首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intragraft cytokine profile during human liver allograft rejection.   总被引:7,自引:0,他引:7  
Forty-three human liver allograft biopsies and normal liver were directly analyzed for inflammatory and immunoregulatory cytokine gene expression by polymerase chain reaction (PCR). IL-5 gene expression was predominantly present in biopsies from liver allografts with histopathological evidence of acute rejection. IL-2 gene expression was rarely observed in rejecting allografts or allografts without evidence of rejection. In contrast, IL-4 message was readily detectable in the majority of liver allografts regardless of clinical status. The inflammatory mediators IL-1 beta, TNF-alpha, and IL-6 were detected with similar frequency in rejecting allografts and allografts without evidence of rejection. These findings suggest that inflammatory and immunoregulatory cytokines are produced within the allograft. Moreover, IL-5 may play a role in the local mechanisms of liver allograft rejection.  相似文献   

2.
3.
BACKGROUND: Regulatory T (Treg) cells are the immune suppressors in the maintenance of immune homeostasis and tolerance to self and non-self antigens, and may have therapeutic potential in the treatment of transplant rejection in patients. However, Treg cell development and action are poorly understood in transplantation. In this study, the association of CD4(+)Foxp3(+) infiltrates within renal allograft tissue with graft survival was investigated in a mouse model. METHODS: Kidney donors from C57BL/6J mice (H-2(b)) were transplanted to bilaterally nephrectomized Balb/c recipient mice (H-2(d)). Treg cells were examined with FACS and immunohistochemical staining. RESULTS: Here we showed that without any immunosuppressive regimen, kidney allografts were mostly rejected from 20 to 60 days after transplantation. During the progression of allograft rejection Foxp3(+) Treg phenotype infiltrates were significantly diminished, while intragraft expression of TGF-beta1, IL-6, IL-17 and IL-23 was up-regulated. The regulatory function of CD4(+)CD25(+) infiltrates was confirmed by their suppressive activity in mixed lymphocyte reaction. Further in vitro studies indicated that primary renal tubular epithelial cell (TEC) cultures produced high levels of IL-6 in response to allogeneic lymphocyte or IL-17 stimulation, and neutralization of IL-6 increased CD4(+)CD25(+)Foxp3(+) cells in co-cultures with TEC. CONCLUSION: Diminution of Foxp3(+) Treg infiltrates associates with renal allograft rejection, and neutralization of IL-6 activity enhances Foxp3(+) Treg cell differentiation. Our findings suggest that increase in intragraft IL-6 may down-regulate infiltrating Foxp3(+) Treg cells.  相似文献   

4.
The cellular requirements for renal allograft rejection have been reassessed in a rat adoptive transfer model, preceding studies having shown that transplanted kidneys may be rejected in the absence of cytotoxic T cells or specific antibody. Unilaterally nephrectomized, sublethally irradiated (780 rads) LEW recipients of renal allografts from irradiated WF donors, were selectively reconstituted with spleen cells from sensitized syngeneic donors and subjected to delayed nephrectomy of the residual native kidney 3 days posttransplantation. In some experiments the reconstituting inocula were depleted of SIg+ cells (anti-Ig column) or additionally depleted of cytotoxic T cells and their precursors reactive with monoclonal OX8 (rosette depletion). Depleting the reconstituting inocula of SIg+ cells as well as cells reactive with monoclonal OX8 failed (n = 4) to alter the tempo of rejection, as demonstrated by a mean serum creatinine +/- SD on day 8 of 5.4 +/- 3.8 vs. 6.4 +/- 4.2 in recipients (n = 8) reconstituted with unfractionated inocula. These data support a link between DTH and graft rejection, so additional studies were performed to characterize rat lymphotoxin (LT), one of the potential mediators of DTH-induced tissue injury, and to demonstrate the presence of LT in rejecting rat renal allografts. Rat LT, generated in vitro by stimulating spleen cells from specifically sensitized rats with keyhole limpet hemocyanin (100 micrograms m/ml), was shown on gel filtration to have an MW of approximately 50,000. In-vitro-generated rat LT was shown to be heat stable (70 degrees C for 15 min) and soluble in 40% (NH4)2SO4. Rat LT eluted as a single peak on DEAE anion exchange chromatography (0-0.15 M, NaCl osmotic gradient), supporting the existence of but a single molecular form. LT was isolated from rejecting renal allografts on day 6 after renal transplant but undetected (less than 1 unit) in residual native kidneys. This study, therefore, provides substantial support for a link between DTH and renal allograft rejection. Lymphotoxin, one of the potential mediators of tissue injury in this model system, has been partially characterized and demonstrated to be present in rejecting rat renal allografts.  相似文献   

5.
6.
Interleukin-22 (IL-22) was recently described as an effector cytokine produced by TH17 CD4(+) T lymphocytes that, cooperatively with IL-17, mediates IL-23-driven inflammation. Because there was experimental evidence for the role of IL-17 in acute rejection of vascularized allografts, we undertook the present study to assess the function of IL-22 in the process. There was an early transient expression of IL-22 in C57BL/6 mouse cardiac allografts (2-4 days posttransplantation) transplanted to BALB/c recipients. The main source of IL-22 among infiltrating leukocytes was cells expressing the macrophage/monocyte markers Mac3 and CD11b. T cells and granulocytes present in the rejected graft did not express IL-22. Surprisingly, the absence of IL-22 accelerated the rejection of fully histoincompatible hearts. Histology of rejected organs revealed the presence of intensive intragraft thrombosis and disseminated hemorrhagic necrosis. Taken together, these results demonstrated that IL-22 was not an effector lymphokine in cardiac allograft rejection, but early intragraft expression of the cytokine protected it from rejection.  相似文献   

7.
BACKGROUND: During renal allograft rejection, expression of MHC class II antigens is up-regulated on the parenchymal cells of the kidney. This up-regulation of MHC class II proteins may stimulate the intragraft alloimmune response by promoting their recognition by recipient CD4+ T cells. In previous studies, absence of donor MHC class II antigens did not affect skin graft survival, but resulted in prolonged survival of cardiac allografts. METHODS: To further explore the role of MHC class II antigens in kidney graft rejection, we performed vascularized kidney transplants using donor kidneys from A(beta)b-deficient mice that lack MHC class II expression. RESULTS: At 4 weeks after transplant, GFR was substantially depressed in control allografts (2.18+/-0.46 ml/min/kg) compared to nonrejecting isografts (7.98+/-1.62 ml/min/kg; P<0.01), but significantly higher in class II- allografts (4.38+/-0.60 ml/min/kg; P<0.05). Despite the improvement in renal function, class II- allograft demonstrated histologic features of acute rejection, not unlike control allografts. However, morphometric analysis at 1 week after transplantation demonstrated significantly fewer CD4+ T cells infiltrating class II- allografts (12.8+/-1.2 cells/mm2) compared to controls (25.5+/-2.6 cells/mm2; P=0.0007). Finally, the intragraft profile of cytokines was altered in class II- allografts, with significantly reduced expression of Th2 cytokine mRNA compared to controls. CONCLUSIONS: These results support a role of MHC class II antigens in the kidney regulating immune cells within the graft. Further, effector pathways triggered by class II antigens promote renal injury during rejection.  相似文献   

8.
To study immune reactive and thrombotic mechanisms involved in chronic renal allograft rejection, Lewis rat kidneys were transplanted into bilaterally nephrectomized Brown Norway recipients tolerant of LEW erythrocyte antigens. Such BN rats fail to produce anti class I MHC alloantibodies after insertion of a LEW kidney. The LEW renal allografts experience a transient rejection episode without proteinuria followed by the development of chronic rejection, clinically characterized by glomerular proteinuria in the presence of stable renal function. Immunohistological studies of such chronically rejected LEW renal allografts showed the occurrence of glomerular and interstitial infiltration of predominantly monocytes and T cells. CD4-positive T cells dominated over CD8-positive T cells in the chronically rejected LEW renal grafts. IgG deposition was found deposited throughout the renal vasculature--this in contrast to IgM, which was observed only in the glomerular vasculature. Glomerular antibodies were not directed to endothelial class II MHC antigens, and showed only weak complement fixation as demonstrated by C3 staining. Selective glomerular IgM deposition was associated with vascular (platelet-containing) thrombi, and focal and segmental fibrinoid necrosis. In contrast, acutely rejected LEW renal grafts in unmodified BN recipients showed IgM deposition as well as thrombus formation throughout the entire renal vasculature. The results demonstrate that the antibody response to endothelial--and, in particular, glomerular endothelial non-MHC antigens--may bring about chronic vascular renal allograft rejection. How the formation of glomerular thrombotic lesions may be assisted by endothelial reactivity to cytokines from local immune reactive cells is discussed.  相似文献   

9.
BACKGROUND: A rat renal transplantation model was studied by noninvasive magnetic resonance imaging (MRI) with an infusion of ultrasmall superparamagnetic iron oxide (USPIO) particles to test whether the accumulation of immune cells, such as macrophages, could be detected in vivo while the kidney transplant was being rejected. METHODS: Major histocompatibility disparate DA to BN male rat renal transplantation recipients were infused with USPIO particles, with magnetic resonance (MR) images acquired before, immediately after, and one day following infusion. RESULTS: When the USPIO infusion was on the fourth day post-transplantation, some rejecting allografts showed a decrease of MR signal intensity one day later. Isografts and allografts with triple immunosuppressant treatment had no MR signal reduction. Immunohistologic staining for ED1+ macrophages and CD4+ and CD8+ T cells in allogeneic transplanted kidneys indicated the accumulation of these immune cells as acute rejection occurred. Morphological studies by electron microscopy confirmed the existence of iron inside the lysosomes of macrophages of rejecting kidneys, while Prussian blue staining detected the presence of iron plaques in macrophages. Isografts and allografts with a triple immunosuppressant treatment exhibited smaller MR signal reductions with minimal histologic changes. CONCLUSIONS: The concurrence of MR signal reduction following USPIO infusion with pathological manifestation in a rat renal allograft model suggests the possibility that renal transplantation status may be assessed by MRI using USPIO particles as markers for the accumulation of immune cells, such as macrophages.  相似文献   

10.
In inbred miniature swine, semi-identical liver allograft recipients survive up to 3 months without immunosuppression, whereas similarly mismatched kidney allografts are uniformly rejected within 2 weeks. The early biological and immunological events were assessed in this unique model. SLA(d/d) pigs (MGH, Harvard Medical School, Boston, MA, USA) received liver or kidney allograft from heterozygous SLA(c/d) miniature swine. Survival, graft function, histology, intragraft cytokines, peripheral lymphocyte and platelet count, plasma cortisol level and cellular/humoral anti-donor immune response were assessed. Kidney allografts were uniformly rejected within 2 weeks, whereas liver allografts survived for up to 87 days. After both liver and kidney transplantation, the peripheral lymphocyte count decreased during the first week concomitantly to a significant elevation of plasma cortisol level. Early decrease of peripheral platelet count was observed after liver but not renal transplantation. Up-regulation of transforming growth factor beta1 (TGF-beta1) and interferon-gamma (IFN-gamma) was observed during the first postoperative week in semi-identical liver allografts and IFN-gamma as well as IL-10 in kidney allografts. In liver recipients, labelled autologous lymphocytes accumulated in the liver graft and native spleen, whereas after renal allograft, lymphocytes accumulated in the native spleen and liver but never in the kidney allograft. Specific cellular anti-donor unresponsiveness was observed from the first post-transplant day in both liver and kidney recipients, while the humoral anti-donor response remained intact. In semi-identical liver allograft, recipient rejection is milder and slower than in similarly matched kidney allograft. The intragraft up-regulation of TGF-beta1 in semi-identical liver allograft might be one mediator to explain the modulation of rejection after liver transplant. The rapid, nonspecific accumulation of recipient lymphocytes in the liver allograft but not in kidney allograft might also play a role in the different survival time in this model.  相似文献   

11.
12.
In the present study we have tried to establish the role of IL-17 in subclinical renal allograft rejection. In this animal model, renal grafts from BN (RT1n) were transplanted heterotopically into LEW (RT1l) rats. As controls, LEW grafts were transplanted into LEW rats. The histopathological examination demonstrated that the changes in the allograft kidney on day 2 were similar to those ranked as borderline changes according to the Banff classification scale. On day 2, the serum level of blood urea nitrogen (BUN) and creatinine were the same as on day 1. The examination of allograft cytokines mRNA showed that IL-17 mRNA expressed earlier on the second postoperative day, peaked at day 5, and then declined, becoming almost undetectable at day 9, when most rats died. IL-17 antigen was also proven, by histochemical staining, to be expressed early, however we could not find the same early appearance on other Th1/Th2 cytokines. In human renal biopsy samples, the IL-17 antigen could be found scattered around in the borderline changed rejected renal allografts without evidence of a serum creatinine increase, but was undetectable both in normal controls and in renal transplant tissue without signs of rejection. IL-17 mRNA was detected in the mononuclear cells of the urinary sediment of patients suffering from borderline subclinical rejection. From the above results we can hypothesize that IL-17 could serve as a predictive parameter for borderline subclinical renal allograft rejection in the future.  相似文献   

13.
BACKGROUND: Acute rejection of MHC class II-disparate bm12 skin grafts by C57BL/6 recipient mice is characterized by massive graft infiltration by eosinophils, together with increased intragraft amounts of IL-4 and IL-5 mRNA. IL-5 blockade prevents the intragraft eosinophil infiltration and prolongs the survival of skin allografts. As the differentiation of T cell precursors into Th2 cells is largely driven by IL-4, we investigated the role of IL-4 in MHC class II-disparate allograft rejection. METHODS: We performed skin grafts from MHC class II incompatible bm12 mice into wild-type C57BL/6 mice (IL-4) or C57BL/6 IL-4 deficient mice (IL-4). Graft survival, in vitro T cell reactivity, and histology were compared. RESULTS: We observed that 50% of IL-4 mice rapidly rejected their bm12 allograft, whereas the other 50% retained their graft 60 days after transplantation. Histological examination of bm12 allografts retained by IL-4 mice showed a normal appearance with no inflammatory infiltrate and no eosinophils. Among IL-4 mice that acutely rejected their bm12 skin graft, we observed a dense polymorphonuclear infiltrate. The depletion of neutrophils significantly prolonged bm12 graft survival. CONCLUSIONS: Eosinophil infiltrates, typical of MHC class II disparate acute skin graft rejection, are critically dependent on the availability of IL-4. IL-4 mice reject MHC class II disparate skin grafts by a pathway of rejection where neutrophils play a direct causal role.  相似文献   

14.
Macrophage accumulation within an acutely rejecting allograft occurs by recruitment and local proliferation. To determine the importance of M-CSF in driving macrophage proliferation during acute rejection, we blocked the M-CSF receptor, c-fms, in a mouse model of acute renal allograft rejection. C57BL/6 mouse kidneys (allografts, n = 20) or BALB/c kidneys (isografts, n = 5) were transplanted into BALB/c mice. Anti-c-fms antibody (AFS98) or control Ig (50 mg/kg/day, i.p.) was given daily to allografts from days 0-5. All mice were killed day 6 postoperatively. Expression of the M-CSF receptor, c-fms, was restricted to infiltrating CD68+ macrophages. Blockade of c-fms reduced proliferating (CD68+/BrdU+) macrophages by 82% (1.1 v 6.2%, p < 0.001), interstitial CD68+ macrophage accumulation by 53% (595 v 1270/mm2, p < 0.001), and glomerular CD68+ macrophage accumulation by 71% (0.73 V 2.48 CD68+ cells per glomerulus, p < 0.001). Parameters of T-cell involvement (intragraft CD4+, CD8+ and CD25+ lymphocyte numbers) were not affected. The severity of tubulointerstitial rejection was reduced in the treatment group as shown by decreased tubulitis and tubular cell proliferation. Macrophage proliferation during acute allograft rejection is dependent on the interaction of M-CSF with its receptor c-fms. This pathway plays a significant and specific role in the accumulation of macrophages within a rejecting renal allograft.  相似文献   

15.
Epa-1 is a tissue-restricted, non-major histocompatibility (MHC) antigen that may be responsible for the extreme sensitivity of skin to allograft rejection and graft-versus-host disease (GVHD), especially with MHC-compatible donors and recipients. To confirm that Epa-1 serves as a target in allograft rejection and GVHD, we isolated Epa-1-specific cytotoxic T lymphocyte (CTL) clones completely in vivo from sponge-matrix allografts and from lymph nodes draining rejecting skin allografts. These clones induced GVHD-like skin lesions in antigen-specific, MHC-restricted fashion following intradermal inoculation into appropriate hosts. The in vivo-derived clones are conventional CTL since they are IL-2-dependent and express the Thy-1.2+, Lyt-1-, Lyt-2+, L3T4- phenotype. The results of this study also are pertinent to the controversy over which T-cell subset actually mediates allograft immunity, since the intragraft isolation and subsequent cloning of conventional CTL that induce necrotizing skin lesions are direct evidence that CTL are the proximal mediators of allograft rejection.  相似文献   

16.
Chronic rejection is the main cause of late allograft failure in patients. CD4+ T cells activated by indirect recognition of alloantigens are implicated in this rejection reaction. However, the type of T cell response (Th1 vs Th2) that contributes to chronic rejection has not been fully investigated. The purpose of this study is to examine whether chronic rejection is associated with a polarized T-cell response in a rat cardiac allograft model, where long-term graft survival is achieved by intrathymic immunomodulation with donor class I, RT1.Aa, allopeptides. All long-surviving allografts showed histological evidence of chronic rejection. Chronic rejection was associated with high levels of intragraft Th2 cytokines and the Th2-regulated alloantibodies. The Th2 response was systemic, since long-surviving allografts with chronic rejection had high levels of serum IL-10. The predominance of the Th2 cytokines demonstrates that the Th2 response was not sufficient for the prevention of chronic rejection in this model. The predominant expression of Th2 cytokines, together with the presence of Th2-regulated alloantibodies, suggests that the Th2 response may play a role in the development of chronic rejection.  相似文献   

17.
CD4 monoclonal antibody therapy prolongs allograft survival in a variety of experimental models and is currently undergoing clinical trials, though surprisingly little is known about the effects of CD4 mAb therapy on intragraft effector mechanisms that mediate rejection. We previously reported the significantly improved survival of (LEWxBN)F1 cardiac allografts in LEW rats treated for 10 days with the new CD4 mAb, BWH-4, at a dose of 700 micrograms/day, i.v., starting at the time of engraftment. Thus, CD4-treated rats showed prolongation of allograft survival to a median of 37 days (range 22 to greater than 100 days) post-Tx, compared with rejection at 7 days in untreated controls. We now report the results of detailed immunohistologic studies of allografts collected from these rats. Comparison of acutely rejecting allografts in untreated rats with well-functioning allografts collected at day 7 post-Tx from CD4-treated rats showed that CD4 mAb: (1) significantly reduced mononuclear cell infiltration, interstitial edema, hemorrhage formation and vascular and extravascular thrombosis; (2) inhibited mononuclear cell induction of receptors for IL-2 and transferrin, and upregulation of class II antigens and ICAM-1 on leukocytes and endothelial cells; (3) suppressed intragraft mononuclear cell and/or endothelial production of the cytokines IL-1, IL-2, IL-6, IFN-gamma, and TNF; and (4) blocked upregulation of endothelial tissue factor and downregulation of thrombomodulin, and consequently inhibited fibrin deposition. Studies of allografts from CD4-treated rats collected at day 30 post-Tx, prior to clinical rejection, showed a resurgence of CD4+ cells within allografts and a dense cellular immune response. We conclude that short-term CD4 mAb therapy has potent and extensive inhibitory effects on cytokine-related mononuclear cell and endothelial activation in vivo, blocking multiple afferent and efferent steps of the alloresponse.  相似文献   

18.
19.
20.
The production and release of cytokines and their receptors are of critical importance in mediating graft injury. In order to evaluate the expression of cytokines in renal allograft biopsies, we performed immunocytochemical studies to detect activated cells positive for TNF-alpha, IFN-gamma, and IL-2R, using an alkaline phosphatase anti-alkaline phosphatase technique (APAAP). Sixty-one biopsy specimens from renal transplant patients were analyzed and were classified according to both clinical and conventional morphological criteria. There was a significant correlation between the number of positive cells reactive with monoclonal antibodies directed against TNF-alpha, IFN-gamma, and IL-2R and the presence of acute cellular rejection. The mean number of infiltrating cells (cells/mm2) positive for TNF-alpha (9.2 +/- 1.1), IFN-gamma (6.7 +/- 1.7), and IL-2R (31.2 +/- 4.8) was significantly greater in acute cellular rejection episodes compared with nonrejecting kidneys (0.9 +/- 0.2, 1.2 +/- 0.4, and 8.8 +/- 2.9 positive cells/mm2 for TNF-alpha, IFN-gamma, and IL-2R, respectively). No significant expression of these cytokines was found in the majority of biopsies with chronic rejection. In two cases, in which acute cellular rejection was not sustained on clinical grounds but was diagnosed on histology, the expression of TNF-alpha, IFN-gamma, and IL-2R was similar to that observed in typical cellular rejection. We conclude that TNF-alpha, IFN-gamma, and IL-2R are markedly expressed by activated mononuclear infiltrating cells in acute cellular rejection, and that these cytokines play an important role in allograft rejection. The immunocytochemical evaluation of cytokine expression is a simple and rapid method that is helpful in differentiating acute cellular rejection from other causes of graft disfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号