首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nordihydroguaiaretic acid (NDGA) is widely used as a pharmacological tool to inhibit lipoxygenases; however, recent evidence suggests that it increases renal intracellular [Ca2+]i via novel mechanisms. Here the effect of NDGA on Ca2+ signaling in MG63 osteoblastic cells was explored using fura-2 as a Ca2+ indicator. NDGA (2-50 microM) increased [Ca2+]i in a concentration-dependent manner. The signal comprised an initial rise and an elevated phase over a time period of 4 min. Removing extracellular Ca2+ reduced 2-50 microM NDGA-induced signals by 62+/-2%. After incubation with 50 microM NDGA in Ca2+-free medium for several minutes, addition of 3 mM CaCl2 induced an increase in [Ca2+]i. NDGA (50 microM)-induced [Ca2+]i increases were not changed by pretreatment with 10 microM of verapamil, diltiazem, nifedipine, nimodipine and nicardipine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (1 microM) inhibited 50 microM NDGA-induced [Ca2+]i increases by 69+/-3%. Inhibition of phospholipase C with 2 microM U73122 had little effect on 50 microM NDGA-induced Ca2+ release. Several other lipoxygenase inhibitors had no effect on basal [Ca2+]i. At a concentration that did not increase basal [Ca2+]i, NDGA (1 microM) did not alter 10 microM ATP- or 1 microM thapsigargin-induced [Ca2+]i increases. Alteration of protein kinase C activity with 1 nM phorbol 12-myristate 13-acetate or 2 microM GF 109203X did not affect 50 microM NDGA-induced [Ca2+]i increases. Together, the results show that NDGA increased [Ca2+]i in osteoblasts in a lipoxygenase-independent manner, by releasing stored Ca2+ in a fashion independent of phospholipase C activity, and by causing Ca2+ influx.  相似文献   

2.
The effect of the estrogen diethylstilbestrol (DES) on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteoblasts was explored by using fura-2 as a Ca(2+) indicator. DES at concentrations between 5--20 microM induced an immediate increase in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) of 10 microM. Removing extracellular Ca(2+) reduced the Ca(2+) signal by 70%. Pretreatment with 50 microM La(3+) or 10 microM of nifedipine, verapamil and diltiazem did not change 20 microM DES-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 20 microM DES in Ca(2+)-free medium. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store partly inhibited 20 microM DES-induced Ca(2+) release, but addition of carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and thapsigargin together abolished DES-induced Ca(2+) release. Conversely, pretreatment with 20 microM DES abrogated CCCP- and thapsigargin-induced Ca(2+) release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 20 microM DES-induced Ca2+ release. Another estrogen 17beta-estradiol also increased [Ca(2+)](i) in a concentration-dependent manner with an EC50 of 7 microM. Together, the data indicate that in human osteoblasts, DES increased [Ca(2+)](i) via causing Ca(2+) release from both mitochondria and the endoplasmic reticulum in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

3.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored by using fura-2 as a Ca(2+) indicator. Fendiline at concentrations between 1 and 200 microM increased [Ca(2+)](i) in a concentration-dependent manner and the signal saturated at 100 microM. The Ca(2+) signal was inhibited by 65+/-5% by Ca(2+) removal and by 38+/-5% by 10 microM nifedipine, but was unchanged by 10 microM La(3+) or verapamil. In Ca(2+)-free medium, pre-treatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store inhibited fendiline-induced intracellular Ca(2+) release. The Ca(2+) release induced by 50 microM fendiline appeared to be independent of IP(3) because the [Ca(2+)](i) increase was unaltered by inhibiting phospholipase C with 2 microM U73122. Collectively, the results suggest that in MG63 cells fendiline caused an increase in [Ca(2+)](i) by inducing Ca(2+) influx and Ca(2+) release in an IP(3)-independent manner.  相似文献   

4.
The effect of tamoxifen on Ca(2+) signaling and viability in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Tamoxifen evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 1 and 50 microM with an EC50 of 10 microM. The response was decreased by extracellular Ca(2+) removal. In Ca(2+)-free medium, pretreatment with 5 microM tamoxifen abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM), but pretreatment with brefeldin A (50 microM; a Ca(2+) mobilizer of the Golgi complex), thapsigargin (an inhibitor of the endoplasmic reticulum Ca(2+) pump), and carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), only partly inhibited tamoxifen-induced [Ca(2+)](i) increases. This suggests that tamoxifen released Ca(2+) from multiple pools. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 5 microM tamoxifen in Ca(2+)-free medium. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) did not alter 5 microM tamoxifen-induced Ca(2+) release. The [Ca(2+)](i) increase induced by 5 microM tamoxifen was not altered by La(3+), nifedipine, verapamil, or diltiazem. Tamoxifen (1-10 microM) decreased cell viability in a concentration- and time-dependent manner. Tamoxifen (5 microM) also increased [Ca(2+)](i) in neutrophils, bladder cancer cells, and prostate cancer cells from humans and glioma cells from rats. Collectively, it was found that tamoxifen increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol 1,4, 5-trisphosphate and also by triggering Ca(2+) influx from extracellular space. The [Ca(2+)](i) increase was accompanied by cytotoxicity.  相似文献   

5.
The effect of betulinic acid, an anti-tumor and apoptosis-inducing natural product, on intracellular-free levels of Ca(2+) ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was examined by using fura-2 as a Ca(2+) dye. Betulinic acid caused significant increases in [Ca(2+)](i) concentration dependently between 25 and 500 nM with an EC(50) of 100 nM. The [Ca(2+)](i) signal was composed of an initial gradual rise and a plateau. The response was decreased by removal of extracellular Ca(2+) by 45+/-10%. In Ca(2+)-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) abolished 250 microM betulinic acid-induced [Ca(2+)](i) increases. Conversely, pretreatment with betulinic acid only partly inhibited thapsigargin-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 250 nM betulinic acid in Ca(2+)-free medium for 5 min. This [Ca(2+)](i) increase was not altered by the addition of 20 microM SKF96365 and 10 microM econazole. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) abolished 250 nM betulinic acid-induced Ca(2+) release. Pretreatment with 10 microM La(3+) inhibited 250 nM betulinic acid-induced [Ca(2+)](i) increases by 85+/-3%; whereas 10 microM of verapamil, nifedipine and diltiazem had no effect. In Ca(2+) medium, pretreatment with 2.5 nM betulinic aid for 260 s potentiated 10 microM ATP and 1 microM thapsigargin-induced [Ca(2+)](i) increases by 33+/-3% and 45+/-3%, respectively. Trypan blue exclusion revealed that acute exposure of 250 nM betulinic acid for 2-30 min decreased cell viability by 6+/-2%, which could be prevented by pretreatment with 2 microM U731222. Together, the results suggest that betulinic acid induced significant [Ca(2+)](i) increases in MDCK cells in a concentration-dependent manner, and also induced mild cell death. The [Ca(2+)](i) signal was contributed by an inositol 1,4, 5-trisphosphate-dependent release of intracellular Ca(2+) from thapsigargin-sensitive stores, and by inducing Ca(2+) entry from extracellular medium in a La(3+)-sensitive manner.  相似文献   

6.
The effect of oleamide, a sleep-inducing endogenous lipid in animal models, on intracellular free levels of Ca(2+) ([Ca(2+)](i)) in non-excitable and excitable cells was examined by using fura-2 as a fluorescent dye. [Ca(2+)](i) in pheochromocytoma cells, renal tubular cells, osteoblast-like cells, and bladder cancer cells were increased on stimulation of 50 microM oleamide. The response in human bladder cancer cells (T24) was the greatest and was further explored. Oleamide (10-100 microM) increased [Ca(2+)](i) in a concentration-dependent fashion with an EC(50) of 50 microM. The [Ca(2+)](i) signal comprised an initial rise and a sustained plateau and was reduced by removing extracellular Ca(2+) by 85 +/- 5%. After pre-treatment with 10-100 microM oleamide in Ca(2+)-free medium, addition of 3 mM Ca(2+) increased [Ca(2+)](i) in a manner dependent on the concentration of oleamide. The [Ca(2+)](i) increase induced by 50 microM oleamide was reduced by 100 microM La(3+) by 40%, but was not altered by 10 microM nifedipine, 10 microM verapamil, and 50 microM Ni(2+). In Ca(2+)-free medium, pre-treatment with thapsigargin (1 microM), an endoplasmic reticulum Ca(2+) pump inhibitor, abolished 50 microM oleamide-induced [Ca(2+)](i) increases; conversely, pretreatment with 50 microM oleamide reduced 1 microM thapsigargin-induced [Ca(2+)](i) increases by 50 +/- 3%. Suppression of the activity of phospholipase C with 2 microM U73122 failed to alter 50 microM oleamide-induced Ca(2+) release. Linoleamide (10-100 microM), another sleep-inducing lipid with a structure similar to that of oleamide, also induced an increase in [Ca(2+)](i). Together, it was shown that oleamide induced significant [Ca(2+)](i) increases in cells by a phospholipase C-independent release of Ca(2+) from thapsigargin-sensitive stores and by inducing Ca(2+) entry.  相似文献   

7.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

8.
The effect of 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1, 4-benzoquinone (AA-861), a 5-lipoxygenase inhibitor, on Ca(2+) mobilization in Madin Darby canine kidney (MDCK) cells has been examined by fluorimetry using fura-2 as a Ca(2+) indicator. AA-861 at 10-200 microM increased [Ca(2+)](i) concentration dependently. The signal comprised an initial rise and a sustained phase. Ca(2+) removal inhibited the Ca(2+) signals by reducing both the initial rise and the sustained phase. In Ca(2+)-free medium, pretreatment with 50 microM AA-861 abolished the Ca(2+) release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca(2+) pump inhibitor, and carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM), a mitochondrial uncoupler. Pretreatment with CCCP, thapsigargin and gly-phe-beta-naphthylamide to deplete the Ca(2+) stores in mitochondria, the endoplasmic reticulum, and lysosomes, respectively, only partly inhibited AA-861-induced Ca(2+) release. This suggests AA-861 released Ca(2+) from multiple internal pools. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 50 microM AA-861 in Ca(2+)-free medium. AA-861 (50 microM)-induced internal Ca(2+) release was not altered by inhibition of phospholipase C with U73122 (2 microM) but was inhibited by 40% by inhibition of phospholipase A(2) with aristolochic acid (40 microM). Collectively, we found that AA-861 increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple internal stores in a manner independent of the formation of inositol-1,4,5-trisphosphate, followed by Ca(2+) entry from external medium.  相似文献   

9.
The effect of the antidepressant desipramine on intracellular Ca(2+) movement and viability in prostate cancer cells has not been explored previously. The present study examined whether desipramine could alter Ca(2+) handling and viability in human prostate PC3 cancer cells. Cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of cells were measured using fura-2 as a probe. Desipramine at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner. The responses saturated at 300 microM desipramine. The Ca(2+) signal was reduced by half by removing extracellular Ca(2+), but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem or verapamil. In Ca(2+)-free medium, after treatment with 300 microM desipramine, 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) failed to release Ca(2+) from endoplasmic reticulum. Conversely, desipramine failed to release more Ca(2+) after thapsigargin treatment. Inhibition of phospholipase C with U73122 did not affect desipramine-induced Ca(2+) release. Overnight incubation with 10-800 microM desipramine decreased viability in a concentration-dependent manner. Chelation of cytosolic Ca(2+) with BAPTA did not reverse the decreased cell viability. Collectively, the data suggest that in PC3 cells, desipramine induced a [Ca(2+)](i) increase by causing Ca(2+) release from endoplasmic reticulum in a phospholipase C-independent fashion and by inducing Ca(2+) influx. Desipramine decreased cell viability in a concentration-dependent, Ca(2+)-independent manner.  相似文献   

10.
The effect of 17beta-estradiol on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney cells was investigated by using the fluorescent dye fura-2. 17Beta-estradiol (5-100 micromol/l) induced instantaneous increases in [Ca(2+)](i) in a concentration-dependent manner. Ca(2+) removal inhibited 45 +/- 15% of the Ca(2+) signal. In Ca(2+)-free medium, pretreatment with 50 micromol/l 17beta-estradiol abolished the [Ca(2+)](i) increases induced by 2 micromol/l carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), 1 micromol/l thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) and 50 micromol/l brefeldin A (an antibiotic which disperses the Golgi complex), but pretreatment with brefeldin A, CCCP and thapsigargin only partly inhibited the 17beta-estradiol-induced [Ca(2+)](i) signal. Adding 3 mmol/l Ca(2+) increased [Ca(2+)](i) in cells pretreated with 5-100 micromol/l 17beta-estradiol in Ca(2+)-free medium. Pretreatment with 1 micromol/l U73122 to abolish the formation of inositol-1,4,5-trisphosphate inhibited 50% of the Ca(2+) release induced by 50 micromol/l 17beta-estradiol. 17Beta-estradiol (20 micromol/l) also increased [Ca(2+)](i) in human bladder cancer cells and prostate cancer cells. Collectively, this study shows that 17beta-estradiol evoked a significant internal Ca(2+) release and external Ca(2+) entry possibly in a nongenomic manner.  相似文献   

11.
The effect of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), a widely used calmodulin inhibitor, on intracellular free Ca(2+)levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca(2+)probe. W-7 (20-1000 micro m) induced an increase in [Ca(2+)](i)in a dose-dependent manner, with an EC(50)of 100 microm. The [Ca(2+)](i)signal comprised an initial rise and a sustained plateau without significant decay within 5 min. External Ca(2+)removal decreased the Ca(2+)signals by reducing the peak and sustained phase, indicating W-7-activated intracellular Ca(2+)release and extracellular Ca(2+)influx. W-7 (500 microm) failed to induce a [Ca(2+)](i)increase in a Ca(2+)-free medium after pre-treatment with thapsigargin (1 microm), an endoplasmic reticulum Ca(2+)pump inhibitor. Conversely, W-7 pre-treatment abolished the Ca(2+)release induced by thapsigargin. This suggests that W-7 (500 microm ) released internal Ca(2+)mainly from the endoplasmic reticulum. The addition of 3 mm Ca(2+)increased [Ca(2+)](i)dose-dependently after preincubation with 20-1000 microm W-7 in a Ca(2+)-free medium, implying that W-7 induced capacitative Ca(2+)entry. W-7-induced Ca(2+)release was not altered by inhibiting phospholipase C with 2 microm 1-(6-((17 beta - 3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) (U73122). Tryphan blue assay demonstrated that W-7 (200 microm) caused gradual cell death within 30 min of the initial drug exposure. Together, it was found that W-7 induced [Ca(2+)](i)increases in human osteosarcoma cells by releasing internal Ca(2+)from the endoplasmic reticulum, and also by triggering Ca(2+)influx. W-7 may be cytotoxic to osteosarcoma cells.  相似文献   

12.
In human MG63 osteosarcoma cells, the effect of flurbiprofen on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and proliferation was explored. The proliferation was enhanced by 20-120 microM flurbiprofen, and was decreased by 140-200 microM flurbiprofen. The effect of flurbiprofen on the increases in cytosolic free Ca(2+) levels ([Ca(2+)](i)) induced by ATP, bradykinin, histamine and thapsigargin (an inhibitor of the endoplasmic reticulum Ca(2+) ATPase), was examined. In cell preincubated with 20 or 80 microM flurbiprofen, the [Ca(2+)](i) increases induced by all agonists were attenuated. In the presence of 20 microM flurbiprofen, the decreased [Ca(2+)](i) responses with the agonists were attributed to a defective Ca(2+) influx because this decrease was unobserved in agonists-induced [Ca(2+)](i) increases in the absence of extracellular Ca(2+). In the presence of 80 microM flurbiprofen, both the Ca(2+) influx component and the Ca(2+) releasing (from organelles) component were defective. These results suggest that flurbiprofen could alter proliferation and inhibit [Ca(2+)](i) increases.  相似文献   

13.
In human MG63 osteosarcoma cells, the effect of calmidazolium on [Ca(2+)](i) and proliferation was explored using fura-2 and ELISA, respectively. Calmidazolium, at concentrations greater than 0.1 micromol/L, caused a rapid increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 0.5 micromol/L). The calmidazolium-induced [Ca(2+)](i) increase was reduced by 66% by removal of extracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the effect of calmidazolium to increase [Ca(2+)](i) was completely inhibited. U73122, an inhibitor of phospholipase C (PLC), abolished histamine (but not calmidazolium)-induced increases in [Ca(2+)](i). Pretreatment with phorbol 12-myristate 13-acetate to activate protein kinase C inhibited the calmidazolium-induced increase in [Ca(2+)](i) in Ca(2+)-containing medium by 47%. Separately, it was found that overnight treatment with 2-10 micromol/L calmidazolium inhibited cell proliferation in a concentration-dependent manner. These results suggest that calmidazolium increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing release of intracellular Ca(2+) from the endoplasmic reticulum in a PLC-independent manner. Calmidazolium may be cytotoxic to osteosarcoma cells.  相似文献   

14.
The effect of carvedilol on intracellular free Ca(2+) levels ([Ca(2+)](i)) has not been explored previously. This study was aimed to examine the effect of carvedilol on Ca(2+) handling in renal tubular cells. Madin-Darby canine kidney cells were used as a model for renal tubular cells and fura-2 was used as a fluorescent Ca(2+) probe. Carvedilol increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 5 microM. Extracellular Ca(2+) removal partly inhibited the [Ca(2+)](i) signals. Carvedilol-induced Ca(2+) influx was verified by measuring Mn(2+)-induced quench of fura-2 fluorescence. Carvedilol-induced store Ca(2+) release was reduced by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) but not with 5 microM ryanodine or 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Carvedilol (30 microM)-induced Ca(2+) release was not affected by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-l)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; 2 microM), but was potentiated by increasing cAMP levels or inhibiting protein kinase C. The carvedilol-induced Ca(2+) mobilization was not significantly sequestered by the endoplasmic reticulum or mitochondria. This study shows that carvedilol increased [Ca(2+)](i) in renal tubular cells by causing Ca(2+) release from the endoplasmic reticulum and other unknown stores in an inositol-1,4,5-trisphosphate-independent manner, and by inducing Ca(2+) influx. The Ca(2+) release was modulated by cAMP and protein kinase C.  相似文献   

15.
The effect of the antianginal drug bepridil on Ca(2+) signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Bepridil at 10-50 microM evoked a significant rise in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in a dose-dependent manner. The [Ca(2+)](i) rise consisted of an immediate initial rise and a slow decay. Removal of external Ca(2+) partly inhibited the Ca(2+) signals by reducing both the initial rise and the decay phase, suggesting that bepridil activated both external Ca(2+) influx and internal Ca(2+) release. In Ca(2+)-free medium, pretreatment with 50 microM bepridil nearly abolished the Ca(2+) release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca(2+) pump inhibitor, and vice versa, pretreatment with thapsigargin inhibited most of the bepridil-induced Ca(2+) release, suggesting that the thapsigargin-sensitive Ca(2+) store was the main source of bepridil-induced Ca(2+) release. Bepridil (50 microM) induced considerable Mn(2+) quench of fura-2 fluorescence at an excitation wavelength of 360 nm, which was partly inhibited by La(3+) (0.1 mM). Consistently, La(3+) (0.1 mM) pretreatment significantly inhibited the bepridil-induced [Ca(2+)](i) rise. Addition of 3 mM Ca(2+) induced a significant [Ca(2+)](i) rise after prior incubation with 10-50 microM bepridil in Ca(2+)-free medium, suggesting that bepridil induced dose-dependent capacitative Ca(2+) entry. However, 50 microM bepridil inhibited 1 microM thapsigargin-induced capacitative Ca(2+) entry by 38%. Pretreatment with aristolochic acid (40 microM) so as to inhibit phospholipase A(2) inhibited 50 microM bepridil-induced internal Ca(2+) release by 42%, but inhibition of phospholipase C with U73122 (2 microM) or inhibition of phospholipase D with propranolol (0.1 mM) had little effect, suggesting that bepridil induced internal Ca(2+) release in an inositol 1,4,5-trisphosphate-independent manner that could be modulated by phospholipase A(2)-coupled events. This is the first report providing evidence that bepridil, currently used as an antianginal drug, induced a rise in [Ca(2+)](i) in a non-excitable cell line.  相似文献   

16.
The effect of calmidazolium on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca(2+) probe. Calmidazolium at 2-5 microM increased [Ca(2+)](i) concentration dependently. The [Ca(2+)](i) rise induced by 2-5 microM calmidazolium comprised an immediate rise and a slow decay. External Ca(2+) removal partly inhibited the Ca(2+) signals, suggesting that calmidazolium activated external Ca(2+) influx and internal Ca(2+) release. In Ca(2+)-free medium, pretreatment with 3 microM calmidazolium abolished the Ca(2+) release induced by 1 microM thapsigargin, an endoplasmic reticulum Ca(2+) pump inhibitor, and, vice versa, pretreatment with thapsigargin inhibited calmidazolium-induced Ca(2+) release. This indicates that thapsigargin-sensitive Ca(2+) store was the source of calmidazolium-induced Ca(2+) release. Calmidazolium (3 microM) induced Mn(2+) quench of fura-2 fluorescence at 360 nm excitation wavelength, which was suppressed by 0.1 mM La(3+). Addition of 3 mM Ca(2+) increased [Ca(2+)](i) after pretreatment with 3-5 microM calmidazolium in Ca(2+)-free medium. This implies that calmidazolium activated concentration-dependent capacitative Ca(2+) entry. Calmidazolium (3 microM) augmented the capacitative Ca(2+) entry induced by 1 microM thapsigargin or 0.1 mM ATP by 38%. Calmidazolium (3 microM)-induced Ca(2+) release was blocked by pretreatment with 40 microM aristolochic acid and 2 microM U73122 (2 microM) to inhibit phospholipase A(2) and phospholipase, respectively, but pretreatment with 0.1 mM propranolol to inhibit phospholipase D had no effect. This suggests that calmidazolium induced internal Ca(2+) release in a manner dependent on phospholipases C- and A(2)-coupled events.  相似文献   

17.
The effect of ketoconazole on Ca(2+) signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Ketoconazole evoked increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) concentration dependently. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium, pretreatment with ketoconazole abolished the [Ca(2+)](i) rise induced by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump. Addition of 3 mM Ca(2+) induced a significant [Ca(2+)](i) rise after preincubation with 150 microM ketoconazole in Ca(2+)-free medium. Pretreatment with aristolochic acid (40 microM) to inhibit phospholipase A(2) inhibited the 150-microM-ketoconazole-induced internal Ca(2+) release by 37%, but inhibition of phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) (2 microM) had no effect. Collectively, we found that ketoconazole increases [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive pools in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from the external space.  相似文献   

18.
Capsazepine has been widely used as a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on most cell types is unknown. In human PC3 prostate cancer cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was investigated by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 75 microM. Capsazepine-induced [Ca(2+)](i) rise was reduced by 60% by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was contributed by extracellular Ca(2+) influx and intracellular Ca(2+). Consistently, the capsazepine (200 microM)-induced [Ca(2+)](i) rise was decreased by La(3+) by half. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the effect of capsazepine on [Ca(2+)](i) was inhibited by 80%. Conversely, pretreatment with capsazepine partly reduced thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. These findings suggest that in human PC3 prostate cancer cells, capsazepine increases [Ca(2+)](i) by evoking Ca(2+) influx and releasing Ca(2+) from the endoplasmic reticulum via a phospholiase C-independent manner. Overnight incubation with capsazepine (200 microM) killed 37% of cells, which could not be prevented by chelating intracellular Ca(2+) with BAPTA.  相似文献   

19.
In human osteosarcoma MG63 cells, the effect of Y-24180, a presumed specific platelet-activating factor (PAF) receptor antagonist, on intracellular Ca(2+) concentration ([Ca(2+)](i)) and proliferation was measured by using fura-2 and tetrazolium as fluorescent dyes, respectively. Y-24180 (1-5 microM) caused a rapid and sustained [Ca(2+)](i) rise in a concentration-dependent manner. The [Ca(2+)](i) rise was inhibited by 35% by dihydropyridines or removal of extracellular Ca(2+), but was not altered by verapamil and diltiazem. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which 5 microM Y-24180 failed to increase [Ca(2+)](i); conversely, depletion of Ca(2+) stores with 5 microM Y-24180 abolished thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phoispholipase C, inhibited histamine-induced, but not 5 microM Y-24180-induced [Ca(2+)](i) rise. Overnight treatment with 0.1-5 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Together, these findings suggest that Y-24180 acts as a potent and cytotoxic Ca(2+) mobilizer in human osteosarcoma cells, by inducing both extracellular Ca(2+) influx and intracellular Ca(2+) release. Alterations in cytosolic Ca(2+) regulation may lead to interferences of various cellular functions; thus, attention should be exercised in using Y-24180 as a selective PAF receptor antagonist.  相似文献   

20.
The effect of melittin on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and viability is largely unknown. This study examined whether melittin alters Ca(2+) levels and causes Ca(2+)-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca(2+)](i) and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Melittin at concentrations above 0.5 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced by 75% by removing extracellular Ca(2+). The melittin-induced Ca(2+) influx was also implicated by melittin-caused Mn(2+) influx. After pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), melittin-induced Ca(2+) release was inhibited; and conversely, melittin pretreatment abolished thapsigargin-induced Ca(2+) release. At concentrations of 0.5-20 microM, melittin killed cells in a concentration-dependent manner. The cytotoxic effect of 0.5 microM melittin was nearly completely reversed by prechelating cytosolic Ca(2+) with BAPTA. Melittin at 0.5-2 microM caused apoptosis as assessed by flow cytometry of propidium iodide staining. Collectively, in MDCK cells, melittin induced a [Ca(2+)](i) rise by causing Ca(2+) release from endoplasmic reticulum and Ca(2+) influx from extracellular space. Furthermore, melittin can cause Ca(2+)-dependent cytotoxicity in a concentration-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号