首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1H MR spectroscopy of brain tumours and masses   总被引:11,自引:0,他引:11  
Accurate diagnosis is essential for optimum management and treatment of patients with brain tumours. Proton magnetic resonance spectroscopy ((1)H MRS) provides information non-invasively on tumour biochemistry and has been shown to provide important additional information to that obtained by conventional radiology. We review the current status of (1)H MRS in classifying brain tumour type and grade, for monitoring response to therapy and progression to higher grade, and as a molecular imaging technique for determining tumour extent for treatment planning.  相似文献   

2.
Editing of GABA by (1)H MRS in a specific brain area is a unique tool for in vivo non-invasive investigation of neurotransmission disorders. Selective GABA detection is achieved using sequences based on double quantum coherence (DQC). Our pulse sequence makes accurate measurements without artefacts due to spatial localization. The sequence was tested on a phantom solution. The effect of vigabatrin, a specific inhibitor of GABA transaminase, was measured in rat brain and GABA detection was performed in vivo in monkey brain using this procedure. Rats were split into two groups. In the control group, the rats had access to water and, in the other group (vigabatrin, VGB, rats), animals were allowed free access to drinking water containing vigabatrin. After 3 weeks of treatment, rats were anesthetized for in vivo NMR spectroscopy investigation. At the end of the experiment, brains were quickly removed, freeze-clamped and extracted with 4% perchloric acid. One part of the acid extract was used for GABA concentrations assessment by ion exchange chromatography with ninhydrin detection. The second was used for high-resolution NMR analysis. By chromatography measurements, the GABA concentration was 1.23+/-0.06 micromol/g for controls, while for vigabatrin-treated rats the GABA concentration was 4.89+/-1.60 micromol/g. The NMR in vivo results were closely correlated with the NMR ex vivo (r=0.99, p<0.01) and chromatography results (r=0.98, p<0.01). The correlation between ex vivo results and chromatography results was also high (r=0.99, p<0.001). This pulse sequence performed GABA editing from a 376 microl voxel located on the right basal ganglia area in a non-human primate brain. This in vivo GABA editing scheme can thus be proposed for accurate measurement of brain GABA concentrations.  相似文献   

3.
NAD+ and NADH play key roles in cellular respiration. Intracellular redox state defined by the NAD+/NADH ratio (RX) reflects the cellular metabolic and physiopathological status. By taking advantage of high/ultrahigh magnetic field strengths, we have recently established a novel in vivo 31P MRS‐based NAD assay for noninvasive and quantitative measurements of intracellular NAD concentrations and redox state in animal and human brains at 16.4 T, 9.4 T and 7 T. To explore its potential for clinical application, in this study we investigated the feasibility of assessing the NAD metabolism and redox state in human brain at a lower field of 4 T by incorporating the 1H‐decoupling technique with the in vivo 31P NAD assay. The use of 1H decoupling significantly narrowed the linewidths of NAD and α‐ATP resonances, resulting in higher sensitivity and better spectral resolution as compared with the 1H‐coupled 31P spectrum. These improvements made it possible to reliably quantify cerebral NAD concentrations and RX, consistent with previously reported results obtained from similar age human subjects at 7 T. In summary, this work demonstrates the capability and utility of the 1H‐decoupled 31P MRS‐based NAD assay at lower field strength; thus, it opens new opportunities for studying intracellular NAD metabolism and redox state in human brain at clinical settings. This conclusion is supported by the simulation results, indicating that similar performance and reliability as observed at 4T can be achieved at 3 T with the same signal‐to‐noise ratio. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy (1H‐MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD+) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild‐type (WT) and PARP1 knock‐out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1H‐MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD+ levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD+ levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD+ levels in the temozolomide‐treated group. The combination of rucaparib and temozolomide did not prevent the NAD+ depletion caused by temozolomide treatment. The 1H‐MRS results show that NAD+ levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD+ would be valuable.  相似文献   

5.
Localized in vivo 1H magnetic resonance spectroscopy (MRS) was used to investigate metabolite levels in the brain of adult Zucker Diabetic Fatty (ZDF) rats, an animal model for type 2 diabetes mellitus. This study focussed on the hippocampus, assumed to be one of the main brain areas affected by this disease. Together with an almost 5-fold increase in blood glucose concentration measured by glucose oxidation, significant increases were found in the hippocampal concentrations of glucose (4.93 vs 1.66 mM p < 0.001), myo-inositol (6.52 vs 4.30 mM; p < 0.05), and total creatine (12.71 vs 10.50 mM; p < 0.05) in ZDF rats (n = 5) compared with littermates (n = 5). Although no obvious alterations were detected in the hippocampal levels of other metabolites, including NAA + NAAG and choline-containing compounds in the ZDF rats, the increase in Glc and Ins levels is in line with elevated brain tissue contents of these metabolites in patients with diabetes mellitus.  相似文献   

6.
Therapeutic hypothermia is standard care for infants with moderate to severe encephalopathy. 1H MRS thermometry (MRSt) measures regional brain absolute temperature using the temperature‐dependent water chemical shift. This study evaluates the clinical feasibility of MRSt in human neonates, and correlates white matter (WM) and thalamus (Thal) MRSt with conventional rectal temperature (Trectal) measurement. Fifty‐six infants born at term underwent perinatal MRSt for suspected hypoxic–ischaemic brain injury and 33 infants born preterm had MRSt at a term‐equivalent age; 56 of the 89 had Trectal measured after MRSt of either a Thal or posterior WM voxel, or both. MRSt used point‐resolved spectroscopy (no water suppression; TR = 1370 ms; TE = 288 ms; 1.5 × 1.5 × 1.5 cm3 Thal and 1.1 × 1.3 × 1.4 cm3 WM voxels). Time domain data were phase and frequency corrected before summation and motion‐corrupted data were excluded from further analysis using simple criteria [preprocessing + quality assurance (QA)]. Two published water temperature‐dependence calibrations [both using cerebral creatine (Cr), choline (Cho) and N‐acetylaspartate (Naa) as independent reference peaks] were compared. The temperature measurements derived from Cr, Cho and Naa were combined to give a single amplitude‐weighted combination temperature (TAWC). WM and Thal TAWC correlated linearly with Trectal (Thal slope, 0.82 ± 0.04, R2 = 0.85, p < 0.05; WM slope, 0.95 ± 0.04, R2 = 0.78, p < 0.05). Preprocessing + QA improved the correlation between WM TAWC and Trectal (R2 increased from 0.27 to 0.78, p < 0.001). Both calibration datasets showed specific inconsistencies between the temperatures calculated using Cr, Cho and Naa reference peaks when applied to this neonatal dataset. Neonatal MRSt is clinically feasible. Preprocessing + QA improved MRSt reliability in WM. The consideration of MRSt calibration internal biases is necessary before combining MRSt temperatures from multiple reference peaks to obtain TAWC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
High-resolution magic angle spinning (HR-MAS) one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy has been used to study intact glioblastoma (GBM) brain tumour tissue. The results were compared with in vitro chemical extract and in vivo spectra. The resolution of 1H one-dimensional, 1H TOCSY and 13C HSQC HR-MAS spectra is comparable to that obtained on perchloric extracts. 13C HSQC HR-MAS spectra have been particularly useful for the identification of 37 different metabolites in intact biopsy tumours, excluding water and DSS components. To our knowledge, this is the most detailed assignment of biochemical compounds obtained in intact human tissue, in particular in brain tumour tissue. Tissue degradation during the recording of the NMR experiment was avoided by keeping the sample at a temperature of 4 degrees C. Detailed metabolical compositions of 10 GBM (six primary, two secondary and two unclassified) were obtained. A good correlation between ex vivo and in vivo MRS has been found.  相似文献   

8.
Magnetization transfer (MT) was measured in the parotid gland in vivo by (1)H MR spectroscopy in 10 adult volunteers. A comparison was made of stimulated (excess saliva) and resting parotid gland (SPG and RPG, respectively). Following irradiation at an MT pulse of 150 Hz downfield from the water proton signal, signal reductions in SPG and RPG were 83.8 +/- 4.7 and 91.4 +/- 5.7%, respectively. The larger reduction for SPG indicates that an increase in the amount of water in gland cells for the production of more parotid saliva may lead to greater affinity between the protons adjacent to macromolecules and free water which contributes to the MT effect. Activity in the parotid gland correlates with the effect. This method is useful for diagnosing disorders of parotid gland secretion.  相似文献   

9.
Diffusion‐weighted 1H‐MRS (DW‐MRS) allows for noninvasive investigation of the cellular compartmentalization of cerebral metabolites. DW‐MRS applied to the congenital portal systemic shunt (PSS) mouse brain may provide specific insight into alterations of cellular restrictions associated with PSS in humans. At 14.1 T, adult male PSS and their age‐matched healthy (Ctrl) mice were studied using DW‐MRS covering b‐values ranging from 0 to 45 ms/μm2 to determine the diffusion behavior of abundant metabolites. The remarkable sensitivity and spectral resolution, in combination with very high diffusion weighting, allowed for precise measurement of the diffusion properties of endogenous N‐acetyl‐aspartate, total creatine, myo‐inositol, total choline with extension to glutamine and glutamate in mouse brains, in vivo. Most metabolites had comparable diffusion properties in PSS and Ctrl mice, suggesting that intracellular distribution space for these metabolites was not affected in the model. The slightly different diffusivity of the slow decaying component of taurine (0.015 ± 0.003 μm2/ms in PSS vs 0.021 ± 0.002 μm2/ms in Ctrl, P < 0.05) might support a cellular redistribution of taurine in the PSS mouse brain.  相似文献   

10.
The assessment of metabolites by (1)H MRS can provide information regarding glioma growth, and may be able to distinguish between different glioma models. Rat C6, 9 L/LacZ, F98 and RG2, and mouse GL261, cells were intracerebrally implanted into the respective rodents, and human U87 MG cells were implanted into athymic rats. Ethyl-nitrosourea induction was also used. Glioma metabolites [e.g. total choline (tCho), total creatine (tCr), N-acetylaspartate (NAA), lactate (Lac), glutamine (Gln), glutamate (Glu), aspartate (Asp), guanosine (Gua), mobile lipids and macromolecules (MMs)] were assessed from (1)H MRS using point-resolved spectroscopy (PRESS) [TE = 24 ms; TR = 2500 ms; variable pulse power and optimized relaxation delay (VAPOR) water suppression; 27-μL and 8-μL voxels in rats and mice, respectively] at 7 T. Alterations in metabolites (Totally Automatic Robust Quantitation in NMR, TARQUIN) in tumors were characterized by increases in lipids (Lip1.3: 8.8-54.5 mM for C6 and GL261) and decreases in NAA (1.3-2.0 mM for RG2, GL261 and C6) and tCr (0.8-4.0 mM for F98, RG2, GL261 and C6) in some models. F98, RG2, GL261 and C6 models all showed significantly decreased (p < 0.05) tCr, and RG2, GL261 and C6 models all exhibited significantly decreased (p < 0.05) NAA. The RG2 model showed significantly decreased (p < 0.05) Gln and Glu, the C6 model significantly decreased (p < 0.05) Asp, and the F98 and U87 models significantly decreased (p < 0.05) Gua, compared with controls. The GL261 model showed the greatest alterations in metabolites. (1)H MRS was able to differentiate the metabolic profiles in many of the seven rodent glioma models assessed. These models are considered to resemble certain characteristics of human glioblastomas, and this study may be helpful in selecting appropriate models.  相似文献   

11.
Choline and the related compounds phosphocholine (PC) and glycerophosphocholine (GPC) are considered to be important metabolites in oncology. Past studies have demonstrated correlations linking the relative ratios and concentrations of these metabolites with the development and progression of cancer. Currently, in vivo and tissue ex vivo magnetic resonance spectroscopy methods have mostly centered on measuring the total concentration of these metabolites and have difficulty in differentiating between them. Here, a new scheme that uses (31)P edited (1)H spectroscopy to quantify the concentrations of choline, PC and GPC in biological samples is reported and its applicability is demonstrated using samples of human brain tumor extracts. This method is particularly well-suited for analytical situations where the PC and GPC resonances are not sufficiently resolved and/or are obscured by other metabolites. Consequently, this scheme has the potential to be used for the analysis of choline compounds in ex vivo tissue samples.  相似文献   

12.
Saturation recovery spectra (STEAM) were acquired at 1.5 T with 7 TRs ranging from 530 to 5000 ms and a constant TE of 30 ms in voxels (7.2 ml) located in occipital grey, parietal white and frontal white matter (10 subjects each location). Spectra were also acquired at 7, 21 and 37 degrees C from separate 100 mm solutions of inositol (Ins), choline-containing compounds (Cho), N-acetyl-aspartate (NAA) and creatine. Simulations of T(1) fits with 2, 3 and 7 TRs demonstrated that at typical SNR there is potential for both inaccurate and biased results. In vivo, different metabolites had significantly different T(1)s within the same brain volume. The same order from shortest to longest T(1) (Ins, Cho, NAA, creatine) was found for all three brain regions. The order (Ins, NAA, creatine, Cho) was found in the metabolite solutions and was consistent with a simple model in which T(1) is inversely proportional to molecular weight. For all individual metabolites, T(1) increased from occipital grey to parietal white to frontal white matter. This study demonstrates that, in spectra acquired with TR near 1 s, T(1) weightings are substantially different for metabolites within a single tissue and also for the same metabolites in different tissues.  相似文献   

13.
Resolution enhancement for glutamate (Glu), glutamine (Gln) and glutathione (GSH) in the human brain by TE‐optimized point‐resolved spectroscopy (PRESS) at 7 T is reported. Sub‐TE dependences of the multiplets of Glu, Gln, GSH, γ‐aminobutyric acid (GABA) and N‐acetylaspartate (NAA) at 2.2–2.6 ppm were investigated with density matrix simulations, incorporating three‐dimensional volume localization. The numerical simulations indicated that the C4‐proton multiplets can be completely separated with (TE1, TE2) = (37, 63) ms, as a result of a narrowing of the multiplets and suppression of the NAA 2.5 ppm signal. Phantom experiments reproduced the signal yield and lineshape from simulations within experimental errors. In vivo tests of optimized PRESS were conducted on the prefrontal cortex of six healthy volunteers. In spectral fitting by LCModel, Cramér–Rao lower bounds (CRLBs) of Glu, Gln and GSH were 2 ± 1, 5 ± 1 and 6 ± 2 (mean ± SD), respectively. To evaluate the performance of the optimized PRESS method under identical experimental conditions, stimulated‐echo spectra were acquired with (TE, TM) = (14, 37) and (74, 68) ms. The CRLB of Glu was similar between PRESS and short‐TE stimulated‐echo acquisition mode (STEAM), but the CRLBs of Gln and GSH were lower in PRESS than in both STEAM acquisitions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Ascorbate (Asc, vitamin C) was quantified in the human brain noninvasively using two different 1H NMR spectroscopy methods: short‐echo time STEAM and MEGA‐PRESS homonuclear editing. Taking advantage of increased sensitivity and chemical shift dispersion at 7 T, Asc was quantified with increased reliability relative to our previous study accomplished at 4 T. Asc concentration quantified from short‐echo time spectra measured from the occipital lobe of eight healthy subjects ([Asc] = 1.1 ± 0.3 µmol/g, mean ± SD) was in excellent agreement with Asc concentration quantified from the same volume of interest using homonuclear editing ([Asc] = 1.2 ± 0.2 µmol/g). This agreement indicates that at 7 T, Asc can be reliably quantified in the human brain simultaneously with 15 other metabolites. Additional advantages of the short‐echo time approach were: shorter measurement time than homonuclear editing and minimal effect of T2 relaxation on Asc quantification. High magnetic field was also beneficial for Asc quantification with MEGA‐PRESS because increased chemical shift dispersion enabled editing with full efficiency, which resulted in a supra‐linear gain in signal‐to‐noise ratio relative to 4 T. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The apparent diffusion coefficients (ADCs) of water and brain metabolites were determined by proton MR spectroscopy on a clinical MR scanner for healthy volunteers and for pathological changes in cases of acute cerebral infarction and brain tumor. The ADCs of N-acetyl aspartate (NAA) and creatines in tissue involved in acute infarction were decreased compared to normal control values, while in tumors they showed increased values. Since NAA is a neuronal marker, these findings suggest that neuronal cell viscosity changes according to the pathological status of the tissue. The lactate ADC was significantly larger than the values for other major metabolites in cases of ischemia and tumor, suggesting that lactate is present in a different compartment. These results indicate that metabolite diffusion data can be used to reveal changes in the intracellular environment depending on the pathological status.  相似文献   

16.
The purpose of this study was to implement a diffusion‐weighted sequence for visualisation of mobile lipid resonances (MLR) using high resolution magic angle spinning (HR‐MAS) 1H MRS and to evaluate its use in establishing differences between tissues from patients with cervical carcinoma that contain cancer from those that do not. A stimulated echo sequence with bipolar gradients was modified to allow T1 and T2 measurements and optimised by recording signal loss in HR‐MAS spectra as a function of gradient strength in model lipids and tissues. Diffusion coefficients, T1 and apparent T2 relaxation times were measured in model lipid systems. MLR profiles were characterised in relation to T1 and apparent T2 relaxation in human cervical cancer tissue samples. Diffusion‐weighted (DW) spectra of cervical biopsies were quantified and peak areas analysed using linear discriminant analysis (LDA). The optimised sequence reduced spectral overlap by suppressing signals originating from low molecular weight metabolites and non‐lipid contributions. Significantly improved MLR visualisation allowed visualisation of peaks at 0.9, 1.3, 1.6, 2.0, 2.3, 2.8, 4.3 and 5.3 ppm. MLR analysis of DW spectra showed at least six peaks arising from saturated and unsaturated lipids and those arising from triglycerides. Significant differences in samples containing histologically confirmed cancer were seen for peaks at 0.9 (p < 0.006), 1.3 (p < 0.04), 2.0 (p < 0.03), 2.8 (p < 0.003) and 4.3 ppm (p < 0.0002). LDA analysis of MLR peaks from DW spectra almost completely separated two clusters of cervical biopsies (cancer, ‘no‐cancer’), reflecting underlying differences in MLR composition. Generated Receiver Operating Characteristic (ROC) curves and calculated area under the curve (0.962) validated high sensitivity and specificity of the technique. Diffusion‐weighting of HR‐MAS spectroscopic sequences is a useful method for characterising MLR in cancer tissues and displays an accumulation of lipids arising during tumourigenesis and an increase in the unsaturated lipid and triglyceride peaks with respect to saturated MLR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
18.
1H MRS provides a powerful method for investigating tumour metabolism by allowing the measurement of metabolites in vivo. Recently, the technique of 1H high‐resolution magic angle spinning (HR‐MAS) has been shown to produce high‐quality data, allowing the accurate measurement of many metabolites present in unprocessed biopsy tissue. The purpose of this study was to evaluate the agreement between the techniques of in vivo MRS and ex vivo HR‐MAS for investigating childhood brain tumours. Short‐TE (30 ms), single‐voxel, in vivo MRS was performed on 16 paediatric patients with brain tumours at 1.5 T. A frozen biopsy sample was available for each patient. HR‐MAS was performed on the biopsy samples, and metabolite quantities were determined from the MRS and HR‐MAS data using the LCModel? and TARQUIN algorithms, respectively. Linear regression was performed on the metabolite quantities to asses the agreement between MRS and HR‐MAS. Eight of the 12 metabolite quantities were found to correlate significantly (P < 0.05). The four worst correlating metabolites were aspartate, scyllo‐inositol, glycerophosphocholine and N‐acetylaspartate, and, except for glycerophosphocholine, this error was reflected in their higher Cramer–Rao lower bounds (CRLBs), suggesting that low signal‐to‐noise was the greatest source of error for these metabolites. Glycerophosphocholine had a lower CRLB implying that interference with phosphocholine and choline was the most significant source of error. The generally good agreement observed between the two techniques suggests that both MRS and HR‐MAS can be used to reliably estimate metabolite quantities in brain tumour tissue and that tumour heterogeneity and metabolite degradation do not have an important effect on the HR‐MAS metabolite profile for the tumours investigated. HR‐MAS can be used to improve the analysis and understanding of MRS data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by 1H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.  相似文献   

20.

Purpose

NAD(P)H:Quinone Oxidoreductase 1 (NQO1) C609T missense variant (NQO1*2) and 29 basepair (bp)-insertion/deletion (I29/D) polymorphism of the NRH:Quinone Oxidoreductase 2 (NQO2) gene promoter have been proposed as predictive and prognostic factors for cancer development and progression. The purpose of this study is to investigate the relationship between NQO1/NQO2 genotype and clinico-pathological features of papillary thyroid microcarcinoma (PTMC).

Materials and Methods

Genomic DNA was isolated from 243 patients; and clinical data were retrospectively analyzed. NQO1*2 and tri-allelic polymorphism of NQO2 were investigated by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis.

Results

PTMC with NQO1*2 frequently exhibited extra-thyroidal extension as compared to PTMC with wild-type NQO1 (p=0.039). There was a significant relationship between I29/I29 homozygosity of NQO2 and lymph node metastasis (p=0.042). Multivariate analysis showed that the I29/I29 genotype was associated with an increased risk of lymph node metastasis (OR, 2.24; 95% CI, 1.10-4.56; p=0.026).

Conclusion

NQO1*2 and I29 allele of the NQO2 are associated with aggressive clinical phenotypes of PTMC, and the I29 allele represents a putative prognostic marker for PTMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号