首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The eukaryotic DNA sliding clamp that keeps DNA polymerase engaged at a replication fork, called proliferating cell nuclear antigen (PCNA), is loaded onto the 3' ends of primer DNA through its interaction with a heteropentameric protein complex called replication factor C (RFC). The ATPase activity of RFC is necessary for formation of a functional PCNA clamp. In the present study, the sensitivity of RFC to partial proteolysis is used to show that addition of ATP, ATPgammaS, or ADP induces different structural changes in RFC. Direct observation by electron microscopy reveals that RFC has a closed two-finger structure called the U form in the absence of ATP. This is converted into a more open C form on addition of ATP. In contrast, the structural changes induced by ATPgammaS or ADP are limited. These results suggest that RFC adapts on opened configuration intermediately after ATP hydrolysis. We further observe that PCNA is held between the two fingers of RFC and propose that the RFC structure change we observe during ATP hydrolysis causes the attached PCNA to form its active ring-like clamp on DNA.  相似文献   

2.
Numerous proteins that function in DNA metabolic pathways are known to interact with the proliferating cell nuclear antigen (PCNA). The important function of PCNA in stimulating various cellular activities requires its topological linkage with DNA. Loading of the circular PCNA onto duplex DNA requires the activity of a clamp-loader [replication factor C (RFC)] complex and the energy derived from ATP hydrolysis. The mechanistic and structural details regarding PCNA loading by the RFC complex are still developing. In particular, the positive identification of a long-hypothesized structure of an open clamp-RFC complex as an intermediate in loading has remained elusive. In this study, we capture an open yeast PCNA clamp in a complex with RFC through fluorescence energy transfer experiments. We also follow the topological transitions of PCNA in the various steps of the clamp-loading pathway through both steady-state and stopped-flow fluorescence studies. We find that ATP effectively drives the clamp-loading process to completion with the formation of the closed PCNA bound to DNA, whereas ATPgammaS cannot. The information derived from this work complements that obtained from previous structural and mechanistic studies and provides a more complete picture of a eukaryotic clamp-loading pathway using yeast as a paradigm.  相似文献   

3.
Ring-shaped sliding clamps and clamp loader ATPases are essential factors for rapid and accurate DNA replication. The clamp ring is opened and resealed at the primer-template junctions by the ATP-fueled clamp loader function. The processivity of the DNA polymerase is conferred by its attachment to the clamp loaded onto the DNA. In eukarya and archaea, the replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) play crucial roles as the clamp loader and the clamp, respectively. Here, we report the electron microscopic structure of an archaeal RFC-PCNA-DNA complex at 12-A resolution. This complex exhibits excellent fitting of each atomic structure of RFC, PCNA, and the primed DNA. The PCNA ring retains an open conformation by extensive interactions with RFC, with a distorted spring washer-like conformation. The complex appears to represent the intermediate, where the PCNA ring is kept open before ATP hydrolysis by RFC.  相似文献   

4.
ATP-binding cassette (ABC) transporters couple ATP binding and hydrolysis to the movement of substances across the membrane; conformational changes clearly play an important role in the transporter mechanism. Previously, we have shown that a dimer of MalK, the ATPase subunit of the maltose transporter from Escherichia coli, undergoes a tweezers-like motion in a transport cycle. The MalK monomer consists of an N-terminal nucleotide binding domain and a C-terminal regulatory domain. The two nucleotide-binding domains in a dimer are either open or closed, depending on whether ATP is present, while the regulatory domains maintain contacts to hold the dimer together. In this work, the structure of MalK in a posthydrolysis state is presented, obtained by cocrystallizing MalK with ATP-Mg(2+). ATP was hydrolyzed in the crystallization drop, and ADP-Mg(2+) was found in the resulting crystal structure. In contrast to the ATP-bound form where two ATP molecules are buried in a closed interface between the nucleotide-binding domains, the two nucleotide-binding domains of the ADP-bound form are open, indicating that ADP, unlike ATP, cannot stabilize the closed form. This conclusion is further supported by oligomerization studies of MalK in solution. At low protein concentrations, ATP promotes dimerization of MalK, whereas ADP does not. The structures of dimeric MalK in the nucleotide-free, ATP-bound, and ADP-bound forms provide a framework for understanding the nature of the conformational changes that occur in an ATP-binding cassette transporter hydrolysis cycle, as well as how conformational changes in MalK are coupled to solute transport.  相似文献   

5.
The Saccharomyces cerevisiae Rad24 and Rad17 checkpoint proteins are part of an early response to DNA damage in a signal transduction pathway leading to cell cycle arrest. Rad24 interacts with the four small subunits of replication factor C (RFC) to form the RFC-Rad24 complex. Rad17 forms a complex with Mec3 and Ddc1 (Rad1731) and shows structural similarities with the replication clamp PCNA. This parallelism with a clamp-clamp loader system that functions in DNA replication has led to the hypothesis that a similar clamp-clamp loader relationship exists for the DNA damage response system. We have purified the putative checkpoint clamp loader RFC-Rad24 and the putative clamp Rad1731 from a yeast overexpression system. Here, we provide experimental evidence that, indeed, the RFC-Rad24 clamp loader loads the Rad1731 clamp around partial duplex DNA in an ATP-dependent process. Furthermore, upon ATP hydrolysis, the Rad1731 clamp is released from the clamp loader and can slide across more than 1 kb of duplex DNA, a process which may be well suited for a search for damage. Rad1731 showed no detectable exonuclease activity.  相似文献   

6.
Cytoplasmic dynein is a large, microtubule-dependent molecular motor (1.2 MDa). Although the structure of dynein by itself has been characterized, its conformation in complex with microtubules is still unknown. Here, we used cryoelectron microscopy (cryo-EM) to visualize the interaction between dynein and microtubules. Most dynein molecules in the nucleotide-free state are bound to the microtubule in a defined conformation and orientation. A 3D image reconstruction revealed that dynein's head domain, formed by a ring-like arrangement of AAA+ domains, is located ≈280 Å away from the center of the microtubule. The order of the AAA+ domains in the ring was determined by using recombinant markers. Furthermore, a 3D helical image reconstruction of microtubules with a dynein's microtubule binding domain [dynein stalk (DS)] revealed that the stalk extends perpendicular to the microtubule. By combining the 3D maps of the dynein-microtubule and DS-microtubule complexes, we present a model for how dynein in the nucleotide-free state binds to microtubules and discuss models for dynein's power stroke.  相似文献   

7.
The human DNA damage sensors, Rad17-replication factor C (Rad17-RFC) and the Rad9-Rad1-Hus1 (9-1-1) checkpoint complex, are thought to be involved in the early steps of the DNA damage checkpoint response. Rad17-RFC and the 9-1-1 complex have been shown to be structurally similar to the replication factors, RFC clamp loader and proliferating cell nuclear antigen polymerase clamp, respectively. Here, we demonstrate functional similarities between the replication and checkpoint clamp loader/DNA clamp pairs. When all eight subunits of the two checkpoint complexes are coexpressed in insect cells, a stable Rad17-RFC/9-1-1 checkpoint supercomplex forms in vivo and is readily purified. The two individually purified checkpoint complexes also form a supercomplex in vitro, which depends on ATP and is mediated by interactions between Rad17 and Rad9. Rad17-RFC binds to nicked circular, gapped, and primed DNA and recruits the 9-1-1 complex in an ATP-dependent manner. Electron microscopic analyses of the reaction products indicate that the 9-1-1 ring is clamped around the DNA.  相似文献   

8.
Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD+ analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD+-bound form (NAD+-Ia-actin) and the ADP ribosylated form [Ia-ADP ribosylated (ADPR)-actin] remain unclear. Accidentally, we found that ethylene glycol as cryo-protectant inhibits ADP ribosylation and crystallized the NAD+-Ia-actin complex. Here we report high-resolution structures of NAD+-Ia-actin and Ia-ADPR-actin obtained by soaking apo-Ia-actin crystal with NAD+ under different conditions. The structures of NAD+-Ia-actin and Ia-ADPR-actin represent the pre- and postreaction states, respectively. By assigning the βTAD-Ia-actin structure to the transition state, the strain-alleviation model of ADP ribosylation, which we proposed previously, is experimentally confirmed and improved. Moreover, this reaction mechanism appears to be applicable not only to Ia but also to other ADP ribosyltransferases.  相似文献   

9.
In ensemble and single-molecule experiments using the yeast proliferating cell nuclear antigen (PCNA, clamp) and replication factor C (RFC, clamp loader), we have examined the assembly of the RFC·PCNA·DNA complex and its progression to holoenzyme upon addition of polymerase δ (polδ). We obtained data that indicate (i) PCNA loading on DNA proceeds through multiple conformational intermediates and is successful after several failed attempts; (ii) RFC does not act catalytically on a primed 45-mer templated fork; (iii) the RFC·PCNA·DNA complex formed in the presence of ATP is derived from at least two kinetically distinguishable species; (iv) these species disassemble through either unloading of RFC·PCNA from DNA or dissociation of PCNA into its component subunits; and (v) in the presence of polδ only one species converts to the RFC·PCNA·DNA·polδ holoenzyme. These findings redefine and deepen our understanding of the clamp-loading process and reveal that it is surprisingly one of trial and error to arrive at a heuristic solution.  相似文献   

10.
Pre-mRNA splicing requires the function of a number of RNA-dependent ATPases/helicases, yet no three-dimensional structure of any spliceosomal ATPases/helicases is known. The highly conserved DECD-box protein UAP56/Sub2 is an essential splicing factor that is also important for mRNA export. The expected ATPase/helicase activity appears to be essential for the UAP56/Sub2 functions. Here, we show that purified human UAP56 is an active RNA-dependent ATPase, and we also report the crystal structures of UAP56 alone and in complex with ADP, as well as a DECD to DEAD mutant. The structures reveal a unique spatial arrangement of the two conserved helicase domains, and ADP-binding induces significant conformational changes of key residues in the ATP-binding pocket. Our structural analyses suggest a specific protein-RNA displacement model of UAP56/Sub2. The detailed structural information provides important mechanistic insights into the splicing function of UAP56/Sub2. The structures also will be useful for the analysis of other spliceosomal DExD-box ATPases/helicases.  相似文献   

11.
Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small terminase protein from the Siphoviridae bacteriophage SF6, comprising the N-terminal DNA binding, the oligomerization core, and the C-terminal β-barrel domains, reveals a nine-subunit circular assembly in which the DNA-binding domains are arranged around the oligomerization core in a highly flexible manner. Mass spectrometry analysis and four further crystal structures show that, although the full-length protein exclusively forms nine-subunit assemblies, protein constructs missing the C-terminal β-barrel form both nine-subunit and ten-subunit assemblies, indicating the importance of the C terminus for defining the oligomeric state. The mechanism by which a ring-shaped small terminase oligomer binds viral DNA has not previously been elucidated. Here, we probed binding in vitro by using EPR and surface plasmon resonance experiments, which indicated that interaction with DNA is mediated exclusively by the DNA-binding domains and suggested a nucleosome-like model in which DNA binds around the outside of the protein oligomer.  相似文献   

12.
Type IIA topoisomerases both manage the topological state of chromosomal DNA and are the targets of a variety of clinical agents. Bisdioxopiperazines are anticancer agents that associate with ATP-bound eukaryotic topoisomerase II (topo II) and convert the enzyme into an inactive, salt-stable clamp around DNA. To better understand both topo II and bisdioxopiperazine function, we determined the structures of the adenosine 5'-[beta,gamma-imino]-triphosphate-bound yeast topo II ATPase region (ScT2-ATPase) alone and complexed with the bisdioxopiperazine ICRF-187. The drug-free form of the protein is similar in overall fold to the equivalent region of bacterial gyrase but unexpectedly displays significant conformational differences. The ternary drug-bound complex reveals that ICRF-187 acts by an unusual mechanism of inhibition in which the drug does not compete for the ATP-binding pocket, but bridges and stabilizes a transient dimer interface between two ATPase protomers. Our data explain why bisdioxopiperazines target ATP-bound topo II, provide a structural rationale for the effects of certain drug-resistance mutations, and point to regions of bisdioxopiperazines that might be modified to improve or alter drug specificity.  相似文献   

13.
The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2-7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2-7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2-7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2-7 systems.  相似文献   

14.
15.
We have engineered a mutant of Dictyostelium discoideum (Dicty) myosin II that contains the same fast-reacting “SH1” thiol as in muscle myosin, spin-labeled it, and performed electron paramagnetic resonance (EPR) to compare the structure of the force-generating region of the two myosins. Dicty myosin serves as a model system for muscle myosin because of greater ease of mutagenesis, expression, and crystallization. The catalytic domains of these myosins have nearly identical crystal structures in the apo state, but there are significant differences in ATPase kinetics, and there are no crystal structures of skeletal muscle myosin with bound nucleotides, so another structural technique is needed. Previous EPR studies, with a spin label attached to SH1 in muscle myosin, have resolved the key structural states of this region. Therefore, we have performed identical experiments on both myosins spin-labeled at equivalent sites. Spectra were identical for the two myosins in the apo and ADP-bound states. With bound ADP and phosphate analogs, (i) both proteins exhibit two resolved structural states (prepowerstroke, postpowerstroke) in a single biochemical state (defined by the bound nucleotide), and (ii) these structural states are essentially identical in the two myosins but (iii) are occupied to different extents as a function of the biochemical state. We conclude that (i) myosin structural and biochemical states do not have a one-to-one correspondence, and (ii) Dicty myosin can serve as a good analog for structural studies of muscle myosin only if differences in the coupling between biochemical and structural states are taken into account.  相似文献   

16.
The minichromosome maintenance protein (MCM) complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. Whereas the eukaryotic complex consists of 6 homologous proteins (MCM2–7), the archaeon Sulfolobus solfataricus has only 1 MCM protein (ssoMCM), 6 subunits of which form a homohexamer. Here, we report a 4.35-Å crystal structure of the near-full-length ssoMCM. The structure shows an elongated fold, with 5 subdomains that are organized into 2 large N- and C-terminal domains. A near-full-length ssoMCM hexamer generated based on the 6-fold symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM) hexamer shows intersubunit distances suitable for bonding contacts, including the interface around the ATP pocket. Four unusual β-hairpins of each subunit are located inside the central channel or around the side channels in the hexamer. Additionally, the hexamer fits well into the double-hexamer EM map of mtMCM. Our mutational analysis of residues at the intersubunit interfaces and around the side channels demonstrates their critical roles for hexamerization and helicase function. These structural and biochemical results provide a basis for future study of the helicase mechanisms of the archaeal and eukaryotic MCM complexes in DNA replication.  相似文献   

17.
Yeast replication factor C (RF-C) is a multi-polypeptide complex required for processive DNA replication by DNA polymerases delta and epsilon. The gene encoding the 40-kDa subunit of the Saccharomyces cerevisiae RF-C (RFC3) has been cloned. The RFC3 gene is required for yeast cell growth and has been mapped to the left arm of chromosome XIV. The deduced amino acid sequence of the RFC3 gene shows a high homology to the 36-, 37-, and 40-kDa subunits of human RF-C (also called activator 1), with the highest homology to the 36-kDa subunit. Among the conserved regions are the A motif of ATP binding proteins; the "DEAD box," common to DNA helicases and other ATPases; and the "RFC box," an approximately 15-amino acid domain virtually identical in the yeast and human RF-C subunits. Limited homology to the functional homologs of the Escherichia coli replication apparatus was also observed. The steady-state mRNA levels of RFC3 do not change significantly during the mitotic cell cycle of yeast. The intact form of the RFC3 gene product (Rfc3p) has been overproduced in E. coli and purified to homogeneity. Purified Rfc3p has an ATPase activity that is markedly stimulated by single-stranded DNA but not by double-stranded DNA or RNA.  相似文献   

18.
Here, we present the 1.9-A crystal structure of the nucleotide-free GTPase domain of dynamin 1 from Rattus norvegicus. The structure corresponds to an extended form of the canonical GTPase fold observed in Ras proteins. Both nucleotide-binding switch motifs are well resolved, adopting conformations that closely resemble a GTP-bound state not previously observed for nucleotide-free GTPases. Two highly conserved arginines, Arg-66 and Arg-67, greatly restrict the mobility of switch I and are ideally positioned to relay information about the nucleotide state to other parts of the protein. Our results support a model in which switch I residue Arg-59 gates GTP binding in an assembly-dependent manner and the GTPase effector domain functions as an assembly-dependent GTPase activating protein in the fashion of RGS-type GAPs.  相似文献   

19.
Crystallographic data for several myosin isoforms have provided evidence for at least two conformations in the absence of actin: a prehydrolysis state that is similar to the original nucleotide-free chicken skeletal subfragment-1 (S1) structure, and a transition-state structure that favors hydrolysis. These weak-binding states differ in the extent of closure of the cleft that divides the actin-binding region of the myosin and the position of the light chain binding domain or lever arm that is believed to be associated with force generation. Previously, we provided insights into the interaction of smooth-muscle S1 with actin by computer-based fitting of crystal structures into three-dimensional reconstructions obtained by electron cryomicroscopy. Here, we analyze the conformations of actin-bound chicken skeletal muscle S1. We conclude that both myosin isoforms in the nucleotide-free, actin-bound state can achieve a more tightly closed cleft, a more downward position of the lever arm, and more stable surface loops than those seen in the available crystal structures, indicating the existence of unique actin-bound conformations.  相似文献   

20.
Structural studies of myosin have indicated some of the conformational changes that occur in this protein during the contractile cycle, and we have now observed a conformational change in a bound nucleotide as well. The 3.1-A x-ray structure of the scallop myosin head domain (subfragment 1) in the ADP-bound near-rigor state (lever arm =45 degrees to the helical actin axis) shows the diphosphate moiety positioned on the surface of the nucleotide-binding pocket, rather than deep within it as had been observed previously. This conformation strongly suggests a specific mode of entry and exit of the nucleotide from the nucleotide-binding pocket through the so-called "front door." In addition, using a variety of scallop structures, including a relatively high-resolution 2.75-A nucleotide-free near-rigor structure, we have identified a conserved complex salt bridge connecting the 50-kDa upper and N-terminal subdomains. This salt bridge is present only in crystal structures of muscle myosin isoforms that exhibit a strong reciprocal relationship (also known as coupling) between actin and nucleotide affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号