首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Costimulation blockade has been proposed to induce allograft tolerance. We combined an antagonist anti-CD40 monoclonal antibody (mAb) with an antagonist anti-CD86 mAb in a rhesus monkey kidney allograft model. We chose this combination because it leaves CD80-CD152 signaling unimpaired, allowing for the down-regulatory effect of CD152 signaling to take place through this pathway. METHODS: Rhesus monkeys underwent transplantation with a major histocompatibility complex-mismatched kidney. One group of animals received anti-CD40 alone, and a second group received the combination of anti-CD40 and anti-CD86, twice weekly for 56 days. RESULTS: Three animals with low levels of anti-CD40 rejected the transplanted kidney while still receiving treatment. Three animals with high levels of anti-CD40 rejected at days 91, 134, and 217 with signs of chronic rejection. Animals treated with the combination of anti-CD40 and anti-CD86 mAbs rejected their kidneys at days 61, 75, and 78, shortly after cessation of treatment. Two animals were killed on days 71 and 116 with a blocked ureter. These animals developed virtually no signs of tubulitis or infiltration during treatment and no donor-specific alloantibodies. CONCLUSIONS: Both treatment protocols prevented rejection for the duration of the treatment in most animals. Blocking costimulation by anti-CD40 or by anti-CD40 plus anti-CD86 may be an effective method to prevent graft rejection and may obviate the need for other immunosuppressive drugs, especially in the immediate posttransplantation period.  相似文献   

2.
BACKGROUND: There is accumulating evidence that blockade of the costimulatory pathways offers a valid approach for immune suppression after solid organ transplantation. In this study, the efficacy of anti-CD80 and anti-CD86 monoclonal antibodies (mAbs) in combination with cyclosporine (CsA) to prevent renal allograft rejection was tested in non-human primates. METHODS: Rhesus monkeys were transplanted with a partly major histocompatibility complex-matched kidney on day 0. Anti-CD80 and anti-CD86 mAbs were administered intravenously daily for 14 days starting at day - 1. CsA was given intramuscularly for 35 days starting just after transplantation. The kidney function was monitored by determining serum creatinine levels. RESULTS: The combination of anti-CD80 and anti-CD86 mAbs completely abrogated the mixed lymphocyte reaction. Untreated rhesus monkeys rejected the kidney allograft in 5-7 days. Treatment with anti-CD80 plus anti-CD86 mAbs resulted in a significantly prolonged graft survival of 28+ 7 days (P=0.025). There were no clinical signs of side effects or rejection during treatment. Kidney graft rejection started after the antibody therapy was stopped. The anti-mouse antibody response was delayed from day 10 to 30 after the first injection. No difference in graft survival was observed between animals treated with CsA alone or in combination with anti-CD80 and anti-CD86 mAbs. However, treatment with anti-CD80 and anti-CD86 mAbs reduced development of vascular rejection. CONCLUSIONS: In combination, anti-CD80 and antiCD86 mAbs abrogate T-cell proliferation in vitro, delay the anti-mouse antibody response in vivo, and prevent graft rejection and development of graft vascular disease in a preclinical vascularized transplant model in non-human primates.  相似文献   

3.
Costimulation blockade as a single immunosuppressive treatment modality is not sufficient to prevent graft rejection. Here, we report an induction therapy using antagonistic antibodies against CD40 and CD86, given twice weekly from day -1 until day 56, followed by a delayed 12-week course of low-dose cyclosporine A (CsA) treatment in the rhesus monkey kidney-allograft model. Low-dose CsA treatment was initiated on day 42 and tapered until total cessation of all treatment on day 126. Treatment with anti-CD40/86 alone resulted in graft survival of 61, 71, 75, 78, and 116 days. Costimulation blockade followed by CsA resulted in more than 3-year drug-free survival in two of four animals. None of the animals developed donor-specific alloantibodies. Transforming growth factor-beta producing cells are present in early as well as in late kidney-graft biopsies and could play a role in the observed long-term drug-free graft survival.  相似文献   

4.
BACKGROUND: Costimulation blockade based tolerance-inducing therapies might be disrupted by adjunct conventional immunosuppressive drug use. In the current study, we evaluated the compatibility of various immunosuppressive agents on costimulation blockade-based immunosuppression and T-cell anergy induction of human alloreactive T-cells in vitro. T-cell anergy is crucial in transplantation tolerance. METHODS: T cell anergy was induced in human mixed lymphocyte cultures in vitro, by monoclonal antibodies directed against the costimulatory ligands CD40 and CD86. The effect of coadministration of conventional immunosuppressive drugs (CsA, rapamycin or FK506) on the inhibitory potential of costimulation blockade and the induction and maintenance of T cell anergy was analyzed. RESULTS: We found that monoclonal antibodies against CD40 and CD86 and the simultaneous use of conventional immunosuppressive drugs resulted in strong immunosuppression of proliferation and cytokine production. Rapamycin, in contrast to FK506 and CsA, facilitated T-cell apoptosis. However, drug cotreatment prevented costimulation blockade induced T-cell anergy. Induction of human T-cell anergy in vitro required approximately 5 days of culture. Coadministration of drugs at day 5 after the start of mAb treatment, when anergy was established, did not increase the immunosuppressive effect of mAb treatment. But interestingly, in the majority of experiments, in contrast to rapamycin and FK506, CsA did not affect the anergic state when given after T-cell anergy induction. Moreover, the cell death facilitating potential of rapamycin vanished when used later after T-cell activation. CONCLUSIONS: Timing and choice of conventional drug are crucial in the success of costimulation blockade-based tolerance induction therapies.  相似文献   

5.
The purpose of this study was to determine the role for CD8 T cells versus generalized MHC class I-restricted antigen presentation in islet allograft rejection and tolerance. Diabetic C57BI/6 (B6, H-2(b)) controls, C57BI/6 CD8-deficient (CD8 KO), or MHC class I-deficient C57BI/6 (beta 2m KO) recipients were grafted with allogeneic BALB/c (H-2(d)) islets. Islet allografts were acutely rejected in untreated B6, CD8 KO, and in beta 2m KO mice, indicating that neither CD8 T cells nor host MHC class I is required for allograft rejection. We then determined the efficacy of costimulation blockade in these same strains. Costimulation blockade with anti-CD154 therapy facilitated long-term islet allograft survival in both B6 and in CD8 KO recipients. However, anti-CD154 treated beta 2m KO recipients were completely refractory to anti-CD154 therapy; all treated animals acutely rejected islet allografts with or without therapy. Also, anti-NK1.1 treatment of wild-type B6 mice abrogated graft prolongation following anti-CD154 therapy. Taken together, results show a dramatic distinction between two forms of MHC class I-restricted pathways in allograft prolongation. Although anti-CD154-induced allograft survival was CD8 T-cell independent, an intact host MHC class I-restricted (beta 2m-dependent) pathway is nevertheless necessary for allograft survival. This pathway required NK1.1+ cells, implicating NK and/or NKT cells in promoting allograft prolongation in vivo.  相似文献   

6.
Costimulation blockade is a promising strategy for preventing allograft rejection and inducing tolerance. Using a fully allogeneic mouse model, we tested the effectiveness of the combined blockade of the CD40 ligand and the inducible costimulator (ICOS) on islet allograft survival and in the prevention of autoimmune diabetes in the NOD mouse. Recipients treated with blocking monoclonal antibodies (mAbs) to ICOS and the CD40 ligand had significant prolongation of graft survival, with 26 of 28 functioning for >200 days. Long-term engrafted mice maintained antidonor proliferative and cytotoxic responses, but donor-specific immunization did not induce graft rejection, and challenge with second, same donor but not third-party grafts resulted in long-term acceptance. The immunohistology of tolerant grafts demonstrated the presence of CD4(+)CD25(+) T-cells expressing Foxp3, and islet/kidney composite grafts from tolerant mice, but not from mice lacking lymphocytes, were accepted indefinitely when transplanted into na?ve B6 mice, suggesting that recipient T-cells were necessary to generate dominant tolerance. Combined anti-ICOS and anti-CD40 ligand mAb therapy also prevented diabetes in NOD mice, with only 11% of treated recipients developing diabetes compared with 75% of controls. These data demonstrate that the blockade of CD40 ligand and ICOS signaling induces islet allograft tolerance involving a dominant mechanism associated with intragraft regulatory cells and prevents autoimmune diabetes in NOD mice.  相似文献   

7.
Immunity to autologous protein has not previously been described following nonhuman primate cardiac transplant. Native hearts and cardiac allografts from cynomolgus monkeys were assessed by immunohistology for vimentin, a highly conserved intermediate filament protein. IgM and IgG to vimentin were measured in serial sera from untreated (n = 4) or cyclosporine (CsA)-treated (n = 8, 2 with ATG) cardiac allograft recipients, and in groups treated with anti-CD154 antibody with (n = 6) or without ATG (n = 28). IgM or IgG reactive with vimentin was elaborated within 30 days with unmodified acute rejection (3/4) or in CsA-treated animals (5/6). CD154 blockade did not prevent anti-vimentin IgM (14/28) but tended to delay the IgG response during therapy (anti-CD154: 8/28, p = 0.10 vs. CsA; anti-CD154+ATG: 2/6). CAV and alloantibody were seen in 25 of 26 animals with grafts surviving over 30 days, including seven animals without increasing anti-vimentin antibody. Anti-vimentin antibodies and vascular complement deposition were found in rejected hearts. Acute and chronic alloimmunity disrupt modulation of autoreactivity to vimentin through pathways, which are resistant to CsA, but may be partially regulated by CD154.  相似文献   

8.
BACKGROUND: T-cell costimulation has been shown to provide positive signals for T-cell activation and generation of effector activity. In this study, we analyzed the presence of antibodies (Abs) against the T-lymphocyte costimulatory molecules CD28, CTLA-4, CD80, and CD86 in anti-T-lymphocyte (ATG) and antithymocyte (TMG) globulin preparations to address their mechanism of action. We focused our attention on the role of CTLA-4-specific Abs in the immunosuppressive effect of ATG/TMG, because anti-CTLA-4 agonistic Abs may suppress T-cell proliferation and nonagonistic Abs may lead to T-cell depletion through an Ab-dependent cell cytotoxicity mechanism. METHODS: ATG/TMG and patients' sera were tested for binding to recombinant human costimulatory molecules by ELISA techniques. CTLA-4 specificity was also analyzed by cytoplasmic immunofluorescence staining of a CTLA-4 transfectant by competitive inhibition immunofluorescence and by cell proliferation assay in allogeneic mixed lymphocyte reaction (MLR). RESULTS: Either ATG or TMG predominantly contained anti-CTLA-4 Abs, with higher reactivity in ATG followed by anti-CD86 and -CD28 Abs, whereas anti-CD80 Abs were found only in ATG. Anti-CTLA-4 Abs present in ATG/TMG recognized the native form of CTLA-4 molecule, and their removal reduced the effect of ATG in an allogeneic MLR. Kinetic studies indicated that such Abs were present in the sera of 12 ATG-treated leukemic patients up to 21 days after ATG administration. CONCLUSIONS: These data suggest that the novel anti-CTLA-4 Abs found in ATG may greatly contribute to its immunosuppressive effect, thus accounting for the absence of rejection and exceptionally low incidence of graft-versus-host disease in the group of patients analyzed.  相似文献   

9.
FasL is important in costimulation blockade-resistant skin graft rejection   总被引:2,自引:0,他引:2  
BACKGROUND: Simultaneous blockade of the CD40 and CD28 costimulatory pathways is effective in prolonging allograft survival in murine and primate models. Recent data suggest that intact apoptotic pathways are crucial for the induction of hyporesponsiveness by costimulation blockade. We have studied the impact of fas/fasL signaling, an important T cell apoptotic pathway, on the effects of costimulation blockade. Methods. Wild type, lpr (fas deficient), and gld (fasL deficient), mice were used as donors and recipients in the murine skin graft model. Allograft survival was compared in untreated and costimulation blockade (500 microg anti-CD40L and 500 microg CTLA4-Ig, days 0, 2, 4, 6) treated recipients. In some recipients, CD4+ T cells were depleted using rat anti-murine CD4 (100 microg day -3, -2, -1, and weekly). RESULTS: gld mice treated with costimulation blockade enjoy a significantly greater increase in skin allograft survival than do wild-type mice. This effect is not replicated using lpr donors or recipients. Experiments in which CD4+ cells were depleted demonstrate that fasL is not necessary for CD8-mediated allograft rejection, and that depletion of CD4+ cells eliminates some of the survival advantage induced by costimulation blockade. CONCLUSIONS: FasL is not required for the establishment of costimulation blockade induced hyporesponsiveness, but rather appears to be required for normal costimulation blockade resistant rejection. Fas expression is not critical for costimulation blockade resistant rejection, suggesting that fasL may be interacting with other receptors. Further, it appears that CD4+ cells are important in the maintenance of allograft protection induced by costimulation blockade in this model.  相似文献   

10.
Previously, we reported that allogeneic skin grafts were rapidly rejected by CD28 and CD40 ligand double deficient mice mediated by CD8+ T cells. These results indicated that some elements in addition to CD28- and CD40-mediated costimulation provide stimulatory signals for the activation of donor-specific CD8+ T cells. In this report, we investigated the role of inflammation associated with transplantation on costimulation-independent priming of CD8+ T cell during graft rejection. B6 RAG1 KO mice were transplanted with BALB/c-skin and adoptively transferred with syngeneic CD8+ T cells the same day or 50 days after transplantation. When blockade of CD28- and CD40-mediated costimulation failed to prevent acute rejection of freshly transplanted skin grafts, it efficiently delayed rejection of well-healed skin grafts. These results showed that factors associated with transplantation have essential roles in inducing costimulation blockade-resistant allograft rejection. Costimulation blockade failed to prevent acute graft-infiltration of NK cells and increasing expression of intragraft IL-12 and IL-15. These factors may trigger the graft-infiltration and priming of CD8+ T cells to induce costimulation blockade-resistant allograft rejection.  相似文献   

11.
The purpose of this study was to determine the efficacy of a treatment regimen consisting of CD 40 costimulation blockade, T-cell depletion, and megadose donor bone marrow transfusion in the limb allograft model. C57Bl/6 mice underwent limb transplantation from Balb/c mice and received MR1 (anti-CD 40 ligand monoclonal antibody), and CD4(+) and CD8(+) T cell-depleting antibodies with and without 120 x 10(6) donor bone-marrow transfusion. Recipients treated only with antibodies showed rejection at 51.4+/-17 (mean+/-SEM) days, while those who also received donor bone marrow had allograft survival of 67+/-16.4 days, with a range up to 91 days. Treated specimens with rejection had less lymphocytic infiltration than untreated controls. Recipients of donor bone marrow also demonstrated early mixed chimerism, which disappeared after 1 month. While allograft survival was prolonged, tolerance was not achieved, and the mechanism of rejection was more consistent with a chronic process.  相似文献   

12.
BACKGROUND: Costimulation through CD40-CD154 plays an important role in T-cell activation. Although systemic administration of anti-CD154 antibody prevents or delays rejection of organ allografts in animal models, the molecular mechanisms responsible for this effect are not well defined. METHODS: We have previously demonstrated that priming of mice (H2d) with CD40-/- but not with wildtype naive B cells (H2b) leads to alloantigen-specific T-cell hyporesponsiveness in vitro. In the present study, we investigated whether such priming modifies allograft rejection in a major histocompatibility complex-mismatched murine cardiac transplantation model. RESULTS: Priming of hosts with donor-specific CD40-/- B cells delayed rejection of subsequently transplanted wild-type cardiac allografts by 8.0 days (P<0.001). The lack of CD40 on the cardiac graft delayed rejection in unprimed or primed hosts by 3-5 days. Prolongation of graft survival correlated with the failure of infused CD40-/- B cells to express B7.2 and ICAM-1 in vivo. CONCLUSIONS: Our data suggest that CD40-CD154 costimulation contributes to T cell priming to alloantigens in vivo and to a second set rejection phase in which donor antigens are presented to primed T cells.  相似文献   

13.
Antithymocyte globulin (ATG) is employed for the treatment and prevention of acute organ rejection after transplantation. However, the mechanisms underlying its immunomodulatory capacities beyond cellular depletion remains ill defined. A stable interaction between T-cells and professional antigen-presenting cells (APC) and full T-cell stimulation requires a complex molecular rearrangement at the T-cell/APC interface, the so called immunological synapse. Here we investigated, whether ATG affects T-cell/APC interactions. ATG concentration and time-dependently inhibited relocalization of the T-cell receptor/CD3 complex as well as adhesion molecules and cytoskeletal proteins of human peripheral blood T-cells and a human T-cell line towards the APC contact site. Moreover, ATG-treated peripheral blood T-cells were incapable to form conjugates with APCs. In conclusion, ATG impairs T-cell/APC conjugate formation, a mechanism that may help to understand the functional inactivation of peripheral blood T-cells that have escaped cellular depletion after ATG treatment.  相似文献   

14.
Clinical trials designed to achieve tolerance in humans by selectively antagonizing one of the T-cell costimulatory pathways, CD40-CD40L or CD80/CD86-CD28, are pending. However, simultaneous blockade of both pathways synergistically prevented graft rejection and successfully induced donor-specific tolerance in animal models. Synergism is also supported in human T-cells in vitro following anti-CD86 mAb and anti-CD40 mAb blockade. Therefore, in our view the most promising clinical strategy would be to antagonize both CD40 and CD86. Fast clinical entrance of this anti-CD86 and anti-CD40 bidirectional concept is highly facilitated by a single molecule approach. In the present study, a single bispecific fusion protein was constructed that specifically binds human CD40 and CD86 and which combines the antagonistic activities of both anti-CD40 and anti-CD86 humanized mAb. The anti-CD40/86 fusion protein showed tolerance inducing potential as it prevented both allogeneic T-cell expansion and generation of cytotoxic effector T cells and induced anergic antigen specific regulatory T cells. These data provide proof of concept in successfully combining the antagonistic activity of two humanized mAb with great clinical potential in transplantation and autoimmunity, in one single molecule.  相似文献   

15.
To determine the efficacy of a regimen based on CD40 costimulation blockade and donor bone marrow in the limb allograft model, C57Bl/6 mice received limb allografts from Balb/c mice and either no treatment or a combination of MR1 (anti-CD40 ligand monoclonal antibody), CD4+ and CD8+ T-cell-depleting antibodies, low-dose irradiation, and bone marrow transfusion from Balb/c donors for 1 or 2 weeks. Recipients treated for 1 week showed rejection at 38.2 +/- 5.4 (mean +/- SEM) days, while those treated for 2 weeks had allograft survival of 56.5 +/- 9.9, with a range up to 91 days. Histology demonstrated rejection which was less cell-mediated and suggestive of transplant vasculopathy. Differential rejection of skin occurred first. Thus, a combined regimen based on CD40 costimulatory blockade and donor marrow significantly prolonged allograft survival. However, tolerance was not achieved, and histology suggests chronic rejection as a possible cause of allograft loss.  相似文献   

16.
CD28-/- mice have been utilized to study the role of B7/CD28 and B7-CTLA4 interactions. There is evidence that CTLA4 ligation may be critical for tolerance induction. The aim of the current study is to further investigate rejection responses of CD28-/- mice and to define the role of B7-CTLA4 interactions in the absence of the CD40 and CD28 pathways. Balb/c skin allografts were transplanted onto C57BL/6 (B6) wild type or CD28-/- mice treated with anti-CD40L, CTLA4-Ig, or combination blockade. To investigate the cellular mechanism of rejection in CD28-/- recipients, mice were treated with anti-CD4 or anti-CD8 antibodies prior to treatment with costimulation blockade. The fluoroscein dye CFSE was utilized to study T cell expansion in vivo. Surprisingly, treatment of B6 CD28-/- mice with CTLA4-Ig alone (MST 12d), anti-CD40L alone (MST 13d), or combined blockade (MST 13d) had no effect on allograft survival compared to untreated B6 CD28 mice (MST 11d). CD28-/- recipients depleted of CD4+ cells and treated with CTLA4-Ig, anti-CD40L, or combination blockade also did not have prolonged survival compared with untreated mice (MST 10d). In contrast, CD28-/- recipients depleted of CD8+ cells had markedly prolonged allograft survival when treated with either anti-CD40L alone (MST 49d) or with combination blockade (MST 57d). Studies utilizing CFSE demonstrated that CD28-/- CD8+ T cells are not defective in in vivo proliferation responses compared with wild type CD8 cells. Thus, CD28-/- CD8+ T cells are responsible for aggressive rejection responses of CD28-/- mice independent of the CD40 pathway. In addition, CD40L blockade does not result in CD4+ T cell tolerance in CD28 recipients, despite an intact B7-CTLA4 pathway.  相似文献   

17.
18.
Donor-specific transfusion (DST) and CD40/CD154 costimulation blockade is a powerful immunosuppressive strategy which prolongs survival of many allografts. The efficacy of DST and anti-CD154 mAb for prolongation of hepatocellular allograft survival was only realized in C57BL/6 mice that have both CD4- and CD8-dependent pathways available (median survival time, MST, 82 days). Hepatocyte rejection in CD8 KO mice which is CD4-dependent was not suppressed by DST and anti-CD154 mAb treatment (MST, 7 days); unexpectedly DST abrogated the beneficial effects of anti-CD154 mAb for suppression of hepatocyte rejection (MST, 42 days) and on donor-reactive alloantibody production. Hepatocyte rejection in CD4 KO mice which is CD8-dependent was suppressed by treatment with DST and anti-CD154 mAb therapy (MST, 35 days) but did not differ significantly from immunotherapy with anti-CD154 mAb alone (MST, 32 days). Induction of hepatocellular allograft acceptance by DST and anti-CD154 mAb immunotherapy was dependent on host CD8(+) T cells, as demonstrated by CD8 depletion studies in C57BL/6 mice (MST, 14 days) and CD8 reconstitution of CD8 KO mice (MST, 56 days). These studies demonstrate that both CD4(+) and CD8(+) T-cell subsets contribute to induction of hepatocellular allograft acceptance by this immunotherapeutic strategy.  相似文献   

19.
The lack of a reliable immunosuppressive regimen that effectively suppresses both renal and islet allograft rejection without islet toxicity hampers a wider clinical application of simultaneous islet–kidney transplantation (SIK). Seven MHC‐mismatched SIKs were performed in diabetic cynomolgus monkeys. Two recipients received rabbit antithymocyte globulin (ATG) induction followed by daily tacrolimus and rapamycin (ATG/Tac/Rapa), and five recipients were treated with anti‐CD40 monoclonal antibody (mAb) and rapamycin (aCD40/Rapa). Anti‐inflammatory therapy, including anti–interleukin‐6 receptor mAb and anti–tumor necrosis factor‐α mAb, was given in both groups. The ATG/Tac/Rapa recipients failed to achieve long‐term islet allograft survival (19 and 26 days) due to poor islet engraftment and cytomegalovirus pneumonia. In contrast, the aCD40/Rapa regimen provided long‐term islet and kidney allograft survival (90, 94, >120, >120, and >120 days), with only one recipient developing evidence of allograft rejection. The aCD40/Rapa regimen was also tested in four kidney‐alone transplant recipients. All four recipients achieved long‐term renal allograft survival (100% at day 120), which was superior to renal allograft survival (62.9% at day 120) with triple immunosuppressive regimen (tacrolimus, mycophenolate mofetil, and steroids). The combination of anti‐CD40 mAb and rapamycin is an effective and nontoxic immunosuppressive regimen that uses only clinically available agents for kidney and islet recipients.  相似文献   

20.
The identification of FOXP3 expressing cells in recipients of an allograft, in particular inside the graft itself, may help to define criteria for immunosuppressive drug withdrawal. We therefore examined expression patterns of several regulatory T-cell (Treg) markers in kidney biopsies and kidney tissues taken at the time of graft rejection from monkeys treated with alpha CD40, alpha CD86, CsA, a combination of these or after drug withdrawal. In advanced stages of rejection, organized multifocal nodular infiltrates, with mature dendritic cells, T cells and B cells could be found. In contrast, interstitial infiltrates contain more macrophages, less T cells and few B cells. Cells expressing FOXP3, CD25 and CTLA-4 were mainly found in nodular infiltrates of rejected tissue samples. A significant correlation was found between the percentage FOXP3(+) cells and markers for rejection, i.e. creatinine levels and Banff interstitial and tubular infiltrate scores. The type of immunosuppression did not influence the percentage of cells expressing Treg markers. Three animals with prolonged drug-free survival showed low numbers of FOXP3(+) cells. We conclude that the presence of intragraft FOXP3(+) cells is not confined to tolerated grafts, but should be considered as part of the normal immune response during rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号