首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As of November 2021, several SARS-CoV-2 variants appeared and became dominant epidemic strains in many countries, including five variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron defined by the World Health Organization during the COVID-19 pandemic. As of August 2022, Omicron is classified into five main lineages, BA.1, BA.2, BA.3, BA.4, BA.5 and some sublineages (BA.1.1, BA.2.12.1, BA.2.11, BA.2.75, BA.4.6) ( https://www.gisaid.org/ ). Compared to the previous VOCs (Alpha, Beta, Gamma, and Delta), all the Omicron lineages have the most highly mutations in the spike protein, and with 50 mutations accumulated throughout the genome. Early data indicated that Omicron BA.2 sublineage had higher infectivity and more immune escape than the early wild-type (WT) strain, the previous VOCs, and BA.1. Recently, global surveillance data suggest a higher transmissibility of BA.4/BA.5 than BA.1, BA.1.1 and BA.2, and BA.4/BA.5 is becoming dominant strain in many countries globally.  相似文献   

2.
The coronavirus disease 2019 virus outbreak continues worldwide, with many variants emerging, some of which are considered variants of concern (VOCs). The WHO designated Omicron as a VOC and assigned it under variant B.1.1.529. Here, we used computational studies to examine the VOCs, including Omicron subvariants, and one variant of interest.  Here we found that the binding affinity of human receptor angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) increased in the order of wild type (Wuhan-strain) < Beta < Alpha < OmicronBA.5 < Gamma < Delta < Omicron BA.2.75 < BA.1 < BA.3 < BA.2. Interactions between docked complexes revealed that the RBD residue positions like 452, 478, 493, 498, 501, and 505 are crucial in creating strong interactions with hACE2. Omicron BA.2 shows the highest binding capacity to the hACE2 receptor among all the mutant complexes. The BA.5's L452R, F486V, and T478K mutation significantly impact the interaction network in the BA.5 RBD-hACE2 interface. Here for the first time, we report the His505, an active residue on the RBD forming a salt bridge in the BA.2, leading to increased mutation stability. When the active RBD residues are mutated, binding affinity and intermolecular interactions increase across all mutant complexes. By examining the differences in different variants, this study may provide a solid foundation for structure-based drug design for newly emerging variants.  相似文献   

3.
Several nations have recently begun to relax their public health protocols, particularly regarding the use of face masks when engaging in outdoor activities. This is because there has been a general trend towards fewer cases of coronavirus disease 2019 (COVID-19). However, new Omicron sub-variants (designated BA.4 and BA.5) have recently emerged. These two subvariants are thought to be the cause of an increase in COVID-19 cases in South Africa, the United States, and Europe. They have also begun to spread throughout Asia. They evolved from the Omicron lineage with characteristics that make them even more contagious and which allow them to circumvent immunity from a previous infection or vaccination. This article reviews a number of scientific considerations about these new variants, including their apparently reduced clinical severity.  相似文献   

4.
ObjectivesThe increased infectivity and transmissibility of SARS-CoV-2 variants of concern (VOCs) could cause significant human and economic damage. Hence, understanding their characteristics is crucial to control infection. We evaluated the environmental stability of the Wuhan strain and all VOCs (Alpha, Beta, Gamma, Delta, Omicron BA.1, and Omicron BA.2 variants) on plastic and human skin surfaces and their disinfection efficacy.MethodsTo evaluate environmental stability, residual virus titres on plastic and human skin surfaces were measured over time. Their survival time and half-life were calculated using regression analysis. The effectiveness of ethanol-based disinfectants at different concentrations was determined by in vitro and ex vivo evaluations.ResultsOn plastic and skin surfaces, the Alpha, Beta, Delta, and Omicron variants exhibited approximately two-fold longer survival times than the Wuhan strain; the Omicron variants had the longest survival time. The median survival times of the Wuhan strain and the Alpha, Beta, Gamma, Delta, and Omicron (BA.1 and BA.2) variants on human skin surface were 8.6, 19.6, 19.1, 11.0, 16.8, 21.1, and 22.5 h, respectively. The in vitro evaluation showed that the Wuhan strain and the Alpha, Beta, Gamma, Delta, and Omicron (BA.1 and BA.2) variants were completely inactivated within 15 s by 32.5%, 35%, 35%, 32.5%, 35%, 40%, and 40% ethanol, respectively. However, all viruses on human skin were completely inactivated by exposure to 35% ethanol for 15 s.ConclusionsSARS-CoV-2 VOCs, especially the Omicron variants, have higher environmental stability than the Wuhan strain, increasing their transmission risk and contributing to their spread.  相似文献   

5.
There is a significant body of evidence showing that efficient vaccination schemes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is helping control the coronavirus disease 2019 (COVID-19) pandemic. However, this goal cannot be achieved without real world data highlighting the impact of vaccines against viral spread. In this study, we have aimed at differentially investigating the impact of COVID-19 vaccines (CoronaVac, Pfizer/BioNTech, Astra/Zeneca Oxford, Janssen) used in North Cyprus in limiting the viral load of Delta and Omicron variants of SARS-COV-2. We have utilized real-time quantitative polymerase chain reaction cycle threshold values (Ct values) as a proxy of viral load of the two SARS-CoV-2 variants. Our results indicate that the administration of at least two doses of the messenger RNA-based Pfizer/BioNTech vaccine leads to the lowest viral load (highest Ct values) obtained for both Omicron and Delta variants. Interestingly, regardless of the vaccine type used, our study revealed that Delta variant produced significantly higher viral loads (lower Ct values) compared with the Omicron variant, where the latter was more commonly associated with younger patients. Viral spread is a crucial factor that can help determine the future of the pandemic. Thus, prioritizing vaccines that will play a role in not only preventing severe disease but also in limiting viral load and spread may contribute to infection control strategies.  相似文献   

6.
ObjectivesWe compared the vaccine effectiveness over time of the primary series and booster against infection and severe disease with the Delta, Omicron BA.1, and BA.2 variants in Singapore, an Asian setting with high vaccination coverage.MethodsWe conducted a test-negative case-control study on all adult residents in Singapore who underwent PCR testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in acute hospitals. Individuals with a negative PCR from 1 September, 2021, to 30 November, 2021, and 1 December, 2021, to 25 April, 2022, served as controls for the Delta and Omicron variants respectively, and PCR-positive individuals within these two time periods served as cases. Associations between vaccination status and SARS-CoV-2 infection and severe disease with the Delta or Omicron variants were measured using Poisson regressions. Vaccine effectiveness was calculated by taking 1 minus risk ratio.ResultsThere were 68 114 individuals comprising 58 495 controls and 9619 cases for the Delta period, of whom 53 093 completed the primary series and 9161 were boosted. For the Omicron period, 104 601 individuals comprising 80 428 controls, 8643 BA.1 cases, and 15 530 BA.2 cases were included, of whom 29 183 and 71 513 were vaccinated with the primary series and boosted, respectively. The primary series provided greater protection against infection with Delta (45%, 95% CI 40–50%) than against infection with Omicron (21%, 95% CI 7–34% for BA.1; 18%, 95% CI 6–29% for BA.2) at <2 months from vaccination. Vaccine effectiveness of the booster was similar against infection with BA.1 (44%, 95% CI 38–50%) and BA.2 (40%, 95% CI 35–40%). Protection against severe disease by the booster for BA.1 (83%, 95% CI 76–88%) and BA.2 (78%, 95% CI 73–82%) was comparable to that by the primary series for Delta (80%, 95% CI 73–85%).ConclusionOur findings support the use of a booster dose to reduce the risk of severe disease and mitigate the impact on the healthcare system in an Omicron-predominant epidemic.  相似文献   

7.
The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.  相似文献   

8.
We aim to evaluate the evolution differences in the incidence and case fatality rate (CFR) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants. The average incidence and CFRs were described between different countries. A gamma generalized linear mixed model (GLMM) was used to compare the CFRs of Delta and Omicron variants based on vaccination coverage. Totally, 50 countries were included for analyses. The incidence of coronavirus disease 2019 (COVID-19) ranged from 0.16/100,000 to 82.95/100,000 during the Delta period and 0.03/100,000 to 440.88/100,000 during the Omicron period. The median CFRs were 8.56 (interquartile range [IQR]: 4.76–18.39) during the Delta period and 3.04 (IQR: 1.87–7.48) during the Omicron period, respectively. A total of 47 out of 50 countries showed decreased CFRs of the Omicron variant with the rate ratio ranging from 0.02 (95% confidence interval [CI]: 0.01–0.03) (in Cambodia) to 0.97 (95% CI: 0.87–1.08) (in Ireland). Gamma GLMM analysis showed that the decreased CFR was largely a result of the decreased pathogenicity of Omicron besides the increased vaccination coverage. The Omicron variant shows a higher incidence but a lower CFR around the world as a whole, which is mainly a result of the decreased pathogenicity by SARS-CoV-2's mutation, while the vaccination against SARS-CoV-2 still acts as a valuable measure in preventing people from death.  相似文献   

9.
A comprehensive picture of a phenotypic relationship among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has been poorly studied. Here, this study presents cartography showing how the wild-type strain of SARS-CoV-2 and 14 variants are alike or different from the perspective of the susceptibility to 12 therapeutic monoclonal antibodies. The Alpha variant is close to the wild-type strain, whereas the Beta, Gamma, and Delta variants diverge from the wild-type. The map highlights the very unique property of the Omicron variant. Interestingly, sublineages of the Omicron variants, BA.1, BA.2, and BA.4/5, differ substantially in the cartography.  相似文献   

10.
Background : The Omicron (B.1.1.529) SARS- COV- 2 variant has raised serious con-cerns because of its unprecedented rapid rate of spreading and the fact that there are 36 mutations in the spike protein. Since the vaccine-i nduced neutralizing antibody targets are the spike protein, this may lead to the possibility of vaccine-i nduced hu-moral immunity escape.Methods : We measured the neutralizing activity in vitro for Omicron and compared this with wild type (WH- 09) and Delta variants in human and monkey sera from dif-ferent types of immunity. The monkey sera samples were collected at 1 and 3 months post three- dose inactivated (PiCoVacc) and recombinant protein (ZF2001) vaccination. Human sera were collected from 1 month post three- dose inactivated vaccination. Results : In inactivated vaccine sera, at 1/3 months post three- dose, geometric mean titers (GMTs) of neutralization antibody (NAb) against the Omicron variant were 4.9/5.2- fold lower than those of the wild type. In recombinant protein vaccine sera, GMTs of NAb against Omicron were 15.7/8.9- fold lower than those of the wild type. In human sera, at 1 month post three- dose inactivated vaccination, GMTs of NAb against Omicron were 3.1- fold lower than those of the wild type. Conclusion : This study demonstrated that despite a reduction in neutralization titers, cross- neutralizing activity against Omicron and Delta variants was still observed after three doses of inactivated and recombinant protein vaccination.  相似文献   

11.
There are limited data comparing the transmission rates and kinetics of viable virus shedding of the Omicron variant to those of the Delta variant. We compared these rates in hospitalized patients infected with Delta and Omicron variants. We prospectively enrolled adult patients with COVID-19 admitted to a tertiary care hospital in South Korea between September 2021 and May 2022. Secondary attack rates were calculated by epidemiologic investigation, and daily saliva samples were collected to evaluate viral shedding kinetics. Genomic and subgenomic SARS-CoV-2 RNA was measured by PCR, and virus culture was performed from daily saliva samples. A total of 88 patients with COVID-19 who agreed to daily sampling and were interviewed, were included. Of the 88 patients, 48 (59%) were infected with Delta, and 34 (41%) with Omicron; a further 5 patients gave undetectable or inconclusive RNA PCR results and 1 was suspected of being coinfected with both variants. Omicron group had a higher secondary attack rate (31% [38/124] vs. 7% [34/456], p < 0.001). Survival analysis revealed that shorter viable virus shedding period was observed in Omicron variant compared with Delta variant (median 4, IQR [1−7], vs. 8.5 days, IQR [5–12 days], p < 0.001). Multivariable analysis revealed that moderate-to-critical disease severity (HR: 1.96), and immunocompromised status (HR: 2.17) were independent predictors of prolonged viral shedding, whereas completion of initial vaccine series or first booster-vaccinated status (HR: 0.49), and Omicron infection (HR: 0.44) were independently associated with shorter viable virus shedding. Patients with Omicron infections had higher transmission rates but shorter periods of transmissible virus shedding than those with Delta infections.  相似文献   

12.
The major challenge in COVID-19 vaccine effectiveness is immune escape by SARS-CoV-2 variants. To overcome this, an Omicron-specific messenger RNA (mRNA) vaccine was designed. The extracellular domain of the spike of the Omicron variant was fused with a modified GCN4 trimerization domain with low immunogenicity (TSomi). After immunization with TSomi mRNA in hamsters, animals were challenged with SARS-CoV-2 virus. The raised nonneutralizing antibodies or cytokine secretion responses can recognize both Wuhan S and Omicron S. However, the raised antibodies neutralized SARS-CoV-2 Omicron virus infection but failed to generate Wuhan virus neutralizing antibodies. Surprisingly, TSomi mRNA immunization protected animals from Wuhan virus challenge. These data indicated that non-neutralizing antibodies or cellular immunity may play a more important role in vaccine-induced protection than previously believed. Next-generation COVID-19 vaccines using the Omicron S antigen may provide sufficient protection against ancestral or current SARS-CoV-2 variants.  相似文献   

13.
BackgroundAn effective vaccine response is currently a critical issue in the control of COVID-19. Little is known about humoral and cellular immunity comparing protein-based vaccine with other types of vaccines. The relevance of basal immunity to antibody production is also unknown.MethodsSeventy-eight individuals were enrolled in the study. The primary outcome were the level of spike-specific antibodies and neutralizing antibodies measured by ELISA. Secondary measures included memory T cells and basal immunity estimated by flow cytometry and ELISA. Correlations for all parameters were calculated using the nonparametric Spearman correlation method.ResultsWe observed that two doses of mRNA-based Moderna mRNA-1273 (Moderna) vaccine produced the highest total spike-binding antibody and neutralizing ability against the wild-type (WT), Delta, and Omicron variants. The protein-based MVC-COV1901 (MVC) vaccine developed in Taiwan produced higher spike-binding antibodies against Delta and Omicron variants and neutralizing ability against the WT strain than the adenovirus-based AstraZeneca-Oxford AZD1222 (AZ) vaccine. Moderna and AZ vaccination produced more central memory T cells in PBMC than the MVC vaccine. However, the MVC vaccine had the lowest adverse effects compared to the Moderna and AZ vaccines. Surprisingly, the basal immunity represented by TNF-α, IFN-γ, and IL-2 prior to vaccination was negatively correlated with the production of spike-binding antibodies and neutralizing ability.ConclusionThis study compared memory T cells, total spike-binding antibody levels, and neutralizing capacity against WT, Delta, and Omicron variants between the MVC vaccine and the widely used Moderna and AZ vaccines, which provides valuable information for future vaccine development strategies.  相似文献   

14.
《Clinical microbiology and infection》2022,28(11):1503.e5-1503.e8
ObjectivesTo describe Delta/Omicron SARS-CoV-2 variants co-infection detection and confirmation during the fifth wave of COVID-19 pandemics in France in 7 immunocompetent and epidemiologically unrelated patients.MethodsSince December 2021, the surveillance of Delta/Omicron SARS-CoV-2 variants of concern (VOC) circulation was performed through prospective screening of positive-samples using single nucleotide polymorphism (SNP) PCR assays targeting SARS-CoV-2 S-gene mutations K417N (Omicron specific) and L452R (Delta specific). Samples showing unexpected mutational profiles were further submitted to whole genome sequencing (WGS) using three different primer sets.ResultsBetween weeks 49-2021 and 02-2022, SARS-CoV-2 genome was detected in 3831 respiratory samples, of which 3237 (84.5%) were screened for VOC specific SNPs. Unexpected mutation profiles suggesting a dual Delta/Omicron population were observed in 7 nasopharyngeal samples (0.2%). These co-infections were confirmed by WGS. For 2 patients, the sequence analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection. Additionally, for one of these samples, a recombination event between Delta and Omicron was detected.ConclusionsThis work demonstrates that SARS-CoV-2 Delta/Omicron co-infections are not rare in high virus co-circulation periods. Moreover, co-infections can further lead to genetic recombination which may generate new chimeric variants with unpredictable epidemic or pathogenic properties that could represent a serious health threat.  相似文献   

15.
ObjectivesThe BIV1-CovIran vaccine is highly effective against COVID-19. The neutralizing potency of all SARS-CoV-2 vaccines seems to be decreased against variants of concern. We assessed the sensitivity of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants to neutralizing antibodies (NAbs) present in sera from individuals who had received the BIV1-CovIran candidate vaccine compared with an original Wuhan-related strain.MethodsThe ability of vaccine serum to neutralize the variants was measured using the conventional virus neutralization test. The correlation of spike (S) protein antibody and anti-receptor binding domain with neutralizing activity was investigated.ResultsThe current study demonstrated that 29 of 32 (90.6%; 95% CI: 75.0–98.0) of the vaccinees developed NAbs against a Wuhan-related strain. It is noteworthy that 28 (87.50%) and 24 of 32 (75%) of the recipients were able to produce NAbs against Alpha, Beta, and Delta variants, respectively. Serum virus-neutralizing titres for different SARS-CoV-2 strains were weakly correlated with anti–receptor binding domain antibodies (Spearman r = 36-42, p < 0.05), but not S-binding antibodies (p > 0.05).DiscussionAlthough there was a reduction in neutralization titres against the Alpha, Beta, and Delta variants compared with the Wuhan strain, BIV1-CovIran still exhibited potent neutralizing activity against the SARS-CoV-2 variants of concern.  相似文献   

16.
The Omicron (B.1.1.529) variant was first reported in South Africa and rapidly spread worldwide in early November 2021. This caused panic in various countries, so it is necessary to understand Omicron Variant. This paper summarizes omicron variant-related research achievements. Studies have shown that Omicron Variant contains many mutations that make it more infectious and transmissible. At the same time, immune escape is also caused, resulting in reduced efficacy of existing vaccines, increased risk of reinfection, treatment failure or reduction of monoclonal antibody therapies, and detection failure. However, current data indicate that Omicron Variant causes mild clinical symptoms and few severe cases and deaths. Omicron Variant is valid for a range of nonpharmaceutical interventions against SARS-CoV-2. Improving diagnostic accuracy and enabling timely isolation and treatment of diagnosed cases is also critical to interrupting the spread of omicron variants. COVID-19 vaccine boosters could undoubtedly help control Omicron spread and infection. However, developing a vaccine specific to Omicron Variant is also imminent.  相似文献   

17.
Severe acute respiratorysyndrome coronavirus-2 (SARS-CoV-2) pandemic spread rapidly and this scenario is concerning worldwide, presenting more than 590 million coronavirus disease 2019 cases and 6.4 million deaths. The emergence of novel lineages carrying several mutations in the spike protein has raised additional public health concerns worldwide during the pandemic. The present study review and summarizes the temporal spreading and molecular evolution of SARS-CoV-2 clades and variants worldwide. The evaluation of these data is important for understanding the evolutionary histories of SARSCoV-2 lineages, allowing us to identify the origins of each lineage of this virus responsible for one of the biggest pandemics in history. A total of 2897 SARS-CoV-2 whole-genome sequences with available information from the country and sampling date (December 2019 to August 2022), were obtained and were evaluated by Bayesian approach. The results demonstrated that the SARS-CoV-2 the time to the most recent common ancestor (tMRCA) in Asia was 2019-12-26 (highest posterior density 95% [HPD95%]: 2019-12-18; 2019-12-29), in Oceania 2020-01-24 (HPD95%: 2020-01-15; 2020-01-30), in Africa 2020-02-27 (HPD95%: 2020-02-21; 2020-03-04), in Europe 2020-02-27 (HPD95%: 2020-02-20; 2020-03-06), in North America 2020-03-12 (HPD95%: 2020-03-05; 2020-03-18), and in South America 2020-03-15 (HPD95%: 2020-03-09; 2020-03-28). Between December 2019 and June 2020, 11 clades were detected (20I [Alpha] and 19A, 19B, 20B, 20C, 20A, 20D, 20E [EU1], 20F, 20H [Beta]). From July to December 2020, 4 clades were identified (20J [Gamma, V3], 21 C [Epsilon], 21D [Eta], and 21G [Lambda]). Between January and June 2021, 3 clades of the Delta variant were detected (21A, 21I, and 21J). Between July and December 2021, two variants were detected, Delta (21A, 21I, and 21J) and Omicron (21K, 21L, 22B, and 22C). Between January and June 2022, the Delta (21I and 21J) and Omicron (21K, 21L, and 22A) variants were detected. Finally, between July and August 2022, 3 clades of Omicron were detected (22B, 22C, and 22D). Clade 19A was first detected in the SARS-CoV-2 pandemic (Wuhan strain) with origin in 2019-12-16 (HPD95%: 2019-12-15; 2019-12-25); 20I (Alpha) in 2020-11-24 (HPD95%: 2020-11-15; 2021-12-02); 20H (Beta) in 2020-11-25 (HPD95%: 2020-11-13; 2020-11-29); 20J (Gamma) was 2020-12-21 (HPD95%: 2020-11-05; 2021-01-15); 21A (Delta) in 2020-09-20 (HPD95%: 2020-05-17; 2021-02-03); 21J (Delta) in 2021-02-26 (2020-11-02; 2021-04-24); 21M (Omicron) in 2021-01-25 (HPD95%: 2020-09-16; 2021-08-08); 21K (Omicron) in 2021-07-30 (HPD95%: 2021-05-30; 2021-10-19); 21L (Omicron) in 2021-10-03 (HPD95%: 2021-04-16; 2021-12-23); 22B (Omicron) in 2022-01-25 (HPD95%: 2022-01-10; 2022-02-05); 21L in 2021-12-20 (HPD95%: 2021-05-16; 2021-12-31). Currently, the Omicron variant predominates worldwide, with the 21L clade branching into 3 (22A, 22B, and 22C). Phylogeographic data showed that Alpha variant originated in the United Kingdom, Beta in South Africa, Gamma in Brazil, Delta in India, Omicron in South Africa, Mu in Colombia, Epsilon in the United States of America, and Lambda in Peru. The COVID-19 pandemic has had a significant impact on global health worldwide and the present study provides an overview of the molecular evolution of SARS-CoV-2 lineage clades (from the Wuhan strain to the currently circulating lineages of the Omicron).  相似文献   

18.
The long-term protective efficacy of neutralizing antibodies (Nabs) against Omicron subvariants after inactivated booster vaccines remains elusive. During the follow-up study, 54 healthy volunteers aged 20–31 years received inactivated CoronaVac booster vaccinations and were monitored for 221 days. The dynamic efficacy and durability of Nab against Omicron subvariants BA.1, BA.2, BA.2.12.2, and BA4/5 were assessed using a pseudotyped virus neutralization assay at up to nine time points post immunization. The antibody response against Omicron subvariants was substantially weaker than D614G, with BA.4/5 being the least responsive. The geometric mean titer (GMT) of Nab against Omicron subvariants BA.1, BA.2, BA.2.12.1, and BA.4/5 was 2.2-, 1.7-, 1.8-, and 2.2-fold lower than that against D614G (ps < 0.0001). The gap in Nab response between Omicron subvariants was pronounced during the 2 weeks–2 months following booster vaccination (ps < 0.05). Seven months post booster, the antibody potency against D614G was maintained at 100% (50% for Nab titers ≥ 100 50% inhibitory dilution [EC50]), whereas at 77.3% for BA.1, 90.9% for BA.2, 86.4% for BA.2.12.1, and 86.4% for BA.4/5 (almost 20% for Nab titers ≥ 100 EC50). Despite the inevitable immune escape, Omicron subvariants maintained sustained and measurable antibody potency post-booster vaccination during long-term monitoring, which could help optimize immunization strategies.  相似文献   

19.
BackgroundFollowing a relatively mild first wave of coronavirus disease 2019 (COVID-19) in India, a deadly second wave of the pandemic overwhelmed the healthcare system due to the emergence of fast-transmitting SARS-CoV-2 genetic variants. The emergence and spread of the B.1.617.2/Delta variant considered to be driving the devastating second wave of COVID-19 in India. Currently, the Delta variant has rapidly overtaken the previously circulating variants to become the dominant strain. Critical mutations in the spike/RBD region of these variants have raised serious concerns about the virus's increased transmissibility and decreased vaccine effectiveness. As a result, significant scientific and public concern has been expressed about the impact of virus variants on COVID-19 vaccines.ObjectivesThe purpose of this article is to provide an additional explanation in the context of the evolutionary trajectory of SARS-CoV-2 variants in India, the vaccine-induced immune response to the variants of concern (VOC), and various vaccine deployment strategies to rapidly increase population immunity.ContentPhylogenetic analysis of SARS-CoV-2 isolates circulating in India suggests the emergence and spread of B.1.617 variant. The immunogenicity of currently approved vaccines indicates that the majority of vaccines elicit an antibody response and some level of protection. According to current data, vaccines in the pre-fusion configuration (2p substitution) have an advantage in terms of nAb titer, but the duration of vaccine-induced immunity, as well as the role of T cells and memory B cells in protection, remain unknown. Since vaccine efficacy on virus variants is one of the major factors to be considered for achieving herd immunity, existing vaccines need to be improved or effective next-generation vaccines should be developed to cover the new variants of the virus.  相似文献   

20.
ObjectivesWe investigated serum neutralizing activity against BA.1 and BA.2 Omicron sublineages and T cell response before and 3 months after administration of the booster vaccine in healthcare workers (HCWs).MethodsHCWs aged 18–65 years who were vaccinated and received booster doses of the BNT162b2 vaccine were included. Anti–SARS coronavirus 2 IgG levels and cellular response (through interferon γ ELISpot assay) were evaluated in all participants, and neutralizing antibodies against Delta, BA.1, and BA.2 were evaluated in participants with at least one follow-up visit 1 or 3 months after the administration of the booster dose.ResultsAmong 118 HCWs who received the booster dose, 102 and 84 participants attended the 1-month and 3-month visits, respectively. Before the booster vaccine dose, a low serum neutralizing activity against Delta, BA.1, and BA.2 was detectable in only 39/102 (38.2%), 8/102 (7.8%), and 12/102 (11.8%) participants, respectively. At 3 months, neutralizing antibodies against Delta, BA.1, and BA.2 were detected in 84/84 (100%), 79/84 (94%), and 77/84 (92%) participants, respectively. Geometric mean titres of neutralizing antibodies against BA.1 and BA.2 were 2.2-fold and 2.8-fold reduced compared with those for Delta. From 1 to 3 months after the administration of the booster dose, participants with a recent history of SARS coronavirus 2 infection (n = 21/84) had persistent levels of S1 reactive specific T cells and neutralizing antibodies against Delta and BA.2 and 2.2-fold increase in neutralizing antibodies against BA.1 (p 0.014). Conversely, neutralizing antibody titres against Delta (2.5-fold decrease, p < 0.0001), BA.1 (1.5-fold, p 0.02), and BA.2 (2-fold, p < 0.0001) declined from 1 to 3 months after the administration of the booster dose in individuals without any recent infection.DiscussionThe booster vaccine dose provided significant and similar response against BA.1 and BA.2 Omicron sublineages; however, the immune response declined in the absence of recent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号