首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Four conventionally reared goats aged 6 days were inoculated orally with approximately 10(10) colony-forming units (cfu) of a non-verotoxigenic strain of Escherichia coli O157:H7. All remained clinically normal. Tissues were sampled under terminal anaesthesia at 24 (two animals), 48 and 72 h post-inoculation (hpi). E. coli O157:H7 was cultured from the ileum, caecum, colon and rectum of all animals, but the number of bacteria recovered at these sites varied between animals. Attaching-effacing (AE) lesions associated with O157 organisms, as confirmed by immunolabelling, were observed in the ileum of one of the two animals examined at 24 hpi, and in the ileum, caecum and proximal colon of an animal examined at 72 hpi. E. coli O157 organisms were detected at > or =10(5) cfu/g of tissue at these sites. In addition, AE lesions associated with unidentified bacteria were observed at various sites in the large bowel of the same animals. Lesions containing both E. coli O157 and unidentified bacteria (non-O157) were not observed. Non-O157 AE lesions were also observed in the large bowel of one of two uninoculated control animals. This indicated that three (one control and two inoculated) animals were colonized with an unidentified AE organism before the commencement of the experiment. The O157-associated AE lesions were observed only in animals colonized by non-O157 AE organisms and this raises questions about individual host susceptibility to AE lesions and whether non-O157 AE organisms influence colonization by E. coli O157.  相似文献   

2.
Shiga-toxigenic Escherichia coli O157:H7 (STEC O157:H7) is associated with potentially fatal human disease, and a persistent reservoir of the organism is present in some farm animal species, especially cattle and sheep. The mechanisms of persistent colonisation of the ruminant intestine by STEC O157:H7 are poorly understood but may be associated with intimate adherence to eukaryotic cells. Intimate adherence, as evidenced by induction of attaching-effacing (AE) lesions by STEC O157, has been observed in 6-day-old conventional lambs after deliberate oral infection but not in older animals. Thus, the present study used a ligated intestinal loop technique to investigate whether STEC O157:H7 and other attaching-effacing E. coli may adhere intimately to the sheep large intestinal mucosa. To do this, four STEC O157:H7 strains, one STEC O26:K60:H11 and one Shiga toxin-negative E. coli O157:H7 strain, suspended in either phosphate-buffered saline or Dulbecco's modified Eagle's medium, were inoculated into ligated spiral colon loops of each of two lambs. The loops were removed 6 h after inoculation, fixed and examined by light and electron microscopy. AE lesions on the intestinal mucosa were produced by all the inoculated strains. However, the lesions were sparse and small, typically comprising bacterial cells intimately adhered to a single enterocyte, or a few adjacent enterocytes. There was little correlation between the extent of intimate adherence in this model and the bacterial cell density, pre-inoculation growth conditions of the bacteria or the strain tested.  相似文献   

3.
Four 6-day-old conventionally reared lambs were inoculated orally with a total of 10(9) cfu comprising equal numbers of four enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains. All animals remained clinically normal. Tissues were sampled under terminal anaesthesia at 12, 36, 60 and 84 h post inoculation (hpi). EHEC O157:H7 was cultured from most gastrointestinal tract sites. Small, sparse attaching and effacing (AE) lesions were found in the caecum at 12 and 36 hpi and in the terminal colon and rectum at 84 hpi. Organisms in the lesions were labelled specifically by an O157 antiserum. The results indicate that the well-characterised mechanisms for intimate attachment encoded by the locus for enterocyte effacement (LEE) of EHEC O157:H7 may contribute to the initial events, at least, of colonisation of sheep.  相似文献   

4.
Ruminants are regarded as a primary reservoir for Escherichia coli O157:H7, an important human pathogen. Intimin, encoded by the Locus of Enterocyte Effacement by E. coli O157:H7 organisms, has been cited as one bacterial mechanism of colonisation of the gastrointestinal tract. To confirm this and to test whether a non-toxigenic E. coli O157:H7 strain would colonise and persist in a sheep model, E. coli O157:H7 strain NCTC12900, that lacks Shiga toxin (stx) genes, was evaluated for use in a sheep model of persistence. Following oral inoculation of six-week-old sheep, persistent excretion of NCTC12900 was observed for up to 48 days. E. coli O157-associated attaching-effacing (AE) lesions were detected in the caecum and rectum of one six-week-old lamb, one day after inoculation. This is the first recorded observation of AE lesions in orally inoculated weaned sheep. Also, mean faecal excretion scores of NCTC12900 and an isogenic intimin (eae)-deficient mutant were determined from twenty-four six-week-old orally inoculated sheep. The eae mutant was cleared within 20 days and had lower mean excretion scores at all time points after day one post inoculation compared with the parental strain that was still being excreted at 48 days. Tissues were collected post mortem from animals selected at random from the study groups over the time course of the experiment. The eae mutant was detected in only 1/43 samples but the parental strain was recovered from 64/140 samples primarily from the large bowel although rumen, duodenum, jejunum, and ileum were culture positive especially from animals that were still excreting at and beyond 27 days after inoculation.  相似文献   

5.
Attaching and effacing (AE) lesions were observed in the caecum, proximal colon and rectum of one of four lambs experimentally inoculated at 6 weeks of age with Escherichia coli O157:H7. However, the attached bacteria did not immunostain with O157-specific antiserum. Subsequent bacteriological analysis of samples from this animal yielded two E. coli O115:H(-) strains, one from the colon (CO) and one from the rectum (RC), and those bacteria forming the AE lesions were shown to be of the O115 serogroup by immunostaining. The O115:H(-)isolates formed microcolonies and attaching and effacing lesions, as demonstrated by the fluorescence actin staining test, on HEp-2 tissue culture cells. Both isolates were confirmed by PCR to encode the epsilon (epsilon) subtype of intimin. Supernates of both O115:H(-) isolates induced cytopathic effects on Vero cell monolayers, and PCR analysis verified that both isolates encoded EAST1, CNF1 and CNF2 toxins but not Shiga-like toxins. Both isolates harboured similar sized plasmids but PCR analysis indicated that only one of the O115:H(-) isolates (CO) possessed the plasmid-associated virulence determinants ehxA and etpD. Neither strain possessed the espP, katP or bfpA plasmid-associated virulence determinants. These E. coli O115:H(-) strains exhibited a novel combination of virulence determinants and are the first isolates found to possess both CNF1 and CNF2.  相似文献   

6.
We compared the pathogenicity of intimin-negative non-O157:H7 Shiga toxin (Stx)-producing Escherichia coli (STEC) O91:H21 and O104:H21 strains with the pathogenicity of intimin-positive O157:H7 and O157:H(-) strains in neonatal pigs. We also examined the role of Stx2d-activatable genes and the large hemolysin-encoding plasmid of O91:H21 strain B2F1 in the pathogenesis of STEC disease in pigs. We found that all E. coli strains that made wild-type levels of Stx caused systemic illness and histological lesions in the brain and intestinal crypts, whereas none of the control Stx-negative E. coli strains evoked comparable central nervous system signs or intestinal lesions. By contrast, the absence of intimin, hemolysin, or motility had little impact on the overall pathogenesis of systemic disease during STEC infection. The most striking differences between pigs inoculated with non-O157 STEC strains and pigs inoculated with O157 STEC strains were the absence of attaching and effacing intestinal lesions in pigs inoculated with non-O157:H7 strains and the apparent association between the level of Stx2d-activatable toxin produced by an STEC strain and the severity of lesions.  相似文献   

7.
Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.  相似文献   

8.
9.
Although cattle develop humoral immune responses to Shiga-toxigenic (Stx+) Escherichia coli O157:H7, infections often result in long-term shedding of these human pathogenic bacteria. The objective of this study was to compare humoral and cellular immune responses to Stx+ and Stx- E. coli O157:H7. Three groups of calves were inoculated intrarumenally, twice in a 3-week interval, with different strains of E. coli: a Stx2-producing E. coli O157:H7 strain (Stx2+ O157), a Shiga toxin-negative E. coli O157:H7 strain (Stx- O157), or a nonpathogenic E. coli strain (control). Fecal shedding of Stx2+ O157 was significantly higher than that of Stx- O157 or the control. Three weeks after the second inoculation, all calves were challenged with Stx2+ O157. Following the challenge, levels of fecal shedding of Stx2+ O157 were similar in all three groups. Both groups inoculated with an O157 strain developed antibodies to O157 LPS. Calves initially inoculated with Stx- O157, but not those inoculated with Stx2+ O157, developed statistically significant lymphoproliferative responses to heat-killed Stx2+ O157. These results provide evidence that infections with STEC can suppress the development of specific cellular immune responses in cattle, a finding that will need to be addressed in designing vaccines against E. coli O157:H7 infections in cattle.  相似文献   

10.
The human pathogen Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening sequelae and transiently colonizes healthy cattle at the terminal rectal mucosa. This study analyzed virulence factors important for the clinical manifestations of human E. coli O157:H7 infection for their contribution to the persistence of E. coli in cattle. The colonizing ability of E. coli O157:H7 was compared with those of nonpathogenic E. coli K-12 and isogenic deletion mutants missing Shiga toxin (Stx), the adhesin intimin, its receptor Tir, hemolysin, or the approximately 92-kb pO157. Fully ruminant steers received a single rectal application of one E. coli strain so that effects of mucosal attachment and survival at the terminal rectum could be measured without the impact of bacterial passage through the entire gastrointestinal tract. Colonization was monitored by sensitive recto-anal junction mucosal swab culture. Nonpathogenic E. coli K-12 did not colonize as well as E. coli O157:H7 at the bovine terminal rectal mucosa. The E. coli O157:H7 best able to persist had intimin, Tir, and the pO157. Strains missing even one of these factors were recovered in lower numbers and were cleared faster than the wild type. In contrast, E. coli O157:H7 strains that were missing Stx or hemolysin colonized like the wild type. For these three strains, the number of bacteria increased between days 1 and 4 postapplication and then decreased slowly. In contrast, the numbers of noncolonizing strains (K-12, delta tir, and delta eae) decreased from the day of application. These patterns consistently predicted long-term colonization or clearance of the bacteria from the bovine terminal rectal mucosa.  相似文献   

11.
Escherichia coli of serotype O157:H7 are Vero cytotoxin-producing enteric pathogens that have recently been associated with outbreaks of haemorrhagic colitis, sporadic cases of haemorrhagic colitis and with the haemolytic uraemic syndrome. The organisms demonstrate attaching and effacing binding to the caecum and colon of orally infected gnotobiotic piglets, chickens and infant rabbits. E. coli O157:H7 cells adhere to the surface but do not invade the cytoplasm of human epithelial cell lines in tissue culture. Since outer membranes, lipopolysaccharides and flagella have been identified as bacterial adhesins on other enteric pathogens, we evaluated their roles in the binding of non-fimbriated E. coli O157:H7 to HEp-2 cells. Hyperimmune rabbit antisera were prepared to whole cells, outer membranes and flagella of E. coli O157:H7. The presence of antibody to homologous antigen was confirmed by dot blot immunoassays. Both antisera and purified outer membrane and flagellar antigens were co-incubated with bacteria and HEp-2 cells to quantitate inhibition of bacterial attachment. Adherence of E. coli O157:H7 to tissue culture cells was inhibited by rabbit antisera raised to whole cells (76.0 +/- 5.6% inhibition compared with bacterial adherence in the presence of pre-immune rabbit serum) and outer membranes (69.2 +/- 3.4% inhibition). In contrast, inhibition of bacterial attachment to tissue-culture cells was significantly less when two antisera to H7 flagella were co-incubated with E. coli O157:H7 and HEp-2 cells (12.4 +/- 7.6%; 6.0 +/- 3.5% inhibition). Outer-membrane extracts inhibited adherence to E. coli O157:H7 to HEp-2 cells in a concentration dependent manner whereas isolated flagella and lipopolysaccharide antigens did not inhibit bacterial attachment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To study the pathogenesis of diarrheal disease due to verotoxin (VT)-producing Escherichia coli, 3-day-old rabbits were inoculated intragastrically with live E. coli O157:H7 (high VT producer), E. coli O113:K75:H21 (low VT producer), or O157:H45 (VT negative) and were examined for clinical symptoms, bacterial colonization, presence of detectable free VT in the intestines, and histological changes. Diarrhea developed consistently with 10(8) bacteria of E. coli O157:H7 but was observed only infrequently with even a higher dose of E. coli O113:K75:H21. VT-negative strains failed to cause diarrhea under the same experimental conditions. E. coli O157:H7 was recovered from the colon of infected animals in a significantly higher concentration than from the small intestine, and the clinical symptoms correlated with the presence of detectable free VT in the colon. Histological changes were seen mainly in the mid- and distal colon; these changes were characterized by a vast increase in apoptosis in the surface epithelium, increased mitotic activity in the crypts, mucin depletion, and a mild to moderate infiltration of neutrophils in the lamina propria and epithelium. Multiple foci of attached bacteria were seen on the surface epithelium of the gut-associated lymphoid tissue, cecum, and colon. Bacteria were never seen in epithelial cells or the lamina propria. These mucosal abnormalities as well as clinical symptoms were reproduced in infant rabbits by the intragastric administration of VT alone. These results are consistent with the hypothesis that VT plays a major role in the pathogenesis of diarrhea caused by E. coli O157:H7 and other VT-producing E. coli.  相似文献   

13.
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, >10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.  相似文献   

14.
AIMS: To determine whether 17 Escherichia coli O157:H8 strains isolated from patients with diarrhoea in the United Kingdom were putative pathogens. METHODS: The strains had been isolated by the use of O157 antiserum, available for the detection of Vero cytotoxin (VT) producing strains of E coli O157 that are usually of flagellar (H) type 7, but may also be non-motile. The strains were examined for VT production, for their ability to adhere to HEp-2 cells, and for hybridisation with several DNA probes that recognise pathogenic properties of E coli. Their ability to ferment sorbitol and to produce beta-glucuronidase was also investigated, as these tests are used to discriminate VT positive O157 strains. RESULTS: The O157:H8 strains did not produce VT. All gave localised attachment to HEp-2 cells, associated with a positive fluorescence-actin staining test, and all hybridised with the E coli attaching and effacing (eae) probe. In addition to the difference in VT production, O157:H8 strains could be distinguished from VT positive O157 strains by their beta-glucuronidase activity, their failure to produce enterohaemolysin, and their lack of hybridisation with the CVD419 probe derived from a plasmid in an O157:H7 strain. CONCLUSIONS: The 0157:H8 strains had in vitro properties characteristic of the class of E coli that causes attaching and effacing lesions in epithelial intestinal cells. They may therefore be considered a putative cause of diarrhoea but their prevalence remains to be established. Several O157:H8 strains failed to ferment sorbitol in agar plates and therefore could be misidentified as VT positive O157 strains. Confirmatory tests for VT production are needed when O157 strains are isolated from faeces.  相似文献   

15.
Enterohemorrhagic Escherichia coli (EHEC), especially E. coli O157:H7, is an emerging cause of food-borne illness. Unfortunately, E. coli O157 cannot be genetically manipulated using the generalized transducing phage P1, presumably because its extensive O antigen obscures the P1 receptor, the lipopolysaccharide (LPS) core subunit. The GalE, GalT, GalK, and GalU proteins are necessary for modifying galactose before it can be assembled into the repeating subunit of the O antigen. Here, we constructed E. coli O157:H7 gal mutants which presumably have little or no O antigen. These strains were able to adsorb P1. P1 lysates grown on the gal mutant strains could be used to move chromosomal markers between EHEC strains, thereby facilitating genetic manipulation of E. coli O157:H7. The gal mutants could easily be reverted to a wild-type Gal(+) strain using P1 transduction. We found that the O157:H7 galETKM::aad-7 deletion strain was 500-fold less able to colonize the infant rabbit intestine than the isogenic Gal(+) parent, although it displayed no growth defect in vitro. Furthermore, in vivo a Gal(+) revertant of this mutant outcompeted the galETKM deletion strain to an extent similar to that of the wild type. This suggests that the O157 O antigen is an important intestinal colonization factor. Compared to the wild type, EHEC gal mutants were 100-fold more sensitive to a peptide derived from bactericidal permeability-increasing protein, a bactericidal protein found on the surface of intestinal epithelial cells. Thus, one way in which the O157 O antigen may contribute to EHEC intestinal colonization is to promote resistance to host-derived antimicrobial polypeptides.  相似文献   

16.
A suspension of human faeces (FS) and its anaerobic culture (FC), bacterial metabolic products and organic acids were examined for inhibitory effects on growth and verotoxin 2 (VT2) production of Escherichia coli O157:H7 in vitro. FS and FC showed a marked inhibitory activity to growth and production of VT2 by E. coli O157:H7 under anaerobic conditions. They may have both bacteriostatic and bactericidal effects on E. coli O157. The growth of E. coli O157 was markedly suppressed by acetic, propionic and butyric acids compared with hydrochloric acid and lactic acid at concentrations between 25 mM and 40 mM, being proportional to the pH values. At pH 5.5, 40 mM of short-chain fatty acids (SCFAs) almost completely inhibited the growth of E. coli O157. SCFAs markedly inhibited the growth of E. coli O157 at pH 6.0 rather than pH 7.0. Propionic acid is likely to be more suppressive to E. coli than acetic and butyric acids. The production of VT2 was approximately proportional to the growth of E. coli O157. However, incubation for 24 h in vitro showed that the growth and VT2 production of E. coli O157 decreased but were not completely inhibited at pH 6.5 and 7.0 in a mixture of acetic, propionic and butyric acids at a physiological concentration (110 mM, 60:25:25, respectively, in molar ratio). It is probable that the colonic microflora could contribute to a reduction of E. coli O157:H7 infections via the activation of intestinal fermentation by dietary manipulation or something similar to give pH 6.0 or <6.0 and that factors such as age, chemical therapy and body condition, which have effects on the balance of the intestinal microflora, would be associated with the incidence rates of E. coli O157 infections.  相似文献   

17.
S S Bilge  J C Vary  Jr  S F Dowell    P I Tarr 《Infection and immunity》1996,64(11):4795-4801
Shiga-toxigenic Escherichia coli strains belonging to serotype O157 are important human pathogens, but the genetic basis of expression of the O157 antigen and the role played by the lipopolysaccharide O side chain in the adherence of this organism to epithelial cells are not understood. We performed TnphoA mutagenesis on E. coli O157:H7 strain 86-24 to identify a mutant (strain F12) deficient in O-antigen expression. Nucleotide sequence analysis demonstrated that the transposon inserted within an open reading frame with significant homology to rfbE of Vibrio cholerae O1 (U. H. Stroeher, L. E. Karageorgos, R. Morona, and P. A. Manning, Proc. Natl. Acad. Sci. USA 89:2566-2570, 1992), which is postulated to encode perosamine synthetase. This open reading frame was designated rfbE(EcO157:H7). The guanine-plus-cytosine fraction (0.35) suggests that rfbE(EcO157:H7) may have originated in a species other than E. coli. rfbE(EcO157:H7) is conserved in nontoxigenic E. coli O157 strains expressing a variety of other flagellar antigens but is not found in E. coli O55:H7 strains, which are more closely related to E. coli O157:H7. Strain F12 was significantly more adherent to HeLa cells in a quantitative adherence assay than was its E. coli O157:H7 parent, but they did not differ in other phenotypes. Restoration of the expression of the O side chain by complementation of the TnphoA mutation in strain F12 by a plasmid expressing intact rfbE(EcO157:H7) reduced the adherence of the hyperadherent strain F12. We conclude that rfbE(EcO157:H7) is necessary for the expression of the O157 antigen, that acquisition of E. coli rfb genes occurred independently in E. coli O157:H7 and unrelated O157 strains, and that the O side chain of E. coli O157:H7 lipopolysaccharide interferes with the adherence of E. coli O157:H7 to epithelial cells.  相似文献   

18.
The contribution of long polar fimbriae to intestinal colonization by Escherichia coli O157:H7 was evaluated in sheep, conventional pigs, and gnotobiotic piglets. E. coli O157:H7 strains with lpfA1 and lpfA2 mutated were recovered in significantly lower numbers and caused fewer attachment and effacement lesions than the parent strain.  相似文献   

19.
The adherence of enterohemorrhagic Escherichia coli serotype O157:H7 and various genetic derivatives to Henle 407 intestinal and HEp-2 epithelial cell lines was examined by light and electron microscopy. The parent outbreak strain, 7785, harbors a 60-megadalton serotype-specific plasmid designated pO157 and adhered to both cell lines, as determined by light microscopy. A plasmidless derivative, 2-45, showed reduced adherence to both cell lines. After being labeled with Tn801, pO157 was transformed into E. coli C600, E. coli HB101, and E. coli GH42, and back into 2-45. Both E. coli C600 and HB101 transformants adhered weakly; full adherence was restored to the 2-45(pO157::Tn801) transformant. Transmission electron microscopy (EM) demonstrated the intimate attachment of HB101(pO157::Tn801) to Henle 407 cells which formed cuplike structures and areas of possible actin polymerization adjacent to adhering bacterial cells; scanning EM further extended these observations. EM studies of E. coli O157:H7 strains were hampered by extensive intestinal cell damage, presumably due to the action of Shiga-like toxins. EM also demonstrated that 7785 and its plasmidless derivative 2-45 were piliated and that no pili were apparent on HB101(pO157::Tn801) or GH42//(pO157::Tn801). The plasmid pO157 appears to modify the eucaryotic cell adherence of E. coli O157:H7 and to confer that adherence on E. coli HB101 through surface structures other than pili. These findings, when compared with other published reports, also suggest similarities between enterohemorrhagic and enteropathogenic E. coli adherence properties.  相似文献   

20.
Sorbitol-fermenting (SF) Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H- strains are emerging as causes of hemorrhagic colitis and the hemolytic-uremic syndrome in Europe. Using subtractive hybridization between SF STEC O157:H- strain 493/89 and STEC O157:H7 strain EDL933, three different fragments, of approximately 700 bp in length, were identified. Each demonstrated > 99% homology to genes encoding the enterohemorrhagic E. coli factor for adherence (efa1) and lymphostatin (lifA). Therefore, a cosmid library was constructed from SF STEC O157:H- strain 493/89, and one clone containing these fragments was sequenced. This sequencing demonstrated a 9669-bp open reading frame (ORF) that had 99.9% sequence homology to efa1 of STEC O111:H- strain E45035 and to lifA of an enteropathogenic E. coli O127:H6 strain E2348/69. In STEC O157:H7 strain EDL933, only small (ca. 3 kb) initial and terminal fragments of this ORF are present. PCR analysis with primers complementary to the efa1/lifA sequence of strain 493/89 indicated that the complete sequence is present in each of 10 SF STEC O157:H- isolates but in none of 10 STEC O157:H7 strains investigated. The presence of the complete efa1/lifA also in both tested E. coli O55:H7 strains supports the hypothesis that SF STEC O157:H- are phylogenetically closer to the proposed E. coli O55:H7 ancestor than STEC O157:H7. Our data demonstrate the presence of a potential virulence gene in SF STEC O157:H- that is only rudimentarily present in STEC O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号