首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a new Deep Convolutional Neural Networks (CNNs) dedicated to fully automatic segmentation of Glioblastoma brain tumors with high- and low-grade. The proposed CNNs model is inspired by the Occipito-Temporal pathway which has a special function called selective attention that uses different receptive field sizes in successive layers to figure out the crucial objects in a scene. Thus, using selective attention technique to develop the CNNs model, helps to maximize the extraction of relevant features from MRI images. We have also addressed two more issues: class-imbalance, and the spatial relationship among image Patches. To address the first issue, we propose two steps: an equal sampling of images Patches and an experimental analysis of the effect of weighted cross-entropy loss function on the segmentation results. In addition, to overcome the second issue, we have studied the effect of Overlapping Patches against Adjacent Patches where the Overlapping Patches show better segmentation results due to the introduction of the global context as well as the local features of the image Patches compared to the conventionnel Adjacent Patches. Our experiment results are reported on BRATS-2018 dataset where our End-to-End Deep Learning model achieved state-of-the-art performance. The median Dice score of our fully automatic segmentation model is 0.90, 0.83, 0.83 for the whole tumor, tumor core, and enhancing tumor respectively compared to the Dice score of radiologist, that is in the range 74% – 85%. Moreover, our proposed CNNs model is not only computationally efficient at inference time, but it could segment the whole brain on average 12 seconds. Finally, the proposed Deep Learning model provides an accurate and reliable segmentation result, and that makes it suitable for adopting in research and as a part of different clinical settings.  相似文献   

2.
The dearth of annotated data is a major hurdle in building reliable image segmentation models. Manual annotation of medical images is tedious, time-consuming, and significantly variable across imaging modalities. The need for annotation can be ameliorated by leveraging an annotation-rich source modality in learning a segmentation model for an annotation-poor target modality. In this paper, we introduce a diverse data augmentation generative adversarial network (DDA-GAN) to train a segmentation model for an unannotated target image domain by borrowing information from an annotated source image domain. This is achieved by generating diverse augmented data for the target domain by one-to-many source-to-target translation. The DDA-GAN uses unpaired images from the source and target domains and is an end-to-end convolutional neural network that (i) explicitly disentangles domain-invariant structural features related to segmentation from domain-specific appearance features, (ii) combines structural features from the source domain with appearance features randomly sampled from the target domain for data augmentation, and (iii) train the segmentation model with the augmented data in the target domain and the annotations from the source domain. The effectiveness of our method is demonstrated both qualitatively and quantitatively in comparison with the state of the art for segmentation of craniomaxillofacial bony structures via MRI and cardiac substructures via CT.  相似文献   

3.
Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions, such as Transcatheter Arterial Chemoembolization (TACE) of liver cancer guided by intraprocedural CBCT and pre-operative MR. The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting, which will significantly improve therapeutic outcomes. However, the intra-procedural CBCT often suffers from suboptimal image quality due to lack of signal calibration for Hounsfield unit, limited FOV, and motion/metal artifacts. These non-ideal conditions make standard intensity-based multimodal registration methods infeasible to generate correct transformation across modalities. While registration based on anatomic structures, such as segmentation or landmarks, provides an efficient alternative, such anatomic structure information is not always available. One can train a deep learning-based anatomy extractor, but it requires large-scale manual annotations on specific modalities, which are often extremely time-consuming to obtain and require expert radiological readers. To tackle these issues, we leverage annotated datasets already existing in a source modality and propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth. The segmenters are then integrated into our anatomy-guided multimodal registration based on the robust point matching machine. Our experimental results on in-house TACE patient data demonstrated that our APA2Seg-Net can generate robust CBCT and MR liver segmentation, and the anatomy-guided registration framework with these segmenters can provide high-quality multimodal registrations.  相似文献   

4.
Despite advances in data augmentation and transfer learning, convolutional neural networks (CNNs) difficultly generalise to unseen domains. When segmenting brain scans, CNNs are highly sensitive to changes in resolution and contrast: even within the same MRI modality, performance can decrease across datasets. Here we introduce SynthSeg, the first segmentation CNN robust against changes in contrast and resolution. SynthSeg is trained with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation strategy where we fully randomise the contrast and resolution of the synthetic training data. Consequently, SynthSeg can segment real scans from a wide range of target domains without retraining or fine-tuning, which enables straightforward analysis of huge amounts of heterogeneous clinical data. Because SynthSeg only requires segmentations to be trained (no images), it can learn from labels obtained by automated methods on diverse populations (e.g., ageing and diseased), thus achieving robustness to a wide range of morphological variability. We demonstrate SynthSeg on 5,000 scans of six modalities (including CT) and ten resolutions, where it exhibits unparallelled generalisation compared with supervised CNNs, state-of-the-art domain adaptation, and Bayesian segmentation. Finally, we demonstrate the generalisability of SynthSeg by applying it to cardiac MRI and CT scans.  相似文献   

5.
Left ventricular (LV) segmentation is essential for the early diagnosis of cardiovascular diseases, which has been reported as the leading cause of death all over the world. However, automated LV segmentation from cardiac magnetic resonance images (CMRI) using the traditional convolutional neural networks (CNNs) is still a challenging task due to the limited labeled CMRI data and low tolerances to irregular scales, shapes and deformations of LV. In this paper, we propose an automated LV segmentation method based on adversarial learning by integrating a multi-stage pose estimation network (MSPN) and a co-discrimination network. Different from existing CNNs, we use a MSPN with multi-scale dilated convolution (MDC) modules to enhance the ranges of receptive field for deep feature extraction. To fully utilize both labeled and unlabeled CMRI data, we propose a novel generative adversarial network (GAN) framework for LV segmentation by combining MSPN with co-discrimination networks. Specifically, the labeled CMRI are first used to initialize our segmentation network (MSPN) and co-discrimination network. Our GAN training includes two different kinds of epochs fed with both labeled and unlabeled CMRI data alternatively, which are different from the traditional CNNs only relied on the limited labeled samples to train the segmentation networks. As both ground truth and unlabeled samples are involved in guiding training, our method not only can converge faster but also obtain a better performance in LV segmentation. Our method is evaluated using MICCAI 2009 and 2017 challenge databases. Experimental results show that our method has obtained promising performance in LV segmentation, which also outperforms the state-of-the-art methods in terms of LV segmentation accuracy from the comparison results.  相似文献   

6.
Road segmentation from high-resolution visible remote sensing images provides an effective way for automatic road network forming. Recently, deep learning methods based on convolutional neural networks (CNNs) are widely applied in road segmentation. However, it is a challenge for most CNN-based methods to achieve high segmentation accuracy when processing high-resolution visible remote sensing images with rich details. To handle this problem, we propose a road segmentation method based on a Y-shaped convolutional network (indicated as Y-Net). Y-Net contains a two-arm feature extraction module and a fusion module. The feature extraction module includes a deep downsampling-to-upsampling sub-network for semantic features and a convolutional sub-network without downsampling for detail features. The fusion module combines all features for road segmentation. Benefiting from this scheme, the Y-Net can well segment multi-scale roads (both wide and narrow roads) from high-resolution images. The testing and comparative experiments on a public dataset and a private dataset show that Y-Net has higher segmentation accuracy than four other state-of-art methods, FCN (Fully Convolutional Network), U-Net, SegNet, and FC-DenseNet (Fully Convolutional DenseNet). Especially, Y-Net accurately segments contours of narrow roads, which are missed by the comparative methods.  相似文献   

7.
Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.  相似文献   

8.
In histopathological image analysis, the morphology of histological structures, such as glands and nuclei, has been routinely adopted by pathologists to assess the malignancy degree of adenocarcinomas. Accurate detection and segmentation of these objects of interest from histology images is an essential prerequisite to obtain reliable morphological statistics for quantitative diagnosis. While manual annotation is error-prone, time-consuming and operator-dependant, automated detection and segmentation of objects of interest from histology images can be very challenging due to the large appearance variation, existence of strong mimics, and serious degeneration of histological structures. In order to meet these challenges, we propose a novel deep contour-aware network (DCAN) under a unified multi-task learning framework for more accurate detection and segmentation. In the proposed network, multi-level contextual features are explored based on an end-to-end fully convolutional network (FCN) to deal with the large appearance variation. We further propose to employ an auxiliary supervision mechanism to overcome the problem of vanishing gradients when training such a deep network. More importantly, our network can not only output accurate probability maps of histological objects, but also depict clear contours simultaneously for separating clustered object instances, which further boosts the segmentation performance. Our method ranked the first in two histological object segmentation challenges, including 2015 MICCAI Gland Segmentation Challenge and 2015 MICCAI Nuclei Segmentation Challenge. Extensive experiments on these two challenging datasets demonstrate the superior performance of our method, surpassing all the other methods by a significant margin.  相似文献   

9.
Training convolutional neural network (CNN) architecture fully, using pretrained CNNs as feature extractors, and fine-tuning pretrained CNNs on target datasets are three popular strategies used in state-of-the-art methods for remote sensing image classification. The full training strategy requires large-scale training dataset, whereas the fine-tuning strategy requires a pretrained model to resume network learning. In this study, we propose a new strategy based on selective CNNs and cascade classifiers to improve the classification accuracy of remote sensing images relative to single CNN. First, we conduct a comparative study of existing pretrained CNNs in terms of data augmentation and the use of fully connected layers. Second, selective CNNs, which based on class separability criterion, are presented to obtain an optimal combination from multiple pretrained models. Finally, classification accuracy is improved by introducing two-stage cascade linear classifiers, the prediction probability of which in the first stage is used as input for the second stage. Experiments on three public remote sensing datasets demonstrate the effectiveness of the proposed method in comparison with state-of-the-art methods.  相似文献   

10.
Traditional medical image segmentation methods based on deep learning require experts to provide extensive manual delineations for model training. Few-shot learning aims to reduce the dependence on the scale of training data but usually shows poor generalizability to the new target. The trained model tends to favor the training classes rather than being absolutely class-agnostic. In this work, we propose a novel two-branch segmentation network based on unique medical prior knowledge to alleviate the above problem. Specifically, we explicitly introduce a spatial branch to provide the spatial information of the target. In addition, we build a segmentation branch based on the classical encoder–decoder structure in supervised learning and integrate prototype similarity and spatial information as prior knowledge. To achieve effective information integration, we propose an attention-based fusion module (AF) that enables the content interaction of decoder features and prior knowledge. Experiments on an echocardiography dataset and an abdominal MRI dataset show that the proposed model achieves substantial improvements over state-of-the-art methods. Moreover, some results are comparable to those of the fully supervised model. The source code is available at github.com/warmestwind/RAPNet.  相似文献   

11.
In medical image segmentation, supervised machine learning models trained using one image modality (e.g. computed tomography (CT)) are often prone to failure when applied to another image modality (e.g. magnetic resonance imaging (MRI)) even for the same organ. This is due to the significant intensity variations of different image modalities. In this paper, we propose a novel end-to-end deep neural network to achieve multi-modality image segmentation, where image labels of only one modality (source domain) are available for model training and the image labels for the other modality (target domain) are not available. In our method, a multi-resolution locally normalized gradient magnitude approach is firstly applied to images of both domains for minimizing the intensity discrepancy. Subsequently, a dual task encoder-decoder network including image segmentation and reconstruction is utilized to effectively adapt a segmentation network to the unlabeled target domain. Additionally, a shape constraint is imposed by leveraging adversarial learning. Finally, images from the target domain are segmented, as the network learns a consistent latent feature representation with shape awareness from both domains. We implement both 2D and 3D versions of our method, in which we evaluate CT and MRI images for kidney and cardiac tissue segmentation. For kidney, a public CT dataset (KiTS19, MICCAI 2019) and a local MRI dataset were utilized. The cardiac dataset was from the Multi-Modality Whole Heart Segmentation (MMWHS) challenge 2017. Experimental results reveal that our proposed method achieves significantly higher performance with a much lower model complexity in comparison with other state-of-the-art methods. More importantly, our method is also capable of producing superior segmentation results than other methods for images of an unseen target domain without model retraining. The code is available at GitHub (https://github.com/MinaJf/LMISA) to encourage method comparison and further research.  相似文献   

12.
Semantic segmentation using convolutional neural networks (CNNs) is the state-of-the-art for many medical image segmentation tasks including myocardial segmentation in cardiac MR images. However, the predicted segmentation maps obtained from such standard CNN do not allow direct quantification of regional shape properties such as regional wall thickness. Furthermore, the CNNs lack explicit shape constraints, occasionally resulting in unrealistic segmentations. In this paper, we use a CNN to predict shape parameters of an underlying statistical shape model of the myocardium learned from a training set of images. Additionally, the cardiac pose is predicted, which allows to reconstruct the myocardial contours. The integrated shape model regularizes the predicted contours and guarantees realistic shapes. We enforce robustness of shape and pose prediction by simultaneously performing pixel-wise semantic segmentation during training and define two loss functions to impose consistency between the two predicted representations: one distance-based loss and one overlap-based loss. We evaluated the proposed method in a 5-fold cross validation on an in-house clinical dataset with 75 subjects and on the ACDC and LVQuan19 public datasets. We show that the two newly defined loss functions successfully increase the consistency between shape and pose parameters and semantic segmentation, which leads to a significant improvement of the reconstructed myocardial contours. Additionally, these loss functions drastically reduce the occurrence of unrealistic shapes in the semantic segmentation output.  相似文献   

13.
An important challenge and limiting factor in deep learning methods for medical imaging segmentation is the lack of available of annotated data to properly train models. For the specific task of tumor segmentation, the process entails clinicians labeling every slice of volumetric scans for every patient, which becomes prohibitive at the scale of datasets required to train neural networks to optimal performance. To address this, we propose a novel semi-supervised framework that allows training any segmentation (encoder–decoder) model using only information readily available in radiological data, namely the presence of a tumor in the image, in addition to a few annotated images. Specifically, we conjecture that a generative model performing domain translation on this weak label — healthy vs diseased scans — helps achieve tumor segmentation. The proposed GenSeg method first disentangles tumoral tissue from healthy “background” tissue. The latent representation is separated into (1) the common background information across both domains, and (2) the unique tumoral information. GenSeg then achieves diseased-to-healthy image translation by decoding a healthy version of the image from just the common representation, as well as a residual image that allows adding back the tumors. The same decoder that produces this residual tumor image, also outputs a tumor segmentation. Implicit data augmentation is achieved by re-using the same framework for healthy-to-diseased image translation, where a residual tumor image is produced from a prior distribution. By performing both image translation and segmentation simultaneously, GenSeg allows training on only partially annotated datasets. To test the framework, we trained U-Net-like architectures using GenSeg and evaluated their performance on 3 variants of a synthetic task, as well as on 2 benchmark datasets: brain tumor segmentation in MRI (derived from BraTS) and liver metastasis segmentation in CT (derived from LiTS). Our method outperforms the baseline semi-supervised (autoencoder and mean teacher) and supervised segmentation methods, with improvements ranging between 8–14% Dice score on the brain task and 5–8% on the liver task, when only 1% of the training images were annotated. These results show the proposed framework is ideal at addressing the problem of training deep segmentation models when a large portion of the available data is unlabeled and unpaired, a common issue in tumor segmentation.  相似文献   

14.
Ischemic stroke lesion segmentation from Computed Tomography Perfusion (CTP) images is important for accurate diagnosis of stroke in acute care units. However, it is challenged by low image contrast and resolution of the perfusion parameter maps, in addition to the complex appearance of the lesion. To deal with this problem, we propose a novel framework based on synthesized pseudo Diffusion-Weighted Imaging (DWI) from perfusion parameter maps to obtain better image quality for more accurate segmentation. Our framework consists of three components based on Convolutional Neural Networks (CNNs) and is trained end-to-end. First, a feature extractor is used to obtain both a low-level and high-level compact representation of the raw spatiotemporal Computed Tomography Angiography (CTA) images. Second, a pseudo DWI generator takes as input the concatenation of CTP perfusion parameter maps and our extracted features to obtain the synthesized pseudo DWI. To achieve better synthesis quality, we propose a hybrid loss function that pays more attention to lesion regions and encourages high-level contextual consistency. Finally, we segment the lesion region from the synthesized pseudo DWI, where the segmentation network is based on switchable normalization and channel calibration for better performance. Experimental results showed that our framework achieved the top performance on ISLES 2018 challenge and: (1) our method using synthesized pseudo DWI outperformed methods segmenting the lesion from perfusion parameter maps directly; (2) the feature extractor exploiting additional spatiotemporal CTA images led to better synthesized pseudo DWI quality and higher segmentation accuracy; and (3) the proposed loss functions and network structure improved the pseudo DWI synthesis and lesion segmentation performance. The proposed framework has a potential for improving diagnosis and treatment of the ischemic stroke where access to real DWI scanning is limited.  相似文献   

15.
Translating images generated by label-free microscopy imaging, such as Coherent Anti-Stokes Raman Scattering (CARS), into more familiar clinical presentations of histopathological images will help the adoption of real-time, spectrally resolved label-free imaging in clinical diagnosis. Generative adversarial networks (GAN) have made great progress in image generation and translation, but have been criticized for lacking precision. In particular, GAN has often misinterpreted image information and identified incorrect content categories during image translation of microscopy scans. To alleviate this problem, we developed a new Pix2pix GAN model that simultaneously learns classifying contents in the images from a segmentation dataset during the image translation training. Our model integrates UNet+ with seg-cGAN, conditional generative adversarial networks with partial regularization of segmentation. Technical innovations of the UNet+/seg-cGAN model include: (1) replacing UNet with UNet+ as the Pix2pix cGAN’s generator to enhance pattern extraction and richness of the gradient, and (2) applying the partial regularization strategy to train a part of the generator network as the segmentation sub-model on a separate segmentation dataset, thus enabling the model to identify correct content categories during image translation. The quality of histopathological-like images generated based on label-free CARS images has been improved significantly.  相似文献   

16.
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG’16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.  相似文献   

17.
The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder–decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.  相似文献   

18.
Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: https://github.com/shengfly/ProtoSeg.  相似文献   

19.
Extracting structure of interest from medical images is an important yet tedious work. Due to the image quality, the shape knowledge is widely used for assisting and constraining the segmentation process. In many previous works, shape knowledge was incorporated by first constructing a shape space from training cases, and then constraining the segmentation process to be within the learned shape space. However, such an approach has certain limitations due to the number of variations, eigen-shapemodes, that can be captured in the learned shape space. Moreover, small scale shape variances are usually overwhelmed by those in the large scale, and therefore the local shape information is lost. In this work, we present a multiscale representation for shapes with arbitrary topology, and a fully automatic method to segment the target organ/tissue from medical images using such multiscale shape information and local image features. First, we handle the problem of lacking eigen-shapemodes by providing a multiscale shape representation using the wavelet transform. Consequently, the shape variances existing in the training shapes captured by the statistical learning step are also represented at various scales. Note that by doing so, one can greatly enrich the eigen-shapemodes as well as capture small scale shape changes. Furthermore, in order to make full use of the training information, not only the shape but also the grayscale training images are utilized in a multi-atlas initialization procedure. By combining such initialization with the multiscale shape knowledge, we perform segmentation tests for challenging medical data sets where the target objects have low contrast and sharp corner structures, and demonstrate the statistically significant improvement obtained by employing such multiscale representation, in representing shapes as well as the overall shape based segmentation tasks.  相似文献   

20.

Purpose

Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images.

Methods

The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model.

Results

Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency.

Conclusion

A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号