首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Female astrocytes sustain less cell death from oxygen-glucose deprivation (OGD) than male astrocytes. Arimidex, an aromatase inhibitor, abolishes these sex differences. To verify sex-dependent differences in P450 aromatase function in astrocyte cell death following OGD, we developed a novel method that uses sex-specific and genotype-specific single pup primary astrocyte cultures from wild-type (WT) and aromatase-knockout (ArKO) mice. After determining sex by external and internal examination as well as PCR and genotype by PCR amplification of tail cDNA, we established cultures from 1-3-day-old male and female WT and ArKO mice pups and grew them to confluence in estrogen-free media. Cell death was measured by lactate dehydrogenase (LDH) assay. Our study shows that, while WT female astrocytes are more resistant to OGD than WT male cells, sex differences disappear in ArKO cells. Cell death is significantly increased in ArKO compared to WT in female astrocytes but not male cells. Therefore, P450 aromatase appears to be essential in endogenous neuroprotection in females, and this finding may have clinical implications. This innovative technique may also be applied to other in vitro studies of sex-related functional differences.  相似文献   

2.
Aromatase enzyme is essential for the expression of normal sexual behavior in many mammals and birds. Here we report that vorozole (R83842), a non-steroidal aromatase inhibitor, blocks sexual behavior in the female musk shrew. In addition, vorozole treatment lowers aromatase activity in male and female preoptic area, and reduces plasma estradiol concentrations in females. Our findings confirm and extend results demonstrated in other species, conducted with the active enantiomer (R83842), or the racemic mixture (R76713, racemic vorozole). We also report that vorozole treatment affects the immunocytochemical distribution of aromatase immunoreactivity (AROM-ir) in musk shrew brain. The histological identification of neurons that contain this enzyme has been difficult in mammals. Several aromatase enzyme antisera have been developed and used in brain, and each gives a different pattern of immunoreactivity. Moreover, despite the fact that aromatase activity is very high in the bed nucleus of the stria terminalis, several amygdala nuclei, the preoptic area and hypothalamus, AROM-ir in these regions has been very limited. The distribution of AROM-ir in female musk shrew brain tissues is modified by treatment with vorozole prior to sacrifice. Female musk shrew brains contain aromatase immunoreactive cell bodies, as reported previously, in the central amygdala, lateral septum and to a limited extent in the bed nucleus of the stria terminalis (BST). Brains of females treated with vorozole show additional immunoreactivity in the preoptic area, hypothalamus, and medial amygdala, and have a broad distribution of AROM-ir in several subdivisions of the BST. Several sexual dimorphisms are apparent in musk shrews brains after treatment with vorozole. We have quantified this sexual dimorphism in the medial preoptic area (MPO) by counting immunoreactive cells. In both the rostral and caudal portions of the MPO, female brains contain significantly fewer AROM-ir cell bodies than males. These data are in complete agreement with sex differences in biochemical analyses of aromatase activity in the MPO. At this time we do not know if these dimorphisms are the result of differences in circulating levels of steroids in males and females, and/or if the AROM-ir nuclei regulate sexually dimorphic behaviors.  相似文献   

3.
Cytochrome P450 aromatase (P450arom; aromatase) is a microsomal enzyme involved in the production of endogeneous sex steroids by converting testosterone into oestradiol. Aromatase is the product of the cyp19a1 gene and plays a crucial role in the sexual differentiation of the brain and in the regulation of reproductive functions. In the brain of mammals and birds, expression of cyp19a1 has been demonstrated in neuronal populations of the telencephalon and diencephalon. By contrast, a wealth of evidence established that, in teleost fishes, aromatase expression in the brain is restricted to radial glial cells. The present study investigated the precise neuroanatomical distribution of cyp19a1 mRNA during brain development in Xenopus laevis (late embryonic to juvenile stages). For this purpose, we used in situ hybridisation alone or combined with the detection of a proliferative (proliferating cell nuclear antigen), glial (brain lipid binding protein, Vimentin) or neuronal (acetylated tubulin; HuC/D; NeuroβTubulin) markers. We provide evidence that cyp19a1 expression in the brain is initiated from the very early larval stage and remains strongly detected until the juvenile and adult stages. At all stages analysed, we found the highest expression of cyp19a1 in the preoptic area and the hypothalamus compared to the rest of the brain. In these two brain regions, cyp19a1‐positive cells were never detected in the ventricular layers. Indeed, no co‐labelling could be observed with radial glial (brain lipid binding protein, Vimentin) or dividing progenitors (proliferating cell nuclear antigen) markers. By contrast, cyp19a1‐positive cells perfectly matched with the distribution of post‐mitotic neurones as shown by the use of specific markers (HuC/D, acetylated tubulin and NeuroβTubulin). These data suggest that, similar to that found in other tetrapods, aromatase in the brain of amphibians is found in post‐mitotic neurones and not in radial glia as reported in teleosts.  相似文献   

4.
Many of the effects of gonadal steroid hormones in the male brain are due to the actions of the testosterone metabolite estradiol, which is synthesized by the actions of the P450 enzyme aromatase. Aromatase activity is present in regions of the preoptic area, hypothalamus, and limbic system. Levels of aromatase activity in the brain are highly dependent on gonadal steroid hormones in many brain regions, but not all. We examined the distribution of aromatase mRNA in adult male and female rat brains as well as the regulation of the levels of aromatase mRNA in the brains of males by gonadal steroid hormones using in situ hybridization. This method was performed using a 35S-labelled cRNA probe, transcribed in vitro from the rat ovarian aromatase cDNA. In the adult male, many heavily labelled cells were found in the encapsulated bed nucleus of the stria terminalis (BNST), the medial preoptic nucleus (MPN), the ventromedial nucleus (VMN), the medial amygdala (mAMY), and the cortical amygdala (CoAMY). The regional distribution of aromatase mRNA was similar in females, but females tended to have a lower number of aromatase mRNA expressing cells in each region compared to males. Aromatase mRNA levels in the BNST, MPN, VMN, and mAMY tended to be lower in castrated males than in intact males, whereas aromatase mRNA levels were unaltered by castration in the CoAMY. The degree of reduction in mean levels of aromatase mRNA following castration does not simply account for the large changes measured in activity following castration. Examination of the entire population of individual cells expressing aromatase mRNA in castrated males suggests that aromatase mRNA may be regulated by steroid hormones differentially in specific populations of neurons within regions where activity is known to decrease following castration. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The present study was carried out to determine whether aromatase knockout (ArKO) mice are completely devoid of aromatase activity in their brain and gonads and to compare aromatase activity in wild-type and ArKO mice, as well as in heterozygous (HET) mice of both sexes that were previously shown to display a variety of reproductive behaviours at levels intermediate between wild-type and ArKO mice. Aromatase activity was extremely low, and undetectable by the tritiated water assay, in homogenates of the preoptic area-hypothalamus of adult wild-type mice, but was induced following a 12-day treatment with testosterone. The induction of aromatase activity by testosterone was significantly larger in males than in females. Even after 12 days exposure to testosterone, no aromatase activity was detected in the brain of ArKO mice of either sex whereas HET mice showed intermediate levels of activity between ArKO and wild-type. Aromatase activity was also undetectable in the ovary of adult ArKO females but was very high in the wild-type ovary and intermediate in the HET ovary. In wild-type mice, a high level of aromatase activity was detected on the day of birth even without pretreatment with testosterone. This neonatal activity was higher in males than in females, but females nevertheless appear to display a substantial level of oestrogen production in their brain. Aromatase activity was undetectable in the brain of newborn ArKO males and females and was intermediate between wild-type and ArKO in HET mice. In conclusion, the present study confirms that ArKO mice are unable to synthesize any oestrogens, thereby validating the ArKO mouse as a valuable tool in the study of the physiological roles of oestradiol. In addition, it demonstrates that the intermediate behaviour of HET mice presumably reflects the effect of gene dosage on aromatase expression and activity, that aromatase activity is sexually differentiated in mice during the neonatal period as well as in adulthood and, finally, that the neonatal female brain produces substantial amounts of oestrogens that could play a significant role in the sexual differentiation of the female brain early in life.  相似文献   

6.
7.
In our in vitro model, rasagiline a selective irreversible monoamine oxidase-B (MAO-B) inhibitor, protected nerve growth factor (NGF)-differentiated PC12 cells from cell death under oxygen and glucose deprivation (OGD). The severity of the OGD insult, as expressed by cell death, was time-dependent. Exposure of the cells to OGD for 3 hr followed by 18 hr of reoxygenation caused about 30-40% cell death. Under these conditions, the neuroprotective effect of rasagiline was dose-dependent: rasagiline reducing OGD-induced cell death by 68% and 80% at 100 nM and 1 microM, respectively. The neuroprotective effect of rasagiline was also observed when added after the OGD insult (55% reduction in cell death). Under rasagiline treatment, there was a lesser decrease in ATP content in cultures exposed to OGD compared with that in untreated cultures. OGD followed by reoxygenation resulted in a several fold increase in PGE(2) release into the extracellular medium. Rasagiline (100 nM-1 microM) markedly inhibited OGD-induced PGE(2) release. Clorgyline, a monoamine oxidase-A (MAO-A) inhibitor, did not protect NGF-differentiated PC12 cells against OGD-induced cell death. As NGF-differentiated PC12 cells contain exclusively MAO type A, these data suggest that the neuroprotective effect of rasagiline under OGD conditions is independent of MAO inhibition.  相似文献   

8.
Oxygen and glucose deprivation (OGD) are the most important factors related to tissue damage resulting from stroke. Microglial cells have been found to be very vulnerable to ischemia and OGD. It has been reported that isoflurane exposure can protect the mammalian brain from insults such as ischemic stroke; however, the effects of isoflurane on OGD-induced injury in microglia are as yet unknown. In this study, we investigated the effects of isoflurane on OGD-induced injury in microglia. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) revealed that OGD did indeed induce cell death in microglia. However, isoflurane preconditioning attenuated OGD-induced cell death. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated that isoflurane treatment alleviated OGD-induced apoptosis. Toll-like receptor 4 (TLR4) plays a considerable role in the induction of innate immune and inflammatory responses. Our results indicate that isoflurane preconditioning inhibits the upregulation of TLR4 as well as the activation of its downstream molecules, such as c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB), in BV-2 microglia exposed to OGD. Importantly, we also found that isoflurane pretreatment significantly reduces the production of proinflammatory factors such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-β, and nitric oxide (NO). The results indicate that TLR4 and its downstream NF-κB-dependent signaling pathway contribute to the neuroprotection of microglia exposed to OGD/reoxygenation by administration of isoflurane.  相似文献   

9.
It is well established that tissue damage and functional outcome after experimental or clinical stroke are shaped by biologic sex. We investigated the novel hypothesis that ischemic cell death from neuronally derived nitric oxide (NO) or poly-ADP ribose polymerase (PARP-1) activation is sexually dimorphic and that interruption of these molecular death pathways benefits only the male brain. Female neuronal nitric oxide synthase (nNOS) knockout (nNOS-/-) mice exhibited exacerbated histological injury after middle cerebral artery occlusion (MCAO) relative to wild-type (WT) females, unlike the protection observed in male nNOS-/- littermates. Similarly, treatment with the nNOS inhibitor (7-nitroindozole, 25 mg/kg) increased infarction in female C57Bl6 WT mice, but protected male mice. The mechanism for this sexually specific response is not mediated through changes in protein expression of endothelial NOS or inducible NOS, or differences in intraischemic cerebral blood flow. Unlike male PARP-1 knockouts (PARP1-/-), female PARP1-/- littermates sustained grossly increased ischemic damage relative to sex-matched WT mice. Treatment with a PARP inhibitor (PJ-34, 10 mg/kg) resulted in identical results. Loss of PARP-1 resulted in reversal of the neuroprotective activity by the female sex steroid, 17beta estradiol. These data suggest that the previously described cell death pathways involving NO and PARP ischemic neurotoxicity may be operant solely in male brain and that the integrity of nNO/PARP-1 signaling is paradoxically protective in the female.  相似文献   

10.
A single injection of 17β-estradiol administered to 4-day-old male and female mice increased the cellular immune response, and induced resistance to Taenia crassiceps cysticercosis as well as changes in the expression pattern of progesterone (PR) and estrogen receptor (ER) isoforms in the brain and splenocytes. Regardless of gender, when treated mice reached adulthood, they were highly resistant to infection. Female mice presented early vaginal opening and altered estrous cycles. In male and female mice, the expression of the PR and ER isoforms in the brain was differentially regulated after neonatal exposure to estradiol. Moreover, an increase in the expression of IL-4 and IFN-γ was found in the serum of experimentally infected neonatally estrogenized animals, which correlated with the observed protection against T. crassiceps infection.In conclusion, early exposure to estradiol permanently modifies immune system activity and sex steroid hormone receptors in the brain, and causes profound changes in sex-associated susceptibility, leading to resistance to helminth parasite infection.  相似文献   

11.
There is a greater prevalence of neuroinflammatory diseases in females than males. Microglia, the major immunocompetent cells of the central nervous system, play a key role in neuroinflammation. We aimed to determine if inherent differences in toll-like receptor 4 mediated pro-inflammatory response in glia could possibly contribute to the skewed female prevalence of neuroinflammatory disorders. In addition, in order to identify if estradiol (E2), the major female sex steroid contributes to a heightened pro-inflammatory response, estradiol was added both in vivo and in vitro. Microglia and astrocytes were isolated from neonatal pups and stimulated with lipopolysaccharide (LPS) in the presence and absence of E2. Hippocampal microglia were isolated from adult male and female rats and stimulated ex vivo with LPS. Male neonatal microglia and astrocytes produced greater IL-1β mRNA than females. However, when co-incubated with varying doses of estradiol (E2), the E2 produced anti-inflammatory effects in the male microglia but a pro-inflammatory effect in female microglia. LPS-induced IL-1β mRNA was attenuated by E2 in female but not male adult hippocampal microglia. However, females supplemented with E2 in vivo produced a potentiated IL-1β mRNA response. TLR4 mRNA was decreased by LPS in both microglia and astrocytes but was not affected by sex or E2. CD14 mRNA was increased by LPS and may be elevated more in females than males in microglia but not astrocytes. Therefore, sexual dimorphic differences do occur in both neonatal and adult microglia though maturity of the microglia at the time of isolation influences the pro-inflammatory response.  相似文献   

12.
Sex differences in aromatase gene expression in the medaka brain   总被引:1,自引:0,他引:1  
The brain of teleost fish exhibits a significant degree of sexual plasticity, even in adulthood. This unique feature is almost certainly attributable to a teleost-specific sexual differentiation process of the brain, which remains largely unknown. To dissect the molecular basis of sexual differentiation of the teleost brain, we searched for genes differentially expressed between both sexes in the medaka brain. One gene identified in the screen, cyp19a1b, which encodes the steroidogenic enzyme aromatase, was selected for further analysis. As opposed to the situation in most vertebrates, medaka cyp19a1b is expressed at higher levels in the adult female brain than the male brain. The female-biased expression in the brain is consistent regardless of reproductive or diurnal cycle. Medaka cyp19a1b is expressed throughout the ventricular zones in wide areas of the brain, where, in most regions, females have a greater degree of expression compared to males, with the optic tectum exhibiting the most conspicuous predominance in females. Contrary to what is known in mammals, cyp19a1b expression exhibits neither a transient elevation nor a sex difference in medaka embryos. It is not until just before the onset of puberty that cyp19a1b expression in the medaka brain is sexually differentiated. Finally, cyp19a1b expression in the medaka brain is not under the direct control of sex chromosome genes but relies mostly, if not solely, on oestrogen derived from the gonad. These unique properties of aromatase expression in the brain probably contribute substantially to the less rigid sexual differentiation process, thus ensuring remarkable sexual plasticity in the teleost brain.  相似文献   

13.
Aromatase, brain sexualization and plasticity: the fish paradigm   总被引:2,自引:0,他引:2  
In contrast to mammals, teleost fish have a very labile genetic sex determination. Sex differentiation is influenced by a combination of hormonal, social and environmental factors and teleost fishes exhibit many examples of hermaphroditism. This means that the brain of fish is not irreversibly sexualized early in life. This review aims at highlighting some unique features of fish that may explain their brain sexual plasticity. Unlike mammals, in which brain aromatase activity decreases after birth, adult teleosts exhibit an intense aromatase activity due to strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. Interestingly, aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. In agreement with the fact that brain aromatase activity is correlated with sex steroid levels, the high expression of cyp19a1b is due to an autoregulatory loop through which estrogens and aromatizable androgens upregulate aromatase expression. Given the well-established roles of estrogens and aromatase on brain sexualization, these features suggest that the brain of fish conserves properties of embryonic mammalian brain throughout life - high neurogenic activity and high aromatase expression in progenitor cells correlated with sex steroid levels. The permanent dialogue between the brain and the gonad would permit sex changes and thus the emergence of a variety of reproductive strategies. Other hypotheses are also discussed.  相似文献   

14.
Conversion of androgens to estrogens by neural aromatase appears to be a prerequisite for a variety of effects of androgens on brain function, including sexual differentiation. Activity of aromatase is modulated by its substrate testosterone (T) in adult hypothalamus-preoptic area (HPOA), resulting in significantly higher levels in the male. Perinatal sex differences in activity have also been observed in hypothalamus, POA and/or amygdala. However, it is not known if higher levels in the perinatal male occur in response to circulating androgens, nor whether early exposure to gonadal steroids is necessary to establish either basal levels or the androgen sensitivity of aromatase activity in the adult brain. In order to investigate the influence of early steroid exposure on the development of neural aromatase activity, embryonic day (E)17 fetal HPOA was transplanted onto the choroidal pia overlying the superior colliculus of adult ovariectomized-adrenalectomized (OVX-ADX) Holtzman female hosts. In the first experiment, the effect of androgen exposure on aromatase activity in mature HPOA transplants was determined. Hosts received T-filled silastic capsules or underwent sham surgery 7 weeks after transplantation and were sacrificed 7 days later. Aromatase activity was determined in vitro using the stereospecific production of 3H2O from [1 beta-3H]androstenedione as an index of estrogen formation. Aromatase activity was significantly greater in T-treated HPOA versus controls (P less than 0.005). Activity was not affected by the sex of the donor fetus. In the second experiment, the effect of androgen exposure during the first 6 days following transplantation of E17 HPOA (corresponding to the last gestational week) was determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Local formation of oestrogens from androgens by aromatase cytochrome P-450 within brain cells in crucial for the sexual differentiation of the mammalian CNS. Aromatase activity has been detected in several brain regions of the developing rodent brain. In the present study, we used a mouse-specific, peptide-generated, polyclonal aromatase antibody to determine whether neurones and/or glial cells in the developing brain are involved in androgen aromatization and if aromatase-immunoreactive (Arom-IR) cells exhibit a sex-specific distribution and regional-specific morphological characteristics. For these experiments, gender-specific cell cultures were prepared from embryonic day 15 mouse hypothalamus and cortex. Specificity of the immunoreaction was confirmed by Western-blot analysis and by inhibition of aromatase activity using tissue homogenates from mouse ovaries and male newborn hypothalamus and from male hypothalamic cultures with known aromatse activity, respectively. Arom-IR cells were found in both hypothalamic and cortical cultures. Double-labeling experiments revealed that Arom-IR cells co-stained only for the neuronal marker MAP II, but never for glial markers. Therefore aromatase immunoreactivity is specifically neuronal. Regional differences in the morphology of Arom-IR neurones were observed between both brain regions. In hypothalamic cultures, IR-neurones represented a heterologeous population of phenotypes (magnocellular, small bipolar and multipolar neurones with long processes showing varicose-like structures or without processes). Cortical Arom-IR neurones were always oval in shape with short or no IR-processes. Sexual dimorphisms in numbers of Arom-IR neurones were found in the hypothalamus with significaly higher cell numbers in male cultures. In the cortex, numbers of Arom-IR neurones were low compared to the hypothalamus and no sex differences were observed. These data provide the first direct evidence that aromatase is localised specifically in neurones of the developing mouse brain. Furthermore, we describe distinct regional and sexual dimorphisms in numbers and morphological characteristics of Arom-IR cells between the cortex and hypothalamus.  相似文献   

16.
17.
Most of neuroprotective strategies in stroke have failed to move from bench to bedside. One explanation might be the use of excessive uniform and smooth experimental models. Therefore, we have employed a more stringent in vitro model based on cultured brain slices from adult mice submitted to OGD. Using this acute model, we have confirmed that mild hypothermia protects against OGD-induced cell death when cooling the tissue during and after OGD, but not when hypothermia is induced only during reoxygenation.  相似文献   

18.
Nerve growth factor (NGF) was recently characterized as an angiogenic factor inducing proliferation, migration, and capillary sprouting in endothelial cells (ECs) of different vascular beds. While NGF neuroprotective effects on neurons were described, its survival-inducing effects on brain capillary ECs were not yet addressed. Using a model of oxygen–glucose deprivation (OGD) followed by reoxygenation, we demonstrated that NGF conferred protection in brain capillary ECs. These cells express TrkA and p75NTR receptors and respond to NGF by stimulation of Erk1/2 phosphorylation and stimulation of proliferation and migration. The NGF protective effect was dose-dependent, inhibited by NGF/TrkA antagonist, K252a, and required presence of NGF during both OGD and reoxygenation phases while the major protective effect was related to decreased cell death during the reoxygenation phase. A causal relationship was found between NGF-induced protection and attenuation of OGD-induced Erk1/2 phosphorylation, supporting the death-promoting role of insult-induced Erk1/2 phosphorylation in the brain capillary ECs. These results emphasize the importance of NGF in the process of EC survival in response to ischemic injury and suggest fine-tuning regulation of Erk1/2 phosphorylation, extending the neuroprotective impact of NGF from sympathetic neuroendocrine cells to brain capillary ECs as the other element in the neurovascular tandem.  相似文献   

19.
A low dose of the organophosphorus insecticide dimethoate (DMT) produces oxidation of lipids and proteins and impairs mitochondrial function in the brain of male rats, together with a reduction of gonadal hormones in plasma. Here, we have assessed whether DMT affected the expression of inflammatory molecules, the production of reactive oxygen species (ROS), and the expression of steroidogenic proteins and estrogen receptors in cortical astrocyte-enriched cultures obtained separately from male and female CD1 mice pups. Furthermore, we have analyzed whether estradiol may counteract the effects of DMT. A dose of DMT (2 μg/mL) did not affect cell viability, increased interleukin (IL) 6, IL1β, tumor necrosis factor (TNF)α, interferon-γ-inducible protein 10 (IP10), ERβ, steroidogenic acute regulatory protein, and aromatase mRNA levels and ERα protein levels in male but not in female cultures. Estradiol decreased the mRNA levels of IL6, IP10, TNFα, and IL1β in male but not in female cultures treated with DMT. The effect of estradiol was prevented by the ER antagonist ICI 182,780, fully imitated by an ERβ agonist and partially imitated by an ERα agonist. Furthermore, DMT increased the production of ROS in male astrocytes while estradiol reduced ROS production to control levels. These findings indicate that a sublethal dose of DMT alters astrocyte function. The selective action of estradiol on male astrocytes and the sexually dimorphic action of DMT suggest that the pesticide may have different neurological outcomes in males and females.  相似文献   

20.
Development of an ischemic tolerance model in a PC12 cell line.   总被引:4,自引:0,他引:4  
Although ischemic tolerance has been described in a variety of primary cell culture systems, no similar in vitro models have been reported with any cell line. A model of ischemic preconditioning in the rat pheochromocytoma PC12 cell line is described here. When compared to nonpreconditioned cells, preexposure of PC12 cells to 6 hours of oxygen and glucose deprivation (OGD) significantly increased cell viability after 15 hours of OGD 24 hours later. Flow cytometry analysis of cells labeled with specific markers for apoptosis, Annexin V, and Hoechst 33342, and of DNA content, revealed that apoptosis is involved in OGD-induced PC12 cell death and that preconditioning of the cells mainly counteracts the effect of apoptosis. Immunocytochemistry of caspase-3, a central executioner in the apoptotic process, further confirmed the activation of apoptotic pathways in OGD-induced PC12 cell death. This model may be useful to investigate the cellular mechanisms involved in neuronal transient tolerance following ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号