首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
In this article, proportional-integral (PI) control to ensure stable operation of a steam turbine in a natural gas combined cycle power plant is investigated, since active power control is very important due to the constantly changing power flow differences between supply and demand in power systems. For this purpose, an approach combining stability and optimization in PI control of a steam turbine in a natural gas combined cycle power plant is proposed. First, the regions of the PI controller, which will stabilize this power plant system in closed loop, are obtained by parameter space approach method. In the next step of this article, it is aimed to find the best parameter values of the PI controller, which stabilizes the system in the parameter space, with artificial intelligence-based control and metaheuristic optimization. Through parameter space approach, the proposed optimization algorithms limit the search space to a stable region. The controller parameters are examined with Particle Swarm Optimization based PI, artificial bee colony based PI, genetic algorithm based PI, gray wolf optimization based PI, equilibrium optimization based PI, atom search optimization based PI, coronavirus herd immunity optimization based PI, and adaptive neuro-fuzzy inference system based PI (ANFIS-PI) algorithms. The optimized PI controller parameters are applied to the system model, and the transient responses performances of the system output signals are compared. Comparison results of all these methods based on parameter space approach that guarantee stability for this power plant system are presented. According to the results, ANFIS- PI controller is better than other methods.  相似文献   

2.
Using hydrogen (H) and ammonia (NH) for renewable energy storage has the potential to enable economical power and heat supply with high renewable penetrations, especially in remote locations which are characterized by high energy costs. In this work we assess the economic competitiveness of renewable combined heat and power (CHP) systems in Mahaka HI, Nantucket MA, and Northwest Arctic Borough (NWAB) AK by optimally designing these systems for scenarios in which power and heat can be purchased over a range of historical energy prices as well as when 100% renewable supply is required. We use a combined optimal design and scheduling model which minimizes annualized net present cost by determining optimal technology selection and size simultaneously with optimal schedules for each period of a system operating horizon aggregated from full year hourly resolution data via a consecutive temporal clustering algorithm. We find that renewable generation meets at least 85% of power demands and 75% of heat demands under the lowest energy prices investigated. Higher conventional energy prices lead to increased renewable penetration which is facilitated by renewable NH as a seasonal energy storage medium, as are 100% renewable CHP systems. NH is used for power generation with heat cogeneration in all three locations, as well as directly for heating in NWAB. On an annual cost basis, NH-enabled 100% renewable CHP is only 3% more expensive in Mahaka and NWAB than systems which can purchase energy at the lowest prices, while it is 15% more expensive in Nantucket.  相似文献   

3.
In this paper, the design of a fractional‐order (FO) multi‐input–single‐output (MISO)–type static synchronous series compensator (SSSC) is proposed with a goal to improve the power system stability using modified whale optimization algorithm (MWOA). The proposed MWOA achieves an appropriate balance between exploitation and exploration stages of the original whale optimization algorithm. The performance of MWOA is validated by employing the benchmark test functions and further contrasted with whale optimization algorithm and other heuristic algorithms like gravitational search algorithm, particle swarm optimization, differential evolution, and fast evolutionary programming algorithms to demonstrate its strength. The proposed FO MISO SSSC controller is optimized by the MWOA technique and tested under single‐machine infinite bus system and further extended to a multi‐machine framework. To demonstrate the superiority of MISO‐type SSSC controller, the results obtained from it are compared with particle swarm optimization and differential evolution–based conventional single‐input–single‐output structured SSSC controllers. The comparison of results of MWOA with that of other methods validates its superiority in the present context.  相似文献   

4.
In recent decades, inclusion of renewable resources is considered as one of the most promising options for the long run uninterrupted power supply without depending on conventional resources. Thus, the renewable energy generation will get more attention and massive growing, so that the goal of 40% share of electricity in the worldwide energy portfolio in 2050 would be realized. But during replacement of renewable energy by conventional energy, engineers are facing a lot of problem due to solar generation, wind generation change their characteristic rapidly with weather condition, which may cause large synchronizing imbalance between different units and generate large system delay or communication delay in large interconnected grid. In this article, the authors propose linear matrix inequalities techniques to developed margin of allowable delay for delay dependent stable hybrid system. Initially, to judge the efficacy of proposed chaotic atomic search optimization (CASO) algorithm over other evolutionary algorithms with PID controller, a thermal-hydro gas system is considered. The second part of this article is motivated by the fact that proposed CASO algorithm with P-I controller is superior in contrast to bacterial foraging algorithm technique. In addition to this, some energy storage devices such as fuel cell, aqua electrolyzer, and ultra-capacitor are used to achieve a better dynamic response within specified delay margin. Moreover, to study the impact of communication delays (delay margin) due to the loss of synchronism between solar-wind (for their unpredicted environmental features) and thermal unit (nonlinearities like generation rate constraints, boiler dynamics, and governor with the dead band) are considered in thermal unit and the simulation results verify with the effectiveness of the proposed approach on providing a balance between the delay margin and the damping performances is evaluated under deregulated environment. The simulation results help to make an inter-relation between the delay margin and the controller gain (P-I) which help the system operator in designing controllers gain for stable operation of the proposed hybrid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号