首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new approach toward the design of a self‐tuning proportional‐integral (PI) control for induction motors. By using the method of gradient descent optimization to the parameter space, the controller gains developed in this study are adjusted automatically online. Therefore, the proposed PI control is robust to the changes of induction motor parameters and achieves the performance of global asymptotic speed tracking. Theoretical analysis and simulation results are presented to show the effectiveness of the approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In the fast developing electric power system network, ancillary services like automatic generation control (AGC) plays a vital and significant role to ensure good quality of power supply in the system. To distribute good quality of power, a hybrid AGC system along with an efficient and intelligent controller is compelled. So, in this article, a cascaded proportional-integral (PI)-proportional-derivative (PD) controller with filter (PI-PDF) is proposed as secondary controller for AGC system. A nature inspired optimization algorithm named as moth flame optimization (MFO) algorithm is employed for simultaneous optimization of controller gains. Initially, a two-area interconnected nonreheat thermal power system is investigated. Analysis revealed that MFO-tuned PI controller performs better than the different optimization techniques tuned PI controller for the same system and PI-PDF controller performs better than PI controller does. Then, the study is extended to a three-area interconnected hybrid system with proper generation rate constraint. Area-1 consists of solar thermal-thermal unit; area-2 consists of thermal-hydro unit and area-3 thermal-gas unit as generating sources. Performance of PI-PDF controller is compared with classical controllers such as PI, PID, PIDF, and PI-PD controller without filter. Result analysis divulges that MFO-tuned PI-PDF controller performs better than all other controllers considered in this article. Robustness of the PI-PDF controller is evaluated using parameter variations and random load variation.  相似文献   

3.
This article presents a decentralized optimal controller design technique for the frequency and power control of a coupled wind turbine and diesel generator. The decentralized controller consists of two proportional-integral (PI)-lead controllers which are designed and optimized simultaneously using a quasi-Newton based optimization technique, namely, Davidon–Fletcher–Powell algorithm. The optimal PI-lead controllers are designed in such a way that there are no communication links between them. Simulation results show the superior performance of the proposed controller with a lower order structure compared to the benchmark decentralized linear-quadratic Gaussian integral controllers of orders 4 and 11. It is also shown that the proposed controller demonstrates an effective performance in damping the disturbances from load and wind power, as well as a robust performance against the parameter changes of the power system.  相似文献   

4.
This article discusses metaheuristic algorithms for optimizing controller gains for dynamic voltage restorers (DVRs) that use an impedance control strategy to compensate for unbalance in source voltages, voltage harmonics, and sag/swell in source voltages. The gains of the proportional-integral (PI) controllers become critical for proper DVR load voltage extraction. Various techniques for optimization, such as whale optimization technique, gray wolf optimization technique, particle swarm optimization technique, and ant lion optimization technique, are used to obtain DC and AC PI controller gains for DVR. The impedance control strategy employs simple calculations to determine the resistance and reactance of a polluted source voltage, without the use of frame conversions as in synchronous reference theory, instantaneous reference power theory, and so on. The quick calculations of the impedance control scheme improve the power quality and dynamics. The Metaheuristic algorithms are used to calculate the number of iterations required to achieve the best possible controller gains, which further helps to improve power quality and dynamics. Among these optimization techniques, the antlion optimization technique provides fast convergence and the best possible controller gain values to improve the dynamics of the dc-link voltage of voltage source converter and terminal voltage, thereby improving power quality. The proposed antlion optimization technique-based DVR model is simulated in MATLAB R2019, and the results are validated with RT-LAB.  相似文献   

5.
Designing an effective criterion/learning to find the best rule and optimal structure is a major problem in the design process of fuzzy neural controller. In this paper, we introduce a new robust model of Takagi Sugeno fuzzy logic controller. A hybrid learning algorithm, called hybrid approach to fuzzy supervised learning (HAFSL), which combines the genetic algorithm (GA) and gradient descent technique (GD) is proposed for constructing an efficient and robust fuzzy neural network controller (FNNC). Two phases of design and learning process are presented in this work. A GA is used for finding near optimal structure/parameters of the FNNC that minimizes the number of rules (initialization procedure). The second stage of learning algorithm uses the backpropagation algorithm based on GD method to fine tune the consequent parameters of the controller. The genes of chromosome are arranged into two parts, the first part contains the control genes (the certainty factors) and the second part contains the parameters genes that representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the HAFSL are compared to these found by the traditional PI with genetic optimization (GA‐PI). Simulations demonstrate that the proposed HAFSL and GA‐PI algorithms have good generalization capabilities and robustness on the water bath temperature control system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an algebraic rule for tuning the integer realizations of fractional‐order PI controllers is developed, with an integral square error performance index, which outperforms that of an optimal ordinary PI controller. To this end, the PIλ control structure is used in conjunction with a third‐order integer approximating filter to provide a three parameter fixed‐structure extension of the ordinary PI controller. Next, the extra degree of freedom in setting the order of integration λ is leveraged to introduce a steepest descent direction in the extended controller parameter space. It is then stated that shifting the parameters of an ordinary PI controller along the proposed descent direction will result in a fractional‐based three parameter controller with a performance index, which is superior to that of the original PI controller. The stability of the controller parameters derived in this manner is then analyzed, and examples and simulation results are offered to verify the theoretical expectations and analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Explicit model predictive control approach is a promising approach to fulfill automotive real‐time controls requirements. A key factor in the performance and real‐time capabilities of a predictive model‐based controller is the accuracy of the control‐oriented model. The control‐oriented model should capture the essential dynamics of the real plant and be adequately simple to make the controller implementable on a commercial hardware with limited memory and computational capabilities. In this study, control‐relevant parameter estimation is used to find a control‐oriented model for a real‐time predictive power management system for a plug‐in hybrid powertrain. Simulations, which are conducted using an equation‐based model of the powertrain, demonstrate a significant improvement of the power management system performance by improving the control‐oriented model with no effect on real‐time capabilities of the controller.  相似文献   

8.
Controlling a thermal power plant optimally during load‐cycling operation is a very challenging control problem. The control complexity is enhanced further by the possibility of simultaneous occurrence of sensor malfunctions and a plethora of system disturbances. This paper proposes and evaluates the effectiveness of a sensor validation and reconstruction approach using principal component analysis (PCA) in conjunction with a physical plant model. For optimal control under severe operating conditions in the presence of possible sensor malfunctions, a predictive control strategy is devised by appropriate fusion of the PCA‐based sensor validation and reconstruction approach and a constrained model predictive control (MPC) technique. As a case study, the control strategy is applied for thermal power plant control in the presence of a single sensor malfunction. In particular, it is applied to investigate the effectiveness and relative advantage of applying rate constraints on main steam temperature and heat‐exchanger tube‐wall temperature, so that faster load cycling operation is achieved without causing excessive thermal stresses in heat‐exchanger tubes. In order to account for unstable and non‐minimum phase boiler–turbine dynamics, the MPC technique applied is an infinite horizon non‐linear physical model‐based state‐space MPC strategy, which guarantees asymptotic stability and feasibility in the presence of output and state constraints. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The optimization at supervisory level of thermal power plant controls is investigated. The design of a predictive supervisory controller that optimizes an objective function in order to determine the set‐points for a given regulatory level is described. The objective function includes both an economic criterion and a regulatory criterion. The proposed supervisory controller is applied to the gas turbine of a thermal power plant and it is compared with the control strategy for constant optimum set‐points. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an LMI framework based on model predictive strategy is addressed to design a robust dynamical control law in a typical control system. In the proposed method, instead of traditional static controller, a dynamic control law is used. With a suitable matrix transformation, the controller parameters selection are translated into an optimization problem with some LMI constraints. The plant input and output constraints are also handled with another LMIs. The controller is represented in state space form, and its parameters are computed in real‐time operation. For achieving this goal, by solving an optimization problem, a dynamic controller is designed, which meets the required plant performances. These results are used in 2 numerical examples to demonstrate the effectiveness of the proposed approach.  相似文献   

11.
In this paper, the design of a fractional‐order (FO) multi‐input–single‐output (MISO)–type static synchronous series compensator (SSSC) is proposed with a goal to improve the power system stability using modified whale optimization algorithm (MWOA). The proposed MWOA achieves an appropriate balance between exploitation and exploration stages of the original whale optimization algorithm. The performance of MWOA is validated by employing the benchmark test functions and further contrasted with whale optimization algorithm and other heuristic algorithms like gravitational search algorithm, particle swarm optimization, differential evolution, and fast evolutionary programming algorithms to demonstrate its strength. The proposed FO MISO SSSC controller is optimized by the MWOA technique and tested under single‐machine infinite bus system and further extended to a multi‐machine framework. To demonstrate the superiority of MISO‐type SSSC controller, the results obtained from it are compared with particle swarm optimization and differential evolution–based conventional single‐input–single‐output structured SSSC controllers. The comparison of results of MWOA with that of other methods validates its superiority in the present context.  相似文献   

12.
In this paper, a novel discrete proportional and integral observer is proposed for estimating the system state, input and output disturbances at the same time. Compared with the previous results, the proposed observer has an advantage in handling output disturbances. A simulated numerical example is given to demonstrate the efficiency. By using the estimates of the state and disturbance, an observer‐based controller with disturbance accommodation is designed to ensure the system stability and to satisfy the specified performance index. A simulated study of a reduced‐order gas turbine discrete model is given to illustrate the design approach, and encouraging simulation results are obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this present contribution, an attempt has been taken to design and analyze the performance of elephant herding optimization (EHO) based controller for load frequency control (LFC) applications of interconnected power system. The studied system is a two‐area nonreheat thermal interconnected system which is widely used in literature. A proportional‐integral‐differential controller is utilized for LFC of the studied system. EHO technique is applied to obtain the tuned set of controller parameters. The objectives considered for design of the controller are the minimization of settling times and integral‐time‐multiplied‐absolute‐error of frequency deviations (FDs) and tie‐line power deviation (TPD). The design objectives are integrated together to form a function with single objective by assigning equal weights after normalization. Several test cases of diverse set of disturbances are taken into account to test the performance of the proposed controller and the obtained results are compared with other controllers designed with differential evolution, gray wolf optimization, particle swarm optimization, teacher‐learner‐based optimization, and whale optimization algorithm. Furthermore, the time‐domain simulations of FDs and TPD are illustrated to support the tabulated results. In addition, comparative statistical analysis is presented to validate the robust behavior of the proposed controller.  相似文献   

14.
An integrated quasi Z-source DC–DC converter (qZSC) along with Harris Hawk Optimization (HHO)-based maximum power point tracking (MPPT) algorithm is proposed in this paper to increase the efficiency of photovoltaic (PV) system. The qZSC-based PV system experiences more voltage and current stress during partial shading conditions (PSCs), which causes overheat on qZSC components hence, degrade the efficiency and reliability of the system. Conventional swarm intelligence-based MPPT algorithms track the GMPP during PSC, but these take longer convergence time and fail to settle at GMPP. This uncertainty of finding the GMPP leads to fluctuations at output of qZSC, hence more stress on the converter components. HHO in tracking the Gmpp eliminates premature local MPPs, enhances convergence speed by expanding the search space for finding the GMPP. The proposed system is developed in MATLAB/Simulink environment and verified the results by developing prototype model in the laboratory by using C2000™ Piccolo™ Launch Pad™, LAUNCHXL-F28027 controller. The tracking performance of the proposed HHO-based MPPT algorithm is tested under fast changing and PSCs in comparison with perturb & observe (P&O), particle swarm optimization (PSO), and artificial bee colony (ABC)-based MPPT algorithms. The simulation and experimental results show that the proposed HHO-based MPPT algorithm is robust, tracks maximum power point in minimum convergence time in comparison with P&O, PSO and ABC-based MPPT algorithms. Hence, voltage and current fluctuations at the output of qZSC are reduced. Therefore, voltages and current stress on qZSC components are reduced and the efficiency of the system is improved.  相似文献   

15.
This paper develops and examines an optimization algorithm for simulation‐based tuning of controller parameters. The proposed algorithm globalizes the Guin augmented variant of Nelder–Mead's nonlinear downhill simplex by deterministic restarts, linearly growing memory vector, and moving initial simplex. First, the effectiveness of the algorithm is tested using 10 complex and multimodal optimization benchmarks. The algorithm achieves global minima of all benchmarks and compares favorably against the evolutionary, swarm, and other globalized local‐search multimodal optimization algorithms in probability of finding global minimum and numerical cost. Next, the proposed algorithm is applied for tuning sliding mode controller parameters for a servo pneumatic position control application. The experimental results reveal that the system with sliding mode controller parameters tuned using the proposed algorithm targeting smooth position control with maximum possible accuracy, performs as desired and eliminates the need of manual online tuning for desired performance. The results are also compared with the performance of the same servo pneumatic system with parameters tuned using manual online tuning in an earlier published work. The system with controller parameters tuned using the proposed algorithm shows improvement in accuracy by 28.9% in sinusoidal and 42.2% in multiple step polynomials tracking.  相似文献   

16.
There are multiple peak functions in its output power characteristic curve of a photovoltaic (PV) array under partial shading conditions (PSCs), the perturb and observe (P&O) may fail to track the global maximum power point (GMPP). Therefore, a reliable maximum power point tracking (MPPT) technique is essential to track the GMPP within an appropriate time. This article proposes a hybrid technique by combining an evolutionary optimization technique, namely the modified invasive weed optimization (MIWO) with the conventional P&O algorithm to enhance the search performance for the maximum power output of the PV system. MIWO executes in the initial stages of the tracking followed by the P&O at the final stages in the MPPT search process. The combined approach ensures faster convergence and better search to the GMPP under rapid climate change and PSCs. The search performance of the hybrid MIWO+P&O technique is examined on a standalone PV system through both MATLAB/Simulink environment and experimentally using dSPACE (DS1103)-based real-time microcontroller hardware setup. The performance of the proposed hybrid MPPT scheme is compared with the recent state-of-the-art MPPPT techniques. In addition, the small-signal analysis of the PV system is carried out to evaluate the loop robustness of the controller design. For a given set of system parameters, simulations for the small-signal model and robustness studies are analyzed to verify the results. The overall results justify the efficacy of the proposed hybrid MPPT algorithm.  相似文献   

17.
An efficient robust reliability method for non‐fragile robust control design of dynamic system with bounded parametric uncertainties is presented systematically, in which the uncertainties existing in the controlled plant and controller realization are taken into account simultaneously in an integrated framework. Reliability‐based design optimization of non‐fragile robust control for parametric uncertain systems is carried out by optimizing the H2 and H performances of the closed‐loop system, with the constraints on robust reliabilities. The non‐fragile robust controller obtained by the presented method may possess a coordinated optimum performance satisfying the precondition that the system is robustly reliable with respect to the uncertainties existing in controlled plant and controller. Moreover, the robustness bounds of uncertain parameters can be provided. The presented formulations are within the framework of linear matrix inequality and thus can be carried out conveniently. It is demonstrated by a numerical example that the presented method is effective and feasible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid technique for maximum power point tracking (MPPT) for a photovoltaic (PV) system is proposed in this paper. The proposed hybrid system is combination of Wing suit Flying Search (WFS) and modified Transient search optimization (MTSO), therefore it is called WFS-MTSO method. The proposed controller has three processes: (i) to identify the operating level of photovoltaic (uniform or in PSC), (ii) to estimate the maximal power point using WFS technique, and (iii) to ensure the photovoltaic system runs on the estimated maximum power point (MPP) by MTSO optimized cascade controller. This method begins with a sense of irradiance and temperature. The proposed photovoltaic system has two components. The first one is WFS maximal power point tracking algorithm attain maximal power point. The second one is MTSO optimized cascade controller to force the photovoltaic system to activate at maximal power point. Here, the proposed hybrid technique is utilized at MPPT to diminish tracking error and oscillation across MPP for optimizing power output. The proposed optimized cascade control improves the system efficiency by averting interruptions previously they propagate to the system. Finally, the performance of proposed hybrid system is executed on MATLAB/Simulink working platform and the performances are compared with various existing approaches. The statistical matrices, like mean, median, and standard deviation is analyzed the tracking efficiency of the proposed WFS-MTSO approach.  相似文献   

19.
The generation of power with load optimization, particularly in the current deregulated electricity market conditions, is a very important process for improved planning and operation of the grid. In addition, it is very important for the system not to experience problems due to congestion, have tensile stability, and protection to increase the share of electricity from renewable sources with the current supply system. This article presents load balancing with the butterfly optimization algorithm (BOA) in a hybridized form to minimize and maximize loads when used in pool and hybrid markets. The methods have been designed to prevent the drawbacks of BOA and generate a better trade-off between exploration and exploitation abilities by hybridizing it with particle swarm optimization (PSO) and gray wolf optimizer (GWO). Empirical research on other algorithms shows that proposed hybrid BOA-GWO-PSO algorithm performs better and shows potential in diverse problems. These studies give it a significant advantage over BOA in general, and when it is employed to solve complex optimization problems validated on benchmark IEEE 30 bus system. A comparative analysis has been conducted to validate the potency of the hybrid BOA-GWO-PSO approach with some conventional meta-heuristic algorithms. Analysis of results by mathematical validation on 23 benchmark functions and application in congestion management by optimal reactive power management (RPM) reveal that the proposed technique has the potent to solve real world optimization problems and is competitive with recent methods reported in state-of- art literature.  相似文献   

20.
Damping of low-frequency oscillations due to the unpredictable perturbations of a power network has always been a challenging task. In an interconnected power network, power system stabilizers (PSSs) are in practice to damp out these low-frequency oscillations by providing a necessary control signal to the automatic voltage regulator unit based on the deviation in generator speed/power output. This article proposes a novel approach of hybrid modified grey wolf optimization-sine cosine algorithm for tuning the parameters of PSS of an interconnected multimachine power system. The optimal parameter tuning of PSS with the proposed algorithm is achieved by considering a multiobjective function comprises of improving the damping and eigenvalue characteristics of the consolidated multimachine system. A benchmark model of two area four machine system is adopted to investigate the performance achieved with the proposed algorithm in the simultaneous damping of the local and interarea mode of oscillations in a multimachine power system. The system study has been carried out under a self-clearing fault condition, and the detailed analysis is presented by analyzing the eigenvalues, and their corresponding natural frequencies, damping ratios. The damping nature achieved for the system states under system uncertainties with the proposed algorithm is also presented. The performance obtained from the proposed hybrid algorithm has been compared with the standalone and state-of-the-art optimization methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号