首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that Notch signaling mediated by ligands of both Jagged and Delta families expands the hematopoietic stem cell compartment while blocking or delaying terminal myeloid differentiation. Here we show that Delta1- and Jagged1-expressing stromal cells have distinct effects on the clonogenic and differentiation capacities of human CD34(+) CD38(+) cells. Jagged1 increases the number of bipotent colony-forming unit-granulocyte macrophage (CFU-GM) and unipotent progenitors (CFU-granulocytes and CFU-macrophages), without quantitatively affecting terminal cell differentiation, whereas Delta1 reduces the number of CFU-GM and differentiated monocytic cells. Expression analysis of genes coding for Notch receptors, Notch targets, and Notch signaling modulators in supernatant CD34(+) cells arising upon contact with Jagged1 and Delta1 shows dynamic and differential gene expression profiles over time. At early time points, modest upregulation of Notch1, Notch3, and Hes1 was observed in Jagged1-CD34(+) cells, whereas those in contact with Delta1 strikingly upregulated Notch3 and Hes1. Later, myeloid progenitors with strong clonogenic potential emerging upon contact with Jagged1 upregulated Notch1 and Deltex and downregulated Notch signaling modulators, whereas T/NK progenitors originated by Delta1 strikingly upregulated Notch3 and Deltex and, to a lesser extent, Hes1, Lunatic Fringe, and Numb. Together, the data unravel previously unrecognized expression patterns of Notch signaling-related genes in CD34(+) CD38(+) cells as they develop in Jagged1- or Delta1-stromal cell environments, which appear to reflect sequential maturational stages of CD34(+) cells into distinct cell lineages.  相似文献   

2.
3.
4.
5.
病毒的慢性感染与机体的免疫耐受有关。近年来的研究发现,Notch信号通路与机体的免疫系统存在着密切的关系,它从多个方面参与T细胞功能的调控,包括T细胞的活化和增殖、细胞因子的分泌和Th1/Th2分化,也参与调节性T细胞(Treg)的产生、扩增和功能发挥等,表明Notch信号途径不仅参与免疫系统发育,同时在成熟免疫细胞功能调节中也具有重要的作用。  相似文献   

6.
Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T‐cell responses towards tolerance. However, the role of LSECs in the regulation of T‐cell‐induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro‐inflammatory Th1‐cell differentiation in mice. Using in vitro co‐culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti‐inflammatory cytokine IL‐10 in developing Th1 cells. These LSEC‐stimulated Th1 cells had no pro‐inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1‐cell‐induced delayed‐type hypersensitivity reaction. Blockage of IL‐10 signaling in vivo inhibited immunosuppressive activity of LSEC‐stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL‐10 expression in Th1 cells. LSECs expressed high levels of the Delta‐like and Jagged family of Notch ligands and induced expression of the Notch target genes hes‐1 and deltex‐1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL‐10 induction in Th1 cells by LSECs. Our findings suggest that LSEC‐induced IL‐10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self‐regulatory mechanism in pro‐inflammatory Th1 cells.  相似文献   

7.
8.
The Notch signalling pathway has recently been linked to T helper 1 (Th1)/T helper 2 (Th2) cell polarization via a mechanism involving differential expression of Notch ligands, Delta-like and Jagged, in antigen-presenting cells. However, whether stimuli other than pathogen-derived factors are involved in the regulation of Notch ligand expression in dendritic cells (DCs) remains unknown. Here, we address the effect of T helper cells (Th1 and Th2) on Delta-like 4 and Jagged 2 expression in bone marrow-derived DCs. We demonstrate that both Th1 and Th2 cells induce Delta-like 4 mRNA expression in DCs, in a process that is, in part, mediated by CD40 signalling. In contrast, only Th2 cells induce a significant increase in Jagged 2 mRNA levels in DCs. Additionally, we show that IL-4, a hallmark Th2 cytokine, plays a role in Jagged 2 expression, as evidenced by the fact that cholera toxin, a Th2-promoting stimulus, induces Jagged 2 mRNA expression in DCs only in the presence of IL-4. Finally, we demonstrate that DCs also express Notch 1 and that this expression is downregulated by IL-4. These data suggest that Notch ligands are differentially regulated in DCs: Delta-like 4 is regulated by T helper cells and by pathogen-derived Th1 stimuli, whereas Jagged 2 is regulated by Th2 cells and pathogen-derived Th2-promoting stimuli. Based on our results, we propose that the positive feedback loop that Th2 cells exert on T cell polarization may involve the induction of Jagged 2 expression in DCs.  相似文献   

9.
Delta‐like 4 (Dll4)‐mediated Notch signaling is critical for specifying T‐cell fate, but how Dll4‐mediated Notch signaling actually contributes to T‐cell development in the thymus remains unclear. To explore this mechanism in the thymic three‐dimensional structure, we performed fetal thymus organ culture using Dll4‐deficient mice. DN1a/b+DN2mt cells, which had not yet committed to either the αβ T or γδ T/NK cell lineage, did not differentiate into the αβ T‐cell lineage in Dll4‐deficient thymus despite the lack of cell fate conversion into other lineages. However, DN3 cells efficiently differentiated into a later developmental stage of αβ T cells, the double‐positive (DP) stage, although the proliferation was significantly impaired during the differentiation process. These findings suggest that the requirement for Notch signaling differs between the earliest and pre‐TCR‐bearing precursors and that continued Notch signaling is required for proper differentiation with active proliferation of αβ T lineage cells. Furthermore, we showed that Notch signaling increased the c‐Myc expression in DN3 cells in the thymus and that its overexpression rescued the proliferation and differentiation of DN3 cells in the Dll4‐null thymus. Therefore, c‐Myc plays a central role in the transition from stage DN3 to DP as a downstream target of Notch signaling.  相似文献   

10.
Jubb A M, Browning L, Campo L, Turley H, Steers G, Thurston G, Harris A L & Ansorge O
(2012) Histopathology  60, 740–747
Expression of vascular Notch ligands Delta‐like 4 and Jagged‐1 in glioblastoma Aims: The coordinated expression of the Notch ligands Delta‐like 4 (Dll4) and Jagged (Jag)1 is believed to define appropriate endothelial sensitivity to vascular endothelial growth factor (VEGF). Preclinical data suggest that Dll4‐Notch signalling may confer resistance to anti‐VEGF therapy with bevacizumab, and Jag1 may antagonize Dll4–Notch. The aims of this study were to characterize the expression of Dll4 and Jag1 in primary glioblastomas. Methods and results: Immunohistochemistry was performed on 40 glioblastomas and normal brain using validated antibodies against Dll4 and Jag1. In‐situ hybridization for Dll4 was performed on serial sections and compared with protein expression. Dll4 expression was localized to the cytoplasm and membrane of endothelial cells in all glioblastomas; it was weak or absent in normal brain. Jag1 expression was observed in the cytoplasm and membrane of glomeruloid and non‐glomeruloid endothelial cells from 76% and 67% of glioblastomas, respectively. However, endothelial Jag1 expression was less intense and less prevalent than Dll4. There was no association between Dll4 and Jag1 expression. Conclusions: In summary, Dll4 and Jag1 are expressed in glioblastoma vasculature. These data may define subsets of glioblastoma that might be sensitive (Dll4+/Jag1+) or resistant (Dll4+/Jag1) to bevacizumab. Our data also suggest that anti‐Dll4 therapy should be evaluated experimentally in glioblastoma.  相似文献   

11.
Notch配体在诱导淋巴细胞分化中的不同作用   总被引:2,自引:0,他引:2  
于哲  邢飞跃  曾耀英 《免疫学杂志》2007,23(1):107-109,111
脊椎动物Notch配体为一组单次跨膜蛋白,包括Delta1, Delta3, Delta4, Jagged1 和 Jagged2,它们与Notch受体结合激活Notch信号通路,决定细胞分化的命运.这些Notch配体具有不同的生物学特性,在诱导造血干/祖细胞和胸腺细胞向T、B和NK细胞分化中起着不同作用,可能为免疫性疾病的治疗提供新的药物靶点.  相似文献   

12.
The Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. The Notch signaling is essential for Drosophila salivary gland development but its role in mammalian salivary gland remains unclear. The human salivary epithelial cell line, HSG, was studied to determine the role of Notch signaling in salivary epithelial cell differentiation. HSG expressed Notch 1 to 4, and the Notch ligands Jagged 1 and 2 and Delta 1. Treatment of HSG cells with inhibitors of γ‐secretase, which is required for Notch cleavage and activation, blocked vimentin and cystatin S expression, an indicator of HSG differentiation. HSG differentiation was also associated with Notch downstream signal Hes‐1 expression, and Hes‐1 expression was inhibited by γ‐secretase inhibitors. siRNA corresponding to Notch 1 to 4 was used to show that silencing of all four Notch receptors was required to inhibit HSG differentiation. Normal human submandibular gland expressed Notch 1 to 4, Jagged 1 and 2, and Delta 1, with nuclear localization indicating Notch signaling in vivo. Hes‐1 was also expressed in the human tissue, with staining predominantly in the ductal cells. In salivary tissue from rats undergoing and recovering from ductal obstruction, we found that Notch receptors and ligands were expressed in the nucleus of the regenerating epithelial cells. Taken together, these data suggest that Notch signaling is critical for normal salivary gland cell growth and differentiation. Developmental Dynamics 238:724–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The Notch signalling pathway is involved in multiple cellular processes and has been recently indicated to modulate the host immune response. However, the role of the Notch pathway in dengue virus (DENV) infection remains unknown. Our study has screened the expression profile of Notch receptors, ligands and target genes in human monocytes, macrophages and dendritic cells in response to DENV infection. The real‐time PCR data showed that Notch ligand Dll1 was significantly induced in DENV‐infected monocytes; and receptor Notch4, ligands Dll1 and Dll4, and target Hes1 were dramatically enhanced in DENV‐infected macrophages and dendritic cells. In macrophages, induction of Dll1 and Dll4 mediated by DENV2 was increased by treatment with interferon‐β (IFN‐β), and was impaired by neutralization of IFN‐β. The DENV‐induced Dll1 and Dll4 expression level was decreased by silencing key innate immune molecules, including Toll‐like receptor 3 (TLR3), MyD88, RIG‐I and IPS‐I. In IFN‐receptor‐depleted macrophages, the Dll1 and Dll4 induction was significantly alleviated. Functionally, activation of Notch signalling by Dll1 in CD4+ T cells enhanced the expression of a T helper type 1 (Th1) cytokine IFN‐γ, while Notch activation in macrophages had no direct effect on replication of DENV. Our data revealed that the expressions of Notch ligands in antigen‐presenting cells were differentially induced by DENV via innate immune signalling, which is important for Th1/Th2 differentiation during adaptive immune response.  相似文献   

14.
Notch signaling is a highly conserved pathway involved in cell fate choice during development with Delta and Jagged constituting the two evolutionary conserved families of Notch ligands. These ligands are transmembrane proteins with conserved biochemical structure that share their receptors and signal through a common mechanism. Upon ligand binding Notch receptors are proteoliticaly cleaved, the intracellular domain of Notch (NICD) is released and translocated to the nucleus, where it activates target genes. In mammals, four receptors and five ligands have been described. Delta-1, Delta-3 and Delta-4 are homologues to Drosophila Delta and Jagged-1 and Jagged-2 to Drosophila Serrate. Despite strong domain homology, there is growing evidence that signals transmitted through Delta or Jagged ligands can differentially affect the target cell. At least during embryonic development, Notch receptors and Notch ligands functions cannot be compensated by other members. Knock-out mice for Notch-1, Notch-2, Delta-1 and Jagged-1 are embryonic lethal . Similarly, mice heterozygous for Delta-4 inactivation also die before birth . Invalidation of Jagged-2 results in defaults in thymus morphology and gammadelta development . Altogether, these data suggest that each Notch member can exert unique specific effects. In this review, we will thus focus on recent data about differential effects of Notch ligands on T cell development and differentiation. In light of recent biochemical and molecular advances on Notch-signaling pathway, we will examine how specific effects can be mediated by a given ligand.  相似文献   

15.
Notch 1 signaling regulates peripheral T cell activation   总被引:11,自引:0,他引:11  
Eagar TN  Tang Q  Wolfe M  He Y  Pear WS  Bluestone JA 《Immunity》2004,20(4):407-415
Notch signaling has been identified as an important regulator of leukocyte differentiation and thymic maturation. Less is known about the role of Notch signaling in regulating mature T cells. We examined the role of Notch 1 in regulating peripheral T cell activity in vitro and in vivo. Coligation of Notch 1 together with TCR and CD28 resulted in a dramatic inhibition of T cell activation, proliferation, and cytokine production. This effect was dependent on presenilin activity and induced the expression of HES-1, suggestive of Notch 1 signaling. Biochemical analysis demonstrated an inhibition of AKT and GSK3beta phosphorylation following Notch 1 engagement while other biochemical signals such as TCR and ERK phosphorylation remained intact. Similar effects were observed in vivo in an adoptive transfer model. Therefore, Notch 1 signaling may play an important role in regulating naive T cell activation and homeostasis.  相似文献   

16.
新近发现,Notch信号途径参与调节外周成熟T细胞及其亚群的分化和功能发挥。本研究应用天花粉蛋白及其衍生肽处理骨髓来源的小鼠树突状细胞(DC),检测Notch配体家族分子的表达及DC对CD8+T细胞分泌细胞因子的影响。结果表明,天花粉蛋白或其衍生肽PB处理DC可使Notch配体Jagged1、Delta1分子表达明显增加,并改变CD8+T细胞细胞因子分泌格局,明显抑制Th1相关细胞因子IFN-γ的分泌,而Th2相关细胞因子IL-4和IL-10分泌明显增加。Notch信号的阻断剂可以部分逆转Tk及肽段的抑制作用。表明天花粉蛋白及其衍生肽可诱导一群具有抑制能力的CD8+T细胞,该作用依赖于DC表面Notch配体的表达。  相似文献   

17.
We previously found that soluble forms of the Notch ligands Jagged1 and Delta1 induced fibroblast growth factor receptor-dependent cell transformation in NIH3T3 fibroblasts. However, the phenotypes of these lines differed, indicating distinct functional differences among these Notch ligands. In the present study, we used allografts to test the hypothesis that NIH3T3 fibroblasts that express soluble forms of Delta1 and Jagged1 accelerate tumorigenicity in vivo. With the exception of the full-length Jagged1 transfectant, all other cell lines, including the control, generated tumors when injected subcutaneously in athymic mice. Suppression of Notch signaling by the soluble ligands significantly increased tumor onset and growth, whereas full-length Jagged1 completely suppressed tumor development. In addition, there were striking differences in tumor pathology with respect to growth kinetics, vascularization, collagen content, size and number of necrotic foci, and invasiveness into the underlying tissue. Further, the production of angiogenic factors, including vascular endothelial growth factor, also differed among the tumor types. Lastly, both Jagged1- and Delta1-derived tumors contained phenotypically distinct populations of lipid-filled cells that corresponded with increased expression of adipocyte markers. The divergence of tumor phenotype may be attributed to ligand-specific alterations in Notch receptor responses in exogenous and endogenous cell populations within the allographs. Our findings demonstrate distinct functional properties for these Notch ligands in the promotion of tumorigenicity in vivo.  相似文献   

18.
Pre‐T cell receptor (TCR) signaling is required for pre‐T cell survival, proliferation, and differentiation from the CD4 and CD8 double negative (DN) to the double positive (DP) stage. However, the pre‐TCR signal transduction pathway is not fully understood and the signaling molecules involved have not been completely identified. Phospholipase Cγ (PLCγ) 1 is an important signaling molecule that generates two second messengers, diacylglycerol and inositol 1,4,5‐trisphosphate, that are important to mediate PKC activation and intracellular Ca2+ flux in many signaling pathways. Previously, we have shown that PLCγ1 is important for TCR‐mediated signaling, development and T‐cell activation, but the role of PLCγ1 in pre‐TCR signal transduction and pre‐T cell development is not known. In this study, we demonstrated that PLCγ1 expression level in pre‐T cells was comparable to that in mature T cells. Deletion of PLCγ1 prior to the pre‐TCR signaling stage partially blocked the DN3 to DN4 transition and reduced thymic cellularity. We also demonstrated that deletion of PLCγ1 impaired pre‐T cell proliferation without affecting cell survival. Further study showed that deficiency of PLCγ1 impaired pre‐TCR mediated Ca2+ flux and Erk activation. Thus our studies demonstrate that PLCγ1 is important for pre‐TCR mediated signal transduction and pre‐T cell development.  相似文献   

19.
Given the pivotal roles that CD4+ T cell imbalance plays in human immune disorders, much interest centres on better understanding influences that regulate human helper T‐cell subset dominance in vivo. Here, using primary CD4+ T cells and short‐term T helper type 1 (Th1) and Th2‐like lines, we investigated roles and mechanisms by which neurotransmitter receptors may influence human type 1 versus type 2 immunity. We hypothesized that N‐methyl‐d ‐aspartate receptors (NMDA‐R), which play key roles in memory and learning, can also regulate human CD4+ T cell function through induction of excitotoxicity. Fresh primary CD4+ T cells from healthy donors express functional NMDA‐R that are strongly up‐regulated upon T cell receptor (TCR) mediated activation. Synthetic and physiological NMDA‐R agonists elicited Ca2+ flux and led to marked inhibition of type 1 but not type 2 or interleukin‐10 cytokine responses. Among CD4+ lines, NMDA and quinolinic acid preferentially reduced cytokine production, Ca2+ flux, proliferation and survival of Th1‐like cells through increased induction of cell death whereas Th2‐like cells were largely spared. Collectively, the findings demonstrate that (i) NMDA‐R is rapidly up‐regulated upon CD4+ T cell activation in humans and (ii) Th1 versus Th2 cell functions such as proliferation, cytokine production and cell survival are differentially affected by NMDA‐R agonists. Differential cytokine production and proliferative capacity of Th1 versus Th2 cells is attributable in part to increased physiological cell death among fully committed Th1 versus Th2 cells, leading to increased Th2‐like dominance. Hence, excitotoxicity, beyond its roles in neuronal plasticity, may contribute to ongoing modulation of human T cell responses.  相似文献   

20.
Dendritic cells (DCs) utilize polarizing signals to instruct the differentiation of T helper (Th) cells into Th1 and Th2 effector cells: antigen‐specific ‘signal 1’, costimulatory ‘signal 2’ and polarizing cytokines ‘signal 3’. Accumulating evidence suggests the involvement of an additional signal, the Notch signalling pathway. We reported that in response to Th1‐promoting stimuli, both mouse and human DCs generated in the presence of the immune modulator nicotine (nicDCs) fail to support the development of effector memory Th1 cells. However, in response to Th2‐promoting stimuli, these nicDCs preferentially support the differentiation of antigen‐specific IL‐4‐producing Th2 effector cells. Here, we show that when compared to their control counterparts, immature mouse and human nicDCs display higher levels of the Notch ligands D1, D4 and J2 mRNA expression. In response to Th1‐ and Th2‐promoting stimuli, mouse nicDCs display higher levels of the Notch ligands D1, D4 and J2, while human nicDCs show higher levels of D1, D4 and J1 mRNA expression. Furthermore, both stimulated mouse and human nicDCs express higher CD86 to CD80 ratio and produce lower amount of IL‐12. Collectively, our data suggest that these changes in addition to an increase in Jagged expression correlate with the ability of nicDCs to modulate the Th1/Th2 balance in favour of Th2 generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号