首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Endocannabinoids (eCBs) mediate various forms of synaptic plasticity at excitatory and inhibitory synapses in the brain. The eCB anandamide binds to several receptors including the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptor 1 (CB1). We recently identified that TRPV1 is required for long-term depression at excitatory synapses on CA1 hippocampal stratum radiatum interneurons. Here we performed whole-cell patch clamp recordings from CA1 stratum radiatum interneurons in rat brain slices to investigate the effect of the eCB anandamide on excitatory synapses as well as the involvement of Group I metabotropic glutamate receptors (mGluRs), which have been reported to produce eCBs endogenously. Application of the nonhydrolysable anandamide analog R-methanandamide depressed excitatory transmission to CA1 stratum radiatum interneurons by ~50%. The Group I mGluR agonist DHPG also depressed excitatory glutamatergic transmission onto interneurons to a similar degree, and this depression was blocked by the mGluR5 antagonist MPEP (10 μM) but not by the mGluR1 antagonist CPCCOEt (50 μM). Interestingly, however, neither DHPG-mediated nor R-methanandamide-mediated depression was blocked by the TRPV1 antagonist capsazepine (10 μM), the CB1 antagonist AM-251 (2 μM) or a combination of both, suggesting the presence of a novel eCB receptor or anandamide target at excitatory hippocampal synapses. DHPG also occluded R-methanandamide depression, suggesting the possibility that the two drugs elicit synaptic depression via a shared signaling mechanism. Collectively, this study illustrates a novel CB1/TRPV1-independent eCB pathway present in the hippocampus that mediates depression at excitatory synapses on CA1 stratum radiatum interneurons.  相似文献   

3.
Synaptically released glutamate binds to ionotropic or metabotropic glutamate receptors. Metabotropic glutamate receptors (mGluRs) are G‐protein‐coupled receptors and can be divided into three subclasses (Group I–III) depending on their pharmacology and coupling to signal transduction cascades. Group I mGluRs are coupled to phospholipase C and are implicated in several important physiological processes, including activity‐dependent synaptic plasticity, but their exact role in synaptic plasticity remains unclear. Synaptic plasticity can manifest itself as an increase or decrease of synaptic efficacy, referred to as long‐term potentiation (LTP) and long‐term depression (LTD). The likelihood, degree and direction of the change in synaptic efficacy depends on the history of the synapse and is referred to as ‘metaplasticity’. We provide direct experimental evidence for an involvement of group I mGluRs in metaplasticity in CA1 hippocampal synapses. Bath application of a low concentration of the specific group I agonist 3,5‐dihydroxyphenylglycine (DHPG), which does not affect basal synaptic transmission, resulted in a leftward shift of the frequency–response function for the induction of LTD and LTP in naïve synapses. DHPG resulted in the induction of LTP at frequencies which induced LTD in control slices. These alterations in the induction of LTD and LTP resemble the metaplastic changes observed in previously depressed synapses. In addition, in the presence of DHPG additional potentiation could be induced after LTP had apparently been saturated. These findings provide strong evidence for an involvement of group I mGluRs in the regulation of metaplasticity in the CA1 field of the hippocampus.  相似文献   

4.
Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.  相似文献   

5.
Thalamocortical neurons in dorsal lateral geniculate nucleus (dLGN) dynamically convey visual information from retina to the neocortex. Activation of metabotropic glutamate receptors (mGluRs) exerts multiple effects on neural integration in dLGN; however, their direct influence on the primary sensory input, namely retinogeniculate afferents, is unknown. In the present study, we found that pharmacological or synaptic activation of type 1 mGluRs (mGluR(1)s) significantly depresses glutamatergic retinogeniculate excitation in rat thalamocortical neurons. Pharmacological activation of mGluR(1)s attenuates excitatory synaptic responses in thalamocortical neurons at a magnitude sufficient to decrease suprathreshold output of these neurons. The reduction in both NMDA and AMPA receptor-dependent synaptic responses results from a presynaptic reduction in glutamate release from retinogeniculate terminals. The suppression of retinogeniculate synaptic transmission and dampening of thalamocortical output was mimicked by tetanic activation of retinogeniculate afferent in a frequency-dependent manner that activated mGluR(1)s. Retinogeniculate excitatory synaptic transmission was also suppressed by the glutamate transport blocker TBOA (dl-threo-β-benzyloxyaspartic acid), suggesting that mGluR(1)s were activated by glutamate spillover. The data indicate that presynaptic mGluR(1) contributes to an activity-dependent mechanism that regulates retinogeniculate excitation and therefore plays a significant role in the thalamic gating of visual information.  相似文献   

6.
SHANK3 is a postsynaptic structural protein localized at excitatory glutamatergic synapses in which deletions and mutations have been implicated in patients with autism spectrum disorders (ASD). The expression of Shank3 ASD mutations causes impairments in ionotropic glutamate receptor‐mediated synaptic responses in neurons, which is thought to underlie ASD‐related behaviors, thereby indicating glutamatergic synaptopathy as one of the major pathogenic mechanisms. However, little is known about the functional consequences of ASD‐associated mutations in Shank3 on another important set of glutamate receptors, group I metabotropic glutamate receptors (mGluRs). Here, we further assessed how Shank3 mutations identified in patients with ASD (one de novo InsG mutation and two inherited point mutations, R87C and R375C) disrupt group I mGluR (mGluR1 and mGluR5) expression and function. To identify potential isoform‐specific deficits induced by ASD‐associated Shank3 mutations on group I mGluRs, we surface immunolabeled mGluR1 and mGluR5 independently. We also induced mGluR‐dependent synaptic plasticity (R,S‐3,5‐dihydroxyphenylglycine [DHPG]‐induced long‐term depression [LTD]) as well as N‐methyl‐D‐aspartate receptor (NMDAR)‐dependent LTD. ASD‐associated mutations in Shank3 differentially interfered with the ability of cultured hippocampal neurons to express mGluR5 and mGluR1 at synapses. Intriguingly, all ASD Shank3 mutations impaired mGluR‐dependent LTD without altering NMDAR‐dependent LTD. Our data show that the specific perturbation in mGluR‐dependent synaptic plasticity occurs in neurons expressing ASD‐associated Shank3 mutations, which may underpin synaptic dysfunction and subsequent behavioral deficits in ASD.  相似文献   

7.
Following prolonged withdrawal from extended access cocaine self-administration in adult rats, high conductance Ca2+ -ermeable AMPA receptors (CP-AMPARs) accumulate in nucleus accumbens (NAc) synapses and mediate the expression of "incubated" cue-induced cocaine craving. Using patch-clamp recordings from NAc slices prepared after extended access cocaine self-administration and >45 d of withdrawal, we found that group I metabotropic glutamate receptor (mGluR) stimulation using 3,5-dihydroxyphenylglycine (DHPG; 50 μm) rapidly eliminates the postsynaptic CP-AMPAR contribution to NAc synaptic transmission. This is accompanied by facilitation of Ca2+ -impermeable AMPAR (CI-AMPAR)-mediated transmission, suggesting that DHPG may promote an exchange between CP-AMPARs and CI-AMPARs. In saline controls, DHPG also reduced excitatory transmission but this occurred through a CB1 receptor-dependent presynaptic mechanism rather than an effect on postsynaptic AMPARs. Blockade of CB1 receptors had no significant effect on the alterations in AMPAR transmission produced by DHPG in the cocaine group. Interestingly, the effect of DHPG in the cocaine group was mediated by mGluR1 whereas its effect in the saline group was mediated by mGluR5. These results indicate that regulation of synaptic transmission in the NAc is profoundly altered after extended access cocaine self-administration and prolonged withdrawal. Furthermore, they suggest that activation of mGluR1 may represent a potential strategy for reducing cue-induced cocaine craving in abstinent cocaine addicts.  相似文献   

8.
Group I metabotropic glutamate receptors (mGluRs) are critically required for multiple forms of hippocampal synaptic plasticity in vivo. The role of the receptor subtype mGluR1 in long-term potentiation (LTP) and learning is unclear. We examined the contribution of mGluR1 to hippocampal LTP and spatial learning using the selective antagonist (S)-(+)-alpha-amino-4carboxy-2-methylbenzene-acetic acid (LY367385). Male Wistar rats were chronically implanted with recording and stimulating electrodes to enable measurement of evoked potentials from medial perforant path-dentate gyrus granule cell synapses. An injection cannula was inserted into the ipsilateral cerebral ventricle to enable drug application. Experiments were begun 10 days after the implantation procedure. We induced a robust LTP which lasted over 25 h with a 200-Hz tetanization. Injections of LY367385 at all concentrations under investigation (4-32 nmol in a 5-microL injection volume) did not affect basal synaptic transmission. In contrast, we observed a dose-dependent impairment of LTP expression: LY367385 (4 nmol) had no effect on LTP induction, whereas 8 and 16 nmol LY367385 reduced both LTP induction and expression, suggestive of an interaction with N-methyl-d-aspartate receptors. We assessed the effects of daily LY367385 application (8 nmol) on performance in an eight-arm radial maze. LY367385-treated rats showed deficits in reference but not working memory performance compared with vehicle-treated controls. Rearing, grooming and locomotor activity were unaffected by LY367385. These data suggest an important role for mGluR1 in LTP and learning and highlight the specific significance of this mGluR subtype for reference memory.  相似文献   

9.
Several recent reports implicate an important role played by c-Jun N-terminal kinases (JNKs) in long-term potentiation (LTP). However, little is known about how the isoforms of JNKs participate in synaptic plasticity. Here we showed that short-term synaptic plasticity was impaired in the hippocampal area CA1 of JNK1-deficient (JNK1-/-) mice; these mice showed normal LTP in response to a strong tetanus and no alteration of N-methyl-D-aspartate receptor-dependent long-term depression (LTD) in the hippocampus. However, LTD induced either by group I metabotropic glutamate receptors (mGluRs) agonist dihydroxyphenylglycine or by paired-pulse low-frequency stimulation was absent in both the JNK1-/- slices and in JNK inhibitor anthrax [1, 9-cd] pyrazol-6(2H)-1 (SP600125)-pretreated slices. Induction of mGluR-dependent LTD resulted in an increase in phosphorylation of JNK1 substrates, including p-c-Jun and p-ATF2 in wild-type (WT) mice, and these increases failed to occur in the JNK1-/- or SP600125-pretreated mice. These results demonstrated that JNK1 played a crucial role in the short-term synaptic plasticity and mGluR-dependent LTD, whereas hippocampus LTP was not affected by JNK1 deficiency.  相似文献   

10.
Metabotropic glutamate receptors (mGluRs) can modulate synaptic transmission, and there is evidence that phosphoinositide (PI)-linked mGluRs may be involved in sensory-dependent plasticity during the development of cat visual cortex. Consequently, we asked the questions: Where are the PI-linked mGluRs (mGluR1α and mGluR5) in the visual cortex? Does the quantity and distribution of these receptors change in the cat visual cortex during postnatal development, and are these features sensory-dependent? We found that the quantity of mGluR1α decreases with age, whereas the laminar distribution of mGluR1α remains the same. Quantity of mGluR5 also decreases, but the laminar distribution of mGluR5 changes during development. The pattern and timing of the mGluR5 change in distribution follow the development of geniculocortical afferents. Immunostaining indicates that reduction of receptor occurs mainly in layers V–VI for mGluR1α and outside layer IV for mGluR5. Dark-rearing postpones the laminar change of mGluR5 and produces an increased level of mGluR5 between postnatal 1.5–6 weeks of age but has no significant effect on the mGluR1α distribution or the mGluR1α quantity. These results suggest that mGluR1α and mGluR5 are involved in different aspects of cortical development. The mGluR5 is more likely to be involved in sensory-dependent events than mGluR1α. The lack of developmental correlation between mGluR quantities and the critical period for ocular dominance plasticity also suggests that other factors besides mGluR quantities are important for ocular dominance plasticity. J. Comp. Neurol. 389:577–583, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Group I metabotropic glutamate receptors (mGluRs) play critical roles in synaptic plasticity and drug addiction. To characterize potential sites whereby these receptors mediate their effects in the ventral striatum, we studied the subcellular and subsynaptic localization of mGluR1a and mGluR5 in the shell and core of the nucleus accumbens in rat and monkey. In both species, group I mGluRs are mainly postsynaptic in dendrites and spines, with rare presynaptic labeling in unmyelinated axons. Minor, yet significant, differences in proportions of specific immunoreactive elements were found between the accumbens shell and the accumbens core in monkey. At the subsynaptic level, significant differences were found in the proportion of plasma membrane-bound mGluR5 labeling between species. In dendrites, spines, and unmyelinated axons, a significantly larger proportion of mGluR5 labeling was bound to the plasma membrane in rats (50-70%) than in monkeys (30-50%). Conversely, mGluR1a displayed the same pattern of immunogold labeling in the two species. Electron microscopic colocalization studies revealed 30% colocalization of mGluR1a and mGluR5 in dendrites and as much as 50-65% in spines in both compartments of the rat accumbens. Both group I mGluRs were significantly expressed in D1-immunoreactive dendritic processes (60-75% colocalization) and spines (30-50%) of striatal projection neurons as well as dendrites of cholinergic (30-70%) and parvalbumin-containing (70-85%) interneurons. These findings highlight the widespread expression of group I mGluRs in projection neurons and interneurons of the shell and core of the nucleus accumbens, providing a solid foundation for regulatory and therapeutic functions of group I mGluRs in reward-related behaviors and drug addiction.  相似文献   

12.
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4–11 mice. At mGluR5 KO TC synapses, N -methyl- d -aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.  相似文献   

13.
In the mammalian brain, the hippocampus has been established as a principle structure for learning and memory processes, which involve synaptic plasticity. Although a relationship between synaptic plasticity and stimulation frequency has been reported in numerous studies, little is known about the importance of pulse number on synaptic plasticity. Here we investigated whether the pulse number can modulate bidirectional plasticity in hippocampal CA1 areas. When a CA1 area was induced by a paired-pulse (PP) with a 10-ms interval, the strength of the synapse was altered to form a long-term depression (LTD), with a 68 ± 4% decrease in expression. The PP-induced LTD (PP-LTD) was blocked by the metabotropic glutamate receptors subtype 5 (mGluR5) antagonist MPEP, suggesting that the PP-LTD relied on the activation of GluR5. In addition, this modulation of LTD was protein kinase C (PKC)- and Group II mGluR-independent. However, when increasing the pulse number to 4 and 6, potentiated synaptic strength was observed, which was N-methyl-D-aspartate receptor (NMDAR)-dependent but mGluR5-independent. Surprisingly, when blocking mGluR, the synaptic efficacy induced by triple-pulse stimulation was altered to form a long-term potentiation (LTP) with a 142 ± 7% enhancement, and was further blocked by NMDA antagonist APV. Following treatment with APV and PKC blocker chelerythrine, the LTP expression induced by 4- and 6-pulse stimulation was switched to LTD. We suggest that CA1 synaptic plasticity is regulated by the result of competition between NMDA and mGluR5 receptors. We suggest that the pulse number can bidirectionally modulate synaptic plasticity through the activation of NMDA and mGluR5 in hippocampal CA1 areas.  相似文献   

14.
Group II metabotropic glutamate receptors (mGluR2, encoded by Grm2, and mGluR3, encoded by Grm3) are inhibitory autoreceptors that negatively modulate the adenylate cyclase signaling cascade. Within the hippocampus, mGluR2 is believed to play a key role in the induction of long-term depression (LTD) at mossy fiber-CA3 synapses. Here, we used Grm2/3 double knockout (dko) mice to investigate to what extent group II mGluRs are necessary for mossy fiber LTD. Surprisingly, we found that these mice displayed prominent mossy fiber LTD. However, the induction of this form of LTD was sensitive to the external Ca(2+) concentration. Mossy fiber LTD in Grm2/3 dko mice was indistinguishable from that in wild-type mice at 4 mM Ca(2+) , but largely absent at 2 mM external Ca(2+) . Mossy fiber LTD in Grm2/3 dko mice was not blocked by the N-methyl-D-aspartic acid (NMDA) receptor antagonist D-AP5, confirming that the observed response did not reflect NMDA receptor-dependent LTD in contaminating associational-commissural fibers, and enabling us to use the NMDA receptor-mediated EPSC to monitor mossy fiber LTD. Using whole-cell recordings, we demonstrated that LTD of the NMDA receptor-mediated EPSC in Grm2/3 dko mice was not affected by intracellular application of BAPTA and CsF to block postsynaptic Ca(2+) and G-protein-mediated effects. This presynaptic LTD was, however, blocked by the AMPA/kainate receptor antagonist, NBQX. Thus, an activity-dependent, external Ca(2+) concentration-sensitive form of mossy fiber LTD can be induced in Grm2/3 dko mice. Two mGluR antagonists also failed to block mossy fiber LTD under 4 mM conditions in wild-type mice, strengthening the conclusion that group II mGluRs are not obligatory for mossy fiber LTD.  相似文献   

15.
The existence of long-term depression (LTD) in the dentate gyrus of freely moving rats, as well as the contribution of different types of metabotropic glutamate receptors (mGluRs) to this form of plasticity, has been the subject of much debate. Here, we describe two distinct forms of mGluR-dependent hippocampal LTD in the dentate gyrus of freely moving adult rats. LTD, induced by low-frequency stimulation (LFS) of the medial perforant path (LFS-LTD), was prevented by antagonism of the phospholipase C-coupled receptors, mGluR1 but not mGluR5. Chemical LTD, induced by intracerebral application of the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine, was blocked by antagonism of both mGluR5 and mGluR1. Selective activation of mGluR5, using (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), also led to chemical LTD. To test whether LFS-LTD and chemical LTD share common induction mechanisms, we applied LFS following the induction of chemical LTD by CHPG (CHPG-LTD). Surprisingly, LFS impaired CHPG-LTD. Further analysis revealed that induction of CHPG-LTD led to altered calcium dynamics sufficient for its reversal by LFS. We found that LTD induced by (R,S)-3,5-dihydroxyphenylglycine, but not by CHPG, is impaired by N-methyl-d-aspartate receptor antagonism. Both forms of chemical LTD strongly require calcium influx through L-type voltage-gated calcium channels. This contrasts with previous findings that LFS-LTD in the dentate gyrus is both N-methyl-d-aspartate receptor and voltage-gated calcium channel independent. LFS-LTD and LTD induced by group I mGluR agonists thus appear to comprise distinct forms of LTD that require the activation of specific group I mGluRs and recruit calcium from different sources.  相似文献   

16.
In the CA1 region of hippocampal slices prepared from young adult rats, we studied the ability of several specific agonists of metabotropic glutamate receptors (mGluRs) to depress excitatory synaptic transmission at the CA3–CA1 pyramidal cell synapses. Three groups of mGluRs have been described: group 1 (mGluR1 and 5) receptors are positively coupled to phospholipase C whereas group 2 (mGluR2 and 3) and group 3 (mGluR4, 6, 7 and 8) receptors are negatively coupled to adenylate cyclase. We found that the broad-spectrum agonist (1 S ,3R)-1-aminocyclopentyl-1,3-dicarboxylate and the group 1-specific agonist ( R,S )-dihydroxyphenylglycine both reversibly inhibited evoked field excitatory postsynaptic potentials, indicating the involvement of group 1 mGluRs. ( R,S )-3,5-dihydroxyphenylglycine presumably inhibited transmission via a presynaptic mechanism, as whole-cell voltage-clamp recordings revealed that inhibition of the synaptic transmission was always accompanied with an increase in paired-pulse facilitation. Treatment with a specific blocker of mGluR1 receptors, the phenylglycine derivative ( S )-4-carboxyphenylglycine, was without effect on the (1 S ,3 R )-1-amino-cyclopentyl-1,3-dicarboxylate-induced depression of the field excitatory postsynaptic potentials, strongly suggesting that mGluR5 receptors are responsible for the (1 S ,3 R )-1-aminocyclopentyl-1,3-dicarboxylate effect. Two selective agonists of group 2 mGluRs, (2 S ,1' s ,2' s )-2-(2'-carboxycyclopropyl)glycine and 4-carboxy-3-hydroxyphenylglycine, were totally ineffective in blocking CA3-CA1-evoked synaptic transmission, excluding the involvement of mGluR2/3 subtypes at this developmental stage.  相似文献   

17.
High resolution immunoelectron microscopy was used to study subcellular localization patterns of three metabotropic glutamate receptor subtypes (mGluR1α, mGluR5, and mGluR2/3) during postnatal development of mouse ventral posterior (VP) thalamic nucleus. Immunoreactivity for all three mGluRs was detected from birth (postnatal day 0, P0), but mGluR1α showed dramatic changes in localization with age. In the first postnatal week, mGluR1α immunoreactivity was mainly found in proximal dendrites and somata and not usually associated with synaptic contacts. From the second postnatal week, it became concentrated in distal dendrites and preferentially associated with corticothalamic (RS) synapses. mGluR5 immunoreactivity was weaker than mGluR1α immunoreactivity at all postnatal ages and showed a similar change in subcellular distribution to that of mGluR1α. It was also localized in astrocytic processes. mGluR2/3 immunoreactivity was mainly localized in astrocytic processes surrounding neuronal somata and synapses and this pattern was consistently maintained through all postnatal ages. A small number of presynaptic axon terminals were labeled for mGluR2/3 immunoreactivity and formed asymmetrical synapses. This study demonstrates that Group I mGluR proteins (mGluR1α and mGluR5) become redistributed in association with the development of corticothalamic function as demonstrated physiologically, whereas Group II mGluR proteins (mGluR2/3) are mainly associated with neuroglia. J. Comp. Neurol. 395:450–465, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
It is commonly accepted that the hippocampus is critically involved in the explicit memory formation of mammals. The subiculum is the principal target of CA1 pyramidal cells and thus serves as the major relay station for the outgoing hippocampal information. Pyramidal cells in the subiculum can be classified according to their firing properties into burst-spiking and regular-spiking cells. In the present study we demonstrate that burst-spiking and regular-spiking cells show fundamentally different forms of low frequency-induced synaptic plasticity in rats. In burst-spiking cells, low-frequency stimulation (at 0.5–5 Hz) induces frequency-dependent long-term depression (LTD) with a maximum at 1 Hz. This LTD is dependent on the activation of NMDAR and masks an mGluR-dependent long-term potentiation (LTP). In contrast, in regular-spiking cells low-frequency stimulation induces an mGluR-dependent LTP that masks an NMDAR-dependent LTD. Both processes depend on postsynaptic Ca2+-signaling as BAPTA prevents the induction of synaptic plasticity in both cell types. Thus, mGluR-dependent LTP and NMDAR-dependent LTD occur simultaneously at CA1-subiculum synapses and the predominant direction of synaptic plasticity relies on the cell type investigated. Our data indicate a novel mechanism for the sliding-threshold model of synaptic plasticity, in which induction of LTP and LTD seems to be driven by the relative activation state of NMDAR and mGluR. Our observation that the direction of synaptic plasticity correlates with the discharge properties of the postsynaptic cell reveals a novel and intriguing mechanism of target specificity that may serve in tuning the significance of neuronal information by trafficking hippocampal output onto either subicular burst-spiking or regular-spiking cells.  相似文献   

19.
Activation of group I metabotropic glutamate receptors (mGluRs) produces a long-lasting change in hippocampal excitability that persists in the absence of an agonist. Exposure to the group I mGluR agonist dihydroxyphenylglycine (DHPG) results in the induction of spontaneously occurring epileptiform activity in the CA3 region of rat hippocampal slices that includes both brief interictal discharges and longer synchronous activity that resembles seizure or ictal activity (>2s duration oscillating at a frequency greater than 2Hz). We evaluated activity-dependent mechanisms for the induction and maintenance of epileptiform activity. Both the induction and maintenance of epileptiform activity was blocked by inhibiting action potential generation with tetrodotoxin or substitution of sodium with choline or by blocking AMPA/KA ionotropic glutamate receptors. The ictal epileptiform activity induced by DHPG was composed of synchronous synaptic activity. Antagonists of group I mGluRs, either mGluR1 or mGluR5, suppressed the induction of ictal activity but had minimal effects on the maintenance of epileptiform activity. Group I mGluRs activate phospholipase C and inhibition of phospholipase C suppressed the induction but not the maintenance of epileptiform activity. Taken together, these results point to a use dependent change in CA3 neuronal network function produced by group I mGluR activation. Furthermore, activation of both mGluR1 and 5 is required to induce ictal discharges. The induction of epileptiform activity by DHPG is an in vitro model of epileptogenesis, and the development of epileptiform activity in this model depends on neuronal activity and synaptic transmission.  相似文献   

20.
Changes in glutamatergic transmission in the nucleus accumbens play a key role in mediating reward‐related behaviors and addiction to psychostimulants. Glutamatergic inputs to the accumbens originate from multiple sources, including the prefrontal cortex, basolateral amygdala, and midline thalamus. The group I metabotropic glutamate receptors (mGluRs) are found throughout the core and shell of the nucleus accumbens, but their localization and function at specific glutamatergic synapses remain unknown. To further characterize the substrate that underlies group I mGluR functions in the accumbens, we combined anterograde tract tracing method with electron microscopy immunocytochemistry to study the ultrastructural relationships between specific glutamatergic afferents and mGluR1a‐ or mGluR5‐containing neurons in the rat nucleus accumbens. Although cortical, thalamic, and amygdala glutamatergic terminals contact both mGluR1a‐ and mGluR5‐immunoreactive dendrites and spines in the shell and core of the accumbens, they do so to varying degrees. Overall, glutamatergic terminals contact mGluR1a‐positive spines about 30% of the time, whereas they form synapses twice as frequently with mGluR5‐labeled spines. At the subsynaptic level, mGluR5 is more frequently expressed perisynaptically and closer to the edges of glutamatergic axospinous synapses than mGluR1a, suggesting a differential degree of activation of the two group I mGluRs by transmitter spillover from glutamatergic synapses in the rat accumbens. These results lay the foundation for a deeper understanding of group I mGluR‐mediated effects in the ventral striatum, and their potential therapeutic benefits in drug addiction and other neuropsychiatric changes in reward‐related behaviors. J. Comp. Neurol. 518:1315–1329, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号