首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Regeneration of olfactory receptor neurons following unilateral olfactory nerve section was studied in Syrian golden hamsters by morphometric procedures. Characteristic structural and histochemical features of olfactory receptor neurons were compared on the sectioned and intact sides of the nasal septum at 6, 12, 18, 33, and 130 days following axotomy. The parameters measured were epithelial thickness and the numbers of nuclei, hematoxylin-staining olfactory vesicles, olfactory marker protein (OMP)-containing neuronal perikarya, and OMP-containing olfactory vesicles. The olfactory receptor neuron population was severely depleted 6 days after axotomy. In the succeeding 12-day period there was an initially rapid, then slower return of receptor neuron numbers. Though the regenerating olfactory epithelium appeared normal by gross inspection 33 days after the lesion, morphometric analysis revealed a substantial increase in the number of olfactory receptor neurons between 33 and 130 days postlesion. At our longest survival interval, all quantitative parameters had returned to 91–99% of control values. The numbers of OMP-containing perikarya and olfactory vesicles on the sectioned side were unchanged between the sixth and 12th postlesion days, thus suggesting that neural turnover was depressed for several days following surgery. Marker protein developed in newly formed receptor neurons between 6 and 12 days after the formation of the olfactory vesicle. Consequently, the ratio between OMP-containing olfactory vesicles and hematoxylin-staining vesicles (O/H) was used as an index of neural differentiation. The O/H ratio on the sectioned side was minimal 12 days following axotomy when stem-cell division was well under way but OMP antigenicity had not yet been expressed in newly formed neurons. At 33 days postlesion, O/H ratios were slightly but significantly greater than the control value, reflecting a degree of synchrony in the regenerating receptor neuron population. The average O/H ratio on the unlesioned side was 0.667. This value, together with our other observations, was used to derive an estimate of the life span of hamster olfactory receptor neurons, approximately 25–35 days.  相似文献   

2.
The incorporation of [3]thymidine by the olfactory epithelium rises exponentially immediately after nerve section, reaches a peak 12-fold over control values at day 4, and decreases somewhat less rapidly to near control levels by day 10. The protein content of the epithelium decreased to about 50% of control levels at day 3, then increased linearly, and reached control values by day 10. These data are cosistent with a rapid loss of cells from the olfactory epithelium following nerve section that is coincident with a marked increase in the mitogenic activity of the basal cell population.  相似文献   

3.
This study used transgenic mice, in which expression of a bacterial nitroreductase (ntr) gene was linked to the expression of olfactory marker protein (OMP). The nitroreductase enzyme is thus expressed in mature chemosensory neurons of these OMP-ntr transgenic mice, and converts the pro-drug CB1954 to a cytotoxic form, specifically killing these neurons. Systemic injections of the pro-drug led to the ablation of receptor neurons in both the main olfactory and vomeronasal epithelia. Due to the anatomical separation of the epithelia, however, when the pro-drug was administered by intranasal infusion only the receptors of the main olfactory epithelium were destroyed. This procedure resulted in a profound deficit in olfactory investigation and discrimination in a habituation-dishabituation test, whereas the pregnancy blocking effect of male pheromones, which is mediated via the vomeronasal system was unaffected. OMP-ntr mice receiving intranasal infusion of pro-drug had not recovered any significant main olfactory function at 24 days following treatment. This novel technique could potentially be applied to selectively ablate olfactory receptor neurons expressing a particular olfactory receptor by linking its expression to that of the nitroreductase enzyme.  相似文献   

4.
Masumi Ichikawa   《Brain research》1989,498(1):45-52
It has been shown that male rats demonstrate a preference for the odor of the female rat. This preference has been suggested to be a function of the accessory olfactory pathway. Thus, changes in preference of the male rat for the odor of the female were examined following accessory olfactory bulb (AOB) removal. Preference decreased to about 30% of that seen in the intact rat during the 10 days following AOB removal. Thereafter, it increased gradually over one month survival time up to approximately 70% of the level demonstrated by the intact rat. The rats whose main olfactory bulb and AOB were removed did not show any recovery at any survival time. The time course of the behavioral recovery after AOB removal was compared with the time course of the recovery of synaptic density which was observed in the medial amygdaloid nucleus after AOB removal. The relationship between functional recovery and reorganization of synaptic connections is discussed.  相似文献   

5.
6.
The olfactory system is a unique part of the central nervous system since it retains neuronal turnover and regenerative capacities in adulthood. Thus it provides an ideal model to study plasticity of membrane moities involved in cell-cell interactions. One structure particularly involved in cell-cell interaction is the tight junction, which establishes polarization of epithelial cells and creates diffusion barriers to paracellular passages. ZO-1 is a phosphoprotein peripherally associated with tight junctions. We have studied expression of ZO-1 protein in the developing and adult olfactory system of the mouse in order to get information about the localization and developmental expression of this tight junction component. ZO-1 expression has also been determined in cell cultures of olfactory bulbs. ZO-1 was present in the olfactory placode prior to formation of tight junctions. ZO-1 was localized in the developing and mature olfactory epithelium at heterotypic contacts between supporting cells and olfactory neurons as well as at homotypic contacts between both these cell types. Confocal microscopy showed quantitative differences in the ZO-1 expression among different olfactory dendrites. In the olfactory nerves ZO-1 immunolabeling was detectable between olfactory ensheathing cells. From the seventh postnatal day ZO-1 immunolabeling was detected at the mitral cell layer of the bulb on cells tentatively identified as oligodendrocytes. Myelinated tracts of the bulb were ZO-1 negative. Cell cultures of olfactory bulbs showed ZO-1 immunoreaction, mostly localized on glial fibrillary acidic protein (GFAP)-positive cells. Our results provide further evidence that ZO-1 serves functions unrelated to the tight junction complex and indicate molecular heterogeneity of these cell-cell contacts.  相似文献   

7.
Target ablation by olfactory bulbectomy synchronizes the degenerative cell death of olfactory receptor neurons (ORNs), infiltration of macrophages, and proliferation of progenitor cells, leading to neurogenesis, ORN replacement, and regeneration of the sensory epithelium. Although macrophages participate in the degenerative and regenerative events, little is known of the molecular and cellular mechanisms associated with their recruitment during the earliest period following target ablation. Macrophage inflammatory protein-1alpha (MIP-1alpha) and monocyte chemoattractant protein-1 (MCP-1), which are members of the CC or beta-chemokine subfamily, are chemoattractants for monocytes/macrophages. Shortly after target ablation, the protein and mRNA levels for MIP-1alpha and MCP-1 were up-regulated, showing peak expression levels from 16 hr to 3 days post-OBX; this coincided with the pattern of infiltration of activated F4/80(+) macrophages. The mRNAs for MIP-1alpha and MCP-1, as well as their cognate receptors CCR1 and CCR2, respectively, were localized in resident and infiltrating macrophages in numbers commensurate with those of F4/80-immunopositive macrophages in adjacent tissue sections. The mRNA(+) macrophages were localized within olfactory epithelial compartments that corresponded with their proposed functions associated with phagocytosis, proliferation, and infiltration. Our data support the hypothesis that MIP-1alpha and MCP-1 are chemoattractant chemokines associated with the recruitment of macrophages into the olfactory epithelium shortly after target ablation.  相似文献   

8.
In transgenic neurotrophin-3 lacZ-neo (NT-3(lacZneo)) mice, in which the coding region for NT-3 is replaced by Eschericia coli lacZ, the expression of beta-galactosidase faithfully mimics the expression of NT-3 (Vigers AJ, Baquet ZC, Jones KR [2000], J Comp Neurol 416:398-416). During embryonic and early postnatal development, beta-galactosidase is detected in the olfactory system, beginning at embryonic day 11.5 in the nasal epithelium and at embryonic day 16.5 in the olfactory bulb. Levels of beta-galactosidase rise with age, reaching a peak during the second postnatal week, when beta-galactosidase reactivity is visible in up to 50% of the glomeruli. As the animal matures, the beta-galactosidase levels decline, but staining remains present in axons and cell bodies of a specific subset of olfactory receptor neurons (ORNs) projecting to a limited subset of glomeruli. The heavily labeled ORNs do not follow the typical OR expression zones in the epithelium but appear similar to the "patch" expression pattern of mOR37 receptors. The most heavily reactive glomeruli exhibit a striking reproducible pattern in the ventral olfactory bulb (OB). Some glomeruli of the OB contain calcitonin gene-related peptide (CGRP)-immunoreactive fibers of the trigeminal nerve. However, double-label immunocytochemistry for CGRP and beta-galactosidase rendered no correlation between trigeminal innervation and the degree of innervation by NT-3-expressing ORNs. Thus, the timing and presence of beta-galactosidase in a subset of ORNs suggests that NT-3 plays a role in synaptogenesis and/or synapse function in a specific subset of ORNs within the olfactory bulb.  相似文献   

9.
The primary olfactory pathway in adult mammals has retained a remarkable potential for self-repair. A specialized glial cell within the olfactory nerve, called olfactory ensheathing cell (OEC), and their associated extracellular matrix are thought to play an important role during regenerative events in this system. To gain insight into novel molecules that could mediate the OEC-supported growth of axons within the olfactory nerve, gene expression profiling experiments were conducted which revealed high expression of the glycoprotein fibulin-3 in OECs. This observation was confirmed with quantitative PCR. In vivo, the distribution of all members of the fibulin family, fibulin-3 included, was localized to the lamina propria underneath the olfactory epithelium, in close association within olfactory nerve bundles. To manipulate fibulin-3 gene expression in cultured OECs, lentiviral vector constructs were designed to either transgenically express or knock-down fibulin-3. Experimental data showed that increased levels of fibulin-3 induced profound morphological changes in cultured OECs, impeded with their migratory abilities and also suppressed OEC-mediated neurite outgrowth. Knock-down of fibulin-3 levels resulted in reduced OEC proliferation. In conclusion, the data provide novel insights into a putative role for fibulin-3 in the regulation of cell migration and neurite outgrowth within the primary olfactory pathway.  相似文献   

10.
This study demonstrates that ZnSO4 induced chemical trauma results in an in situ regeneration of the olfactory epithelium which, when maintained in vitro, provides an enriched population of olfactory neurons. Therefore, the ability of the olfactory epithelium to respond to chemical trauma with increased mitotic activity can be used to increase growth of neurons in culture. Tissue obtained from normal or vehicle-treated adult mice produced few olfactory neurons, when maintained in culture, compared to cultures established from tissue following an in situ ZnSO4 trauma. Maximal neuronal yields were obtained in cultures established from tissue that was removed 4–6 days following chemical trauma. The morphological appearance and the presence of cell specific intermediate filament proteins were used to classify the cell types in these olfactory epithelial cultures. Single cells and aggregates of cells which were immunopositive for keratin, but immunonegative for neurofilament protein and GFAP, were identified as epithelioid. Flattened polygonal cells immunopositive for GFAP were identified as glia. A small population of flattened cells was immunonegative for all of the antibodies used in this study. Cells that had processes were immunonegative for GFAP and keratin. Some were immunopositive for 200 kDa and 160 kDa neurofilament proteins but immunonegative for the 68 kDa neurofilament protein. A few of these cells showed positive immunoreactivity with the olfactory marker protein (OMP) antibody and most likely represented the most mature olfactory neurons in the cultures. This trauma-induced culture model using olfactory tissue from adult mice can serve as a source of CNS neurons for comparison with cultured embryonic neurons.  相似文献   

11.
We previously reported that the presence of a conspecific animal blocked freezing of a male rat in response to an auditory conditioned stimulus that had been paired with foot shocks, as well as associated Fos expression in the paraventricular nucleus. Here we investigated how this 'social buffering' is mediated by examining the contributions of both physical contact and the main olfactory system. Fear-conditioned rats exposed to the conditioned stimulus alone responded by freezing and increased Fos expression in the paraventricular nucleus. However, the presence of another rat, but not a guinea pig, dramatically mitigated these responses, even if the dyad was separated by a wire mesh or a pair of wire meshes 5 cm apart. In contrast, social buffering was absent when a transparent acrylic board was inserted between the double wire mesh. Lesioning of the main olfactory epithelium by injection of ZnSO4 intranasally also abolished social buffering. Thus, we conclude that the main olfactory system is essential for the social buffering but does not require physical contact between the dyad.  相似文献   

12.
Chemosensory specificity in the main olfactory system of the mouse relies on the expression of ~1,100 odorant receptor (OR) genes across millions of olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE), and on the coalescence of OSN axons into ~3,600 glomeruli in the olfactory bulb. A traditional approach for visualizing OSNs and their axons consists of tagging an OR gene genetically with an axonal marker that is cotranslated with the OR by virtue of an internal ribosome entry site (IRES). Here we report full cell counts for 15 gene‐targeted strains of the OR‐IRES‐marker design coexpressing a fluorescent protein. These strains represent 11 targeted OR genes, a 1% sample of the OR gene repertoire. We took an empirical, “count every cell” strategy: we counted all fluorescent cell profiles with a nuclear profile within the cytoplasm, on all serial coronal sections under a confocal microscope, a total of 685,673 cells in 56 mice at postnatal day 21. We then applied a strain‐specific Abercrombie correction to these OSN counts in order to obtain a closer approximation of the true OSN numbers. We found a 17‐fold range in the average (corrected) OSN number across these 11 OR genes. In the same series of coronal sections, we then determined the total volume of the glomeruli (TGV) formed by coalescence of the fluorescent axons. We found a strong linear correlation between OSN number and TGV, suggesting that TGV can be used as a surrogate measurement for estimating OSN numbers in these gene‐targeted strains. J. Comp. Neurol. 524:199–209, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
To explore the functional roles of Reelin in the adult olfactory system, we examined changes in the expression of reelin mRNA and Reelin protein in the olfactory bulb (OB) of adult mice after a chemical lesion to the olfactory epithelium. Following intranasal irrigation with 2% zinc sulphate solution, animals were perfused at various times between 5 and 40 days post-lesion. The expression of reelin mRNA in mitral cells in the OB was slightly reduced at 5 days post-lesion, completely abolished by 20 days, but restored almost to the normal level at 40 days post-lesion. Similarly, the expression of Reelin protein in mitral cells of the deafferented OB also recovered, although not to the normal level. No recovery of either reelin mRNA or Reelin immunoreactivity was seen in the periglomerular cells and external tufted cells. The expression profile of reelin mRNA and Reelin protein in the OB coincided with the time course of degeneration and regeneration of olfactory nerves, as indicated by anterograde labeling of olfactory nerves with WGA-HRP. These results suggest that expression of reelin mRNA in the adult OB is regulated by olfactory inputs.  相似文献   

14.
Position within a tissue often correlates with cellular phenotype, for example, differential expression of odorant receptors and cell adhesion molecules across the olfactory mucosa (OM). The association between position and phenotype is often paralleled by gradations in the concentration of retinoic acid (RA), caused by differential expression of the RA synthetic enzymes, the retinaldehyde dehydrogenases (RALDH). We show here that RALDH‐1, ‐2, and ‐3 are enriched in the sustentacular cells, deep fibroblasts of the lamina propria, and the superficial fibroblasts, respectively, of the ventral and lateral OM as compared to the dorsomedial OM. The shift from high to low expression of the RALDHs matches the boundary defined by the differential expression of OCAM/mamFasII. Further, we found that RA‐binding proteins are expressed in the epithelium overlying the RALDH‐3 expressing fibroblasts of the lamina propria. Both findings suggest that local alterations in RA concentration may be more important than a gradient of RA across the epithelial plane, per se. In addition, RALDH‐3 is found in a small population of basal cells in the ventral and lateral epithelium, which expand and contribute to the neuronal lineage following MeBr lesion. Indeed, transduction with a retrovirus expressing a dominant negative form of retinoic acid receptor type alpha blocks the reappearance of mature, olfactory marker protein (OMP) (+) olfactory neurons as compared to empty vector. These results support the notion of a potential role for RA, both in maintaining the spatial organization of the normal olfactory epithelium and in reestablishing the neuronal population during regeneration after injury. J. Comp. Neurol. 520:3707–3726, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
We investigated age-related changes in the mode of regeneration in the mouse peripheral olfactory system after olfactotoxic drug-induced damage. Mice at postnatal ages of 10 days, 3 months, and 16 months were given an intraperitoneal injection of methimazole to produce damage in the olfactory neuroepithelium. The olfactory neuroepithelia were harvested and analyzed immunohistochemically at various postlesion timepoints, from 1 day through to 94 days, to investigate neuroepithelial cell proliferation, the time course of neuronal differentiation, the reconstitution of neuroepithelium, and the innervation of the olfactory bulb. Functional recovery was assessed using the vanillin avoidance behavioral test. The chronological pattern in the expression of Ki67, beta III tubulin, and olfactory marker protein, molecular markers for neuronal cell proliferation and differentiation, changed similarly among the different age groups. In contrast, the extent of neuroepithelial cell proliferation after injury decreased with age, and the final histological recovery of the olfactory neuroepithelium and the innervation of the olfactory bulb were significantly smaller in the 16-month-old group compared to the younger age groups. These results suggest that the age-related decline in the capacity of olfactory neuroepithelium to reconstitute neuroepithelium is associated with its age-related decrease in proliferative activity after the neuroepithelial injury rather than changes in the process of neuronal differentiation. In spite of these incomplete anatomical recoveries, 16-month-old mice regained the ability to avoid vanillin solution by 1 month postlesion, suggesting that the extent of anatomical epithelial damage is not necessarily proportional to the threshold of olfactory perception.  相似文献   

16.
ApoE, a protein component of lipoproteins, is extensively expressed in the primary olfactory pathway. Because apoE has been shown to play a vital role in nerve repair and remodeling, we hypothesized that apoE expression will increase in the injured olfactory epithelium (OE), and that apoE deficiency in apoE knockout (KO) mice will lead to delayed/incomplete reconstitution of the OE following injury. To directly test this hypothesis, we compared OE regeneration in wild-type (WT) and KO mice following injury induced by intranasal irrigation of Triton X-100. OE was collected at 0, 3, 7, 21, 42, and 56 days post lesion. The amount and distribution of apoE in the regenerating OE was measured by immunoblotting and immunohistochemistry. Rate of OE reconstitution in WT and KO mice was assessed by using three independent measures: (1) OE thickness was measured in cresyl-violet stained sections, (2) basal cell proliferation was determined by using bromodeoxyuridine (BrdU) staining, and (3) differentiation and maturation of olfactory sensory neurons were measured by immunoblotting and immunohistochemical analysis of growth associated protein (GAP) 43 and olfactory marker protein (OMP). The results revealed that apoE expression in the OE is highly regulated during the entire course of OE reconstitution post injury, and that apoE deficiency in apoE KO mice leads to delayed recovery of mature OMP+ cells in the reconstituting OE. The data suggest that apoE production increases in the injured OE to facilitate maturation of olfactory sensory neurons.  相似文献   

17.
18.
The maturation of olfactory receptor cells is facilitated by the presence of their target tissue, the olfactory bulb. Organ cultures of embryonic rat olfactory mucosa (OM) maintained in the presence of the presumptive olfactory bulb (POB) had a significantly higher (1.6 X) density of ciliated dendritic knobs than those without the POB. No significant difference was found in the density of non-ciliated dendritic knobs and total knob density in these two groups of cultures. A control group of explants in which the OM and POB had been separated and recombined also showed an increased ciliated dendritic knob density. The area of the olfactory epithelium was the same whether or not the POB was present. In addition, scanning electron microscopy observations revealed a high degree of heterogeneity in the surface morphology of the olfactory epithelium.  相似文献   

19.
20.
Along with tufted cells, mitral cells are the principal projection neurons in the olfactory bulb (OB). During the development of the OB, mitral cells migrate from the ventricular zone to the intermediate zone, where they begin to send axons along the lateral olfactory tract (LOT) to the cortical olfactory zones. Subsequently, they lose their tangential orientation, enabling them to make contact with the axons of the olfactory sensory neurons (OSN) that innervate the whole OB. Here, we investigated the distinct morphological features displayed by developing mitral cells and analyzed the relationship between the changes undertaken by these neurons and the arrival of the OSN axons. Immunostaining for specific markers of developing axons and dendrites, coupled with the use of fluorescent tracers, revealed the morphological changes, the continuous reorientation, and the final refinement that these cells undergo. We found that some of these changes are dependent on the arrival of the OSN axons. Indeed, we identified three main chronological events: 1) newly generated neurons become established in the intermediate zone and project to the LOT; 2) the cells reorient and spread their dendrites at the same time as OSN axons penetrate the OB (this is a sensitive period between embryonic day (E)15-16, in which the arrival of afferents establishes a spatial and temporal gradient that facilitates protoglomerulus and glomerulus formation); and 3) final refinement of the radially orientated cells to adopt a mature morphology. These results suggest that both afferent inputs and intrinsic factors participate to produce the well-defined sensory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号