heat-treated whole-cell saline extract and the ID test using boiled whole-cell saline extract as antigen distinguished the strains of serotypes 1 and 9. In studies of absorption of rabbit antisera with heterologous whole-cell antigens there was no absorption of antibodies in tube agglutination and IHA tests, suggesting that serotype 1 and 9 strains belong to two distinct serogroups. It appears that the cross-reactivity between serotype 1 and 9 strains could be due to common epitopes associated with cell wall antigens.  相似文献   

4.
Hemolysin patterns of Actinobacillus pleuropneumoniae.   总被引:21,自引:3,他引:21       下载免费PDF全文
The secreted hemolytic activities produced by the reference strains and field isolates of the 12 serotypes and 2 subtypes of Actinobacillus pleuropneumoniae were analyzed. Serotype 1 produced a Ca2(+)-inducible hemolysin, which was previously characterized as a 105-kilodalton protein and was named hemolysin I (HlyI). Serotypes 2, 4, 6, 7, and 8 produced a different hemolytic activity that was not inducible by Ca2+ but required this ion for its activity. The hemolytic activity produced by these serotypes was much weaker than that found in serotype 1 and was not neutralized by rabbit antibodies against HlyI. It was, however, neutralized by serum from pigs that were experimentally infected with a serotype 2 strain and was called hemolysin II (HlyII). Serotypes 5a, 5b, 9, 10, and 11 produced both HlyI and HlyII. In these strains, HlyI was the major contributor to the hemolytic activity. The remaining serotypes, 3 and 12, produced a very weak hemolytic activity, which was not further analyzed. Immunoblot analysis of the culture supernatants from all 12 serotypes with rabbit polyclonal antibodies directed against HlyI revealed reactions with a protein in the 105-kilodalton size range for all serotypes, indicating that HlyI and HlyII might be serologically related. Strains producing active HlyI seem to belong to serotypes that are generally considered to be virulent types and that are frequently isolated from pigs in severe pleuropneumonia outbreaks.  相似文献   

5.
Virulence properties of Actinobacillus pleuropneumoniae.   总被引:10,自引:0,他引:10  
  相似文献   

6.
Cytolysins of Actinobacillus pleuropneumoniae serotype 9.   总被引:4,自引:13,他引:4       下载免费PDF全文
Cytolysin I (ClyI) and cytolysin II (ClyII), which are present in the culture supernatant of Actinobacillus pleuropneumoniae serotype 9, are thought to play an important role in the pathogenesis of pig pleuropneumonia. The purpose of this study was to clone and characterize the genetic determinants of these cytolysins. Cloning was accomplished by the screening of DNA libraries for the presence of cytolytic activity and for the presence of DNA sequences homologous to leukotoxin DNA of Pasteurella haemolytica. Both genetic determinants were found to be members of the RTX cytotoxin family. The ClyII determinant was characterized in more detail. It appeared that ClyII more closely resembled the leukotoxin of P. haemolytica than the alpha-hemolysin of Escherichia coli. The ClyII amino acid sequence was identical to a hemolysin gene sequence of A. pleuropneumoniae serotype 5; this finding indicates that the latter gene also codes for ClyII and not for ClyI, as has previously been suggested. The genetic organization of the ClyII determinant differed from the genetic organization of other RTX determinants. Genes responsible for secretion of ClyII were not contiguous with the toxin gene. Instead, secretion genes were present elsewhere in the genome. These secretion genes, however, belong to the ClyI operon. This indicates that the secretion genes of the ClyI operon are responsible for secretion of ClyI and ClyII.  相似文献   

7.
Conjugate vaccines were prepared in an attempt to protect pigs against swine pleuropneumonia induced by Actinobacillus pleuropneumoniae (SPAP). Two subunit conjugates were prepared by coupling the A. pleuropneumoniae 4074 serotype 1 capsular polysaccharide (CP) to the hemolysin protein (HP) and the lipopolysaccharide (LPS) to the HP. Adipic acid dihydrazide was used as a spacer to facilitate the conjugation in a carbodiimide-mediated reaction. The CP and the LPS were found to be covalently coupled to the HP in the conjugates as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and detergent gel chromatography analyses. Following a booster vaccination, pigs exhibited significantly high (P less than 0.05) immunoglobulin G antibodies against CP, LPS, and HP. The anti-CP and anti-LPS immunoglobulin G antibodies were found to function as opsonins in the phagocytosis of A. pleuropneumoniae by polymorphonuclear leukocytes, whereas antibodies to the HP neutralized the cytotoxic effect of the HP on polymorphonuclear leukocytes. No killing of A. pleuropneumoniae was observed when the effects of the antibodies were tested in the presence of complement. Thus, polysaccharide-protein A. pleuropneumoniae conjugates elicit significant antibody responses against each component of each conjugate, which could be instrumental in protecting swine against SPAP.  相似文献   

8.
A previous study indicated that lipopolysaccharides (LPS) extracted from Actinobacillus pleuropneumoniae bind two low-molecular-mass proteins, of approximately 10 and 11 kDa, present in porcine respiratory tract secretions (M. Bélanger, D. Dubreuil, and M. Jacques, Infect. Immun. 62:868-873, 1994). In the present study, we determined the N-terminal amino acid sequences of these two proteins, which revealed high homology with the alpha and beta chains of pig hemoglobin. Some isolates of A. pleuropneumoniae were able to use hemoglobin from various animal species as well as other heme compounds as sole sources of iron for growth, while other isolates were unable to use them. Immunoelectron microscopy showed binding of pig hemoglobin at the surface of all A. pleuropneumoniae isolates as well as labeling of outer membrane blebs. We observed, using Western blotting (immunoblotting), that the lipid A-core region of LPS of all isolates was binding pig hemoglobin. Furthermore, lipid A obtained after acid hydrolysis of LPS extracted from A. pleuropneumoniae was able to bind pig hemoglobin and this binding was completely abolished by preincubation of lipid A with polymyxin B but was not inhibited by preincubation with glucosamines. Fatty acids constituting the lipid A of A. pleuropneumoniae, namely, dodecanoic acid, tetradecanoic acid, 3-hydroxytetradecanoic acid, hexadecanoic acid, and octadecanoic acid, were also binding pig hemoglobin. Our results indicate that LPS of all A. pleuropneumoniae isolates tested bind pig hemoglobin and that lipid A is involved in this binding. Our results also indicate that some A. pleuropneumoniae isolates are, in addition, able to use hemoglobin for growth. Binding of hemoglobin to LPS might represent an important means by which A. pleuropneumoniae acquires iron in vivo from hemoglobin released from erythrocytes lysed by the action of its hemolysins.  相似文献   

9.
Multiplex PCR assays were developed to identify Actinobacillus pleuropneumoniae serotypes 1, 2, and 8. Primers designed for the conserved capsular polysaccharide (CP) export region amplified a 489-bp DNA fragment from all serotypes. Primers specific to the CP biosynthesis regions of serotypes 1, 2, and 8 amplified fragments of 1.6 kb, 1.7 kb, and 970 bp from only their respective serotypes.  相似文献   

10.
The urease gene cluster from the virulent Actinobacillus pleuropneumoniae serotype 1 strain CM5 was cloned and sequenced. The urease activity was associated with a 6.3-kbp region which contains eight long open reading frames (ORFs). The structural genes, ureABC, are separated from the accessory genes, ureEFGD, by a 615-bp ORF of unknown function, ureX. Homologies were found with the structural and accessory urease gene products of Haemophilus influenzae and, to a lesser extent, with those of other organisms. The urease enzyme subunits had predicted molecular masses of 61.0, 11.3, and 11.0 kDa, and the size of the holoenzyme was estimated to be 337 +/- 13 kDa by gel filtration chromatography. Urease activity was maximal but unstable at 65 degrees C. In cell lysates, the A. pleuropneumoniae urease was stable over a broad pH range (5.0 to 10.6) and the optimal pH for activity was 7.7. The Km was 1.5 +/- 0.1 mM urea when it was assayed at pH 7.7. The low Km suggests that this enzyme would be active in the respiratory tract environment, where urea levels should be similar to those normally found in pig serum (2 to 7 mM).  相似文献   

11.
12.
The three Apx toxins of Actinobacillus pleuropneumoniae have potential value for use in vaccines and diagnostic tests which will be species specific instead of serotype specific, provided that the Apx toxins are species specific and all field strains produce these toxins. We examined 114 A. pleuropneumoniae field strains and found that they secreted either ApxI, ApxII, ApxI and ApxII, or ApxII and ApxIII and secreted no other cytolytic activities. However, proteins similar to ApxI and ApxII were also produced by Actinobacillus suis.  相似文献   

13.
J Frey  R Meier  D Gygi    J Nicolet 《Infection and immunity》1991,59(9):3026-3032
The DNA sequence of the gene encoding the structural protein of hemolysin I (HlyI) of Actinobacillus pleuropneumoniae serotype 1 strain 4074 was analyzed. The nucleotide sequence shows a 3,072-bp reading frame encoding a protein of 1,023 amino acids with a calculated molecular size of 110.1 kDa. This corresponds to the HlyI protein, which has an apparent molecular size on sodium dodecyl sulfate gels of 105 kDa. The structure of the protein derived from the DNA sequence shows three hydrophobic regions in the N-terminal part of the protein, 13 glycine-rich domains in the second half of the protein, and a hydrophilic C-terminal area, all of which are typical of the cytotoxins of the RTX (repeats in the structural toxin) toxin family. The derived amino acid sequence of HlyI shows 42% homology with the hemolysin of A. pleuropneumoniae serotype 5, 41% homology with the leukotoxin of Pasteurella haemolytica, and 56% homology with the Escherichia coli alpha-hemolysin. The 13 glycine-rich repeats and three hydrophobic areas of the HlyI sequence show more similarity to the E. coli alpha-hemolysin than to either the A. pleuropneumoniae serotype 5 hemolysin or the leukotoxin (while the last two are more similar to each other). Two types of RTX hemolysins therefore seem to be present in A. pleuropneumoniae, one (HlyI) resembling the alpha-hemolysin and a second more closely related to the leukotoxin. Ca(2+)-binding experiments using HlyI and recombinant A. pleuropneumoniae prohemolysin (HlyIA) that was produced in E. coli shows that HlyI binds 45Ca2+, probably because of the 13 glycine-rich repeated domains. Activation of the prohemolysin is not required for Ca2+ binding.  相似文献   

14.
In an attempt to understand the mechanism of serum resistance in Actinobacillus pleuropneumoniae, in the present study we examined various interactions among the bacterial surface constituents, serum antibodies, and complement. Analysis of swine sera revealed the presence of anticapsular antibodies in convalescent-phase sera but not in preimmune sera. Both types of sera contained antibodies which reacted with each of 14 polypeptides present in saline extracts of the bacteria. Absorption of the preimmune sera with intact bacteria depleted antibodies to two of the polypeptides (27 and 32 kDa) and high-molecular-weight (greater than 97.4,000) components which did not stain with Coomassie blue. Data derived from complement consumption and C3-binding experiments indicated that the organism was capable of initiating complement activation and binding C3 during incubation in preimmune and immune sera. Experiments designed to evaluate the bactericidal effectiveness of anticapsular antibody revealed that the purified antibody was bactericidal only when preimmune sera absorbed with intact bacteria were used as a source of complement. The bactericidal effects of anticapsular antibody and absorbed preimmune sera were inhibited in a dose-dependent manner by heat-inactivated preimmune sera and immunoglobulin G derived from the sera. The inhibitory activity of the preimmune sera was neutralized by preincubating the sera with column fractions of the saline extract which contained either the 27- or the 32-kDa polypeptide. These results indicate that serum resistance in A. pleuropneumoniae 4074 could be related to inhibition of the bactericidal action of anticapsular antibody by nonspecific antibodies which recognize surface-exposed epitopes on the polypeptides.  相似文献   

15.
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors of the pathogen, ApxIIA, a bacterial exotoxin, is expressed by many serotypes and presents a plausible target for vaccine development. We characterized the region within ApxIIA that induces a protective immune response against bacterial infection using mouse challenge model. Recombinant proteins spanning the length of ApxIIA were produced and antiserum to the full-length ApxIIA was induced in mice. This antiserum recognized fragments #2, #3 and #5 with high binding specificity, but showed poor recognition for fragments #1 and #4. Of the antisera induced in mice by injection of each fragments, only the antiserum to fragment #4 failed to efficiently recognize the full-length antigen, although the individual antisera recognized their cognate antigens with almost equal efficiency. The protective potency of the immunogenic proteins against a challenge injection of bacteria in vivo correlated well with the antibody titer. Fragment #5 induced the highest level of protective activity, comparable to that by the full-length protein. These results support the use of fragment #5 to produce a vaccine against A. pleuropneumoniae challenge, since the small antigen peptide is easier to handle than is the full-length protein and can be expressed efficiently in heterologous expression systems.  相似文献   

16.
Temperature-sensitive mutants of Actinobacillus pleuropneumoniae 4074, serotype 1, were isolated after treatment with nitrosoguanidine and enrichment with penicillin and D-cycloserine. Of the four temperature-sensitive mutants evaluated in mice, one (A-1) had a tight phenotype (i.e., it ceased replication immediately after transfer to the nonpermissive temperature [37 degrees C]) and three (1-2, 4-1, and 12-1) were coasters that continued replication for up to three generations after transfer to 37 degrees C. The reversion frequencies ranged from 10(-6) to 10(-9), and cutoff temperatures ranged from 33 to 35 degrees C. No major changes were detected in the biochemical profiles; agglutination reactions; electrophoretic profiles of the lipopolysaccharides, outer membrane proteins, and hemolysin proteins; hemolytic titers; or CAMP factor reactions of the mutants and the wild-type bacteria. Groups of 3- to 5-week-old, female ICR mice were immunized intranasally with three doses of 3.5 x 10(6) CFU of the mutants over 3 weeks and subsequently challenged intranasally with 5 50% lethal doses of the parental wild-type. Protection was induced by both the tight and the coaster mutants, with the 4-1 and 12-1 coasters eliciting greater protection (67 and 82%, respectively) than that induced by the A-1 tight mutant (57%). Intranasal immunization with both phenotypes induced serum antibody responses against the surface antigens and the hemolysin protein.  相似文献   

17.
In an attempt to gain insight into the events that take place during Actinobacillus pleuropneumoniae infection, the present study was designed to ascertain the effects of bacterial toxicity on porcine neutrophil functions and viability. Incubation of phagocytes (2 x 10(6)) with opsonized A. pleuropneumoniae 4074 (2 x 10(7) CFU) resulted in phagocytic uptake of less than or equal to 4%. At the same bacterium-to-phagocyte ratio, levels of lactate dehydrogenase activity of 74 and 81% were detected in the extracellular medium after 1.5 and 3 h of incubation, respectively. Furthermore, the ingested bacteria were not killed by the phagocytes. These effects were ascribed to hemolysin produced by the bacteria, because the presence of hemolysin-neutralizing antibody prevented overt cellular damage, significantly increased phagocytic uptake (P less than 0.001), and resulted in an approximately 10-fold decrease in the number of CFU of the ingested bacteria. Cytolytic doses of isolated hemolysin caused dose-related loss of cell viability, diminished bactericidal activity of toxin-treated phagocytes for Escherichia coli, and decreased the ability of the phagocytes to undergo a respiratory burst upon stimulation with phorbol myristic acetate. In contrast, sublytic doses of the hemolysin activated the phagocytes and caused them to respond to phorbol myristic acetate with increased generation of superoxide anion. Because heated (100 degrees C, 5 min) hemolysin preparations did not produce similar effects, we contend that the observed effects were not due to contaminating endotoxin. The data presented herein indicate that A. pleuropneumoniae hemolysin is a potent antiphagocytic virulence factor by virtue of its leukocidal activity. Sublytic doses of the toxin may have important effects on the oxidative metabolism of phagocytic cells.  相似文献   

18.
Identification of in vivo induced genes in Actinobacillus pleuropneumoniae.   总被引:4,自引:0,他引:4  
We have developed an in vivo expression technology (IVET) system to identify Actinobacillus pleuropneumoniae gene promoters that are specifically induced in vivo during infection. This system is based upon an avirulent riboflavin-requiring A. pleuropneumoniae mutant and a promoter-trap vector (pTF86) that contains, in sequence, the T4 terminator, a unique Bam HI site, a promoterless copy of the V. harveyi luxAB genes, and a promoterless copy of the B. subtilis ribBAH genes in the E. coli - A. pleuropneumoniae shuttle vector pGZRS19. Sau 3A fragments of A. pleuropneumoniae genomic DNA were cloned into the Bam HI site in pTF86 and transformed into the A. pleuropneumoniae Rib- mutant. Pigs were infected with pools of 300-600 transformants by endobronchial inoculation and surviving bacteria were isolated from the pigs' lungs at 12-16 h post-infection. Infection strongly selected for transformants containing cloned promoters which drove expression of the vector ribBAH genes and allowed survival of the Rib- mutant in vivo. Strains that survived in vivo, but which minimally expressed luciferase activity in vitro, should contain cloned promoters that are specifically induced in vivo. Ten clones, designated iviA-J, were isolated which contain promoters that are induced in vivo during infection. These ivi clones were shown to be induced in the animal by luminescence of infected tissue and by direct assay of bacteria recovered from bronchoalveolar lavage. Four of these clones were putatively identified by amino acid sequence similarity as ilvI, the ilvDA operon, the secE-nusG operon, and the mrp gene. This is the first report of an IVET system for use in the family Pasteurellaceae, as well as the first report of an IVET system utilizing an infection model of pneumonia in the natural host.  相似文献   

19.
An expression library was constructed from Actinobacillus pleuropneumoniae serotype 7. Escherichia coli transformants expressing recombinant proteins were identified by immunoscreening with porcine convalescent serum. One transformant expressing a 60-kDa protein (60K protein) in aggregated form was identified. Serum raised against the recombinant protein recognized a polypeptide with an indistinguishable electrophoretic mobility in the A. pleuropneumoniae wild type after iron-restricted growth only. The recombinant protein bound transferrin after blotting onto nitrocellulose. Using a competitive enzyme-linked immunosorbent assay (ELISA), the specificity of this binding for the amino-terminal half of iron-saturated porcine transferrin was established. Also, the 60K wild-type protein bound hemin as assessed by hemin-agarose chromatography. Hemin could inhibit transferrin binding of the recombinant protein in the competitive ELISA, whereas hemoglobin and synthetic iron chelators failed to do so. Southern blot analysis of several other A. pleuropneumoniae strains indicated that highly homologous sequence is present in eight of eight isolates of serotype 7 and in some isolates of serotypes 2, 3, and 4.  相似文献   

20.
Actinobacillus pleuropneumoniae is the etiological agent of a highly contagious and often fatal pleuropneumonia in swine. A riboflavin-requiring mutant of A. pleuropneumoniae serotype 1, designated AP233, was constructed by deleting a portion of the riboflavin biosynthetic operon (ribGBAH) and replacing it with a gene cassette encoding kanamycin resistance. The genes affected included both the alpha- and beta-subunits of riboflavin synthase as well as a bifunctional enzyme containing GTP cyclohydrase and 3,4-dihydroxy-2-butanone-4-phosphate synthase activities. AP233 was unable to grow in the absence of exogenous riboflavin but otherwise was phenotypically identical to the parent wild-type strain. Experimental infection studies with pigs demonstrated that the riboflavin-requiring mutant was unable to cause disease, on the basis of mortality, lung pathology, and clinical signs, at dosages as high as 500 times the normal 50% lethal dose for the wild-type parent. This is the first demonstration of the attenuation of A. pleuropneumoniae by introduction of a defined mutation in a metabolic gene and the first demonstration that mutations in the genes required for riboflavin biosynthesis can lead to attenuation in a bacterial pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号