首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to observe the osteogenic activity of native bone morphogenetic proteins (BMPs) obtained from different species including bovine, ostrich and emu sources in order to compare mammalian and avian BMPs. Rat mesenchymal progenitor marrow stromal cells and pre-osteoblastic C2C12 cell cultures, were exposed to the native BMPs and alkaline phosphatase (ALP) and creatine kinase (CK) levels were determined by assay. The results showed that the ALP activity in C2C12 cultures was elevated by bovine BMP by 2- to 10-fold (p < 0.05-0.001) from day 3 during 14 days. There were no significant differences in avian BMP related elevations of ALP activity except with ostrich BMPs at day 14 (p < 0.05). However, exposure of MSCs cultures to BMPs derived from bovine, ostrich or emu sources resulted in elevated ALP from day 3 (p < 0.05). Bovine BMP resulted in more ALP elevation than with either of the avian BMPs. All of BMPs elevated Creatine kinase (CK) activity from day 1 and climbed until peaking at day 7. Compared with control cultures, CK was elevated more with exposure to emu BMP and was more elevated with greater statistical significance than with bovine and ostrich BMP before day 5. These higher levels remained until day 14 (p < 0.05). The results of this study suggest that both bovine and avian BMPs are able to stimulate osteogenesis in mature osteoblasts in vitro. The strongest synergistic effect on osteogenesis was detected in cells stimulated with bovine BMP. Avian BMPs had lower effects on ALP and CK activity, emu BMP being more effective than ostrich BMP.  相似文献   

2.
Aseptic loosening after total joint arthroplasty is a major problem in orthopedic surgery. Small particles from material wear have been reported as the main cause of implant failure. For this reason, investigation into possible wear particles from the materials used in the implant may lead to longevity after arthroplasty. Hydroxyapatite (HA) has been extensively investigated and reported as an excellent biomaterial with excellent biocompatibility. In this study, we used an in vitro osteoblast/osteoclast model to test the biocompatibility of various-sized HA particles. Primary osteoclasts/osteoblasts were co-cultured with different-sized HA particles (0.5-3.0 microm, 37-53 microm, 177-205 microm, and 420-841 microm) for 3 h, 1 day, 3 days, and 7 days. Cellular responses to the HA particles were evaluated by changes in cell counts and the secretion of transforming growth factor (TGF-beta1), alkaline phosphatase (ALP), tumor necrosis factor (TNF-alpha), prostaglandin (PGE2), and lactate dehydrogenase (LDH) in the supernatant of the culture media. The results showed that osteoblasts/osteoclasts co-cultured with HA particles smaller than 53 microm undergo the most significant changes. Cellular counts significantly decreased, and the changes were more obvious in the osteoblast population. There also was a significant decrease in TGF-beta1 concentration and a significant increase in PGE2 and LDH concentration, but there were no changes in the TNF-alpha or ALP titer. It can be concluded that larger HA particles may be quite compatible with bone cells while smaller-sized HA particles can both activate the osteoclasts and decrease the cell population of the osteoblasts. Justification for the additional expense incurred with the use of hydroxyapatite in primary total hip arthroplasty should be further evaluated.  相似文献   

3.
Transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) are abundant proteins in the bone matrix. However, their interaction in controlling osteoblast differentiation is not clearly understood. In this study, HBMSCs were cultured in collagen gel matrix with different condition of exogenous rhBMP-2 and TGF-beta1 in order to determine the interaction of BMP-2 and TGF-beta1 on human bone marrow stromal cells (HBMSCs) differentiation. The cultured cells were analyzed for cell proliferation, alkaline phophatase (ALP) activity and mineralization staining with Von-Kossa. The cells treated with TGF-beta1 exhibited a higher rate of cell growth than those without. However, the cells cultured in collagen gel matrix showed a lower rate of cell growth than the cells cultured in a monolayer. To investigate the effects of both cytokines on osteoblast differentiation, the cells were treated with 0, 1, 5, 10 ng/ml of TGF-beta1 for 2 days. This was followed by culturing with 0, 1, 5, and 10 ng/ml of TGF-beta1 and 100 ng/ml of rhBMP-2 together for 3 days with the alkaline phosphatase (ALP) activity measured. The cells treated with 1 ng/ml of TGF-beta1 responded efficiently to rhBMP-2 and expressed ALP activity with a level equivalent to that exhibited by cells that were not treated with TGF-beta1. The cells treated with 5 and 10 ng/ml of TGF-beta1 showed a dramatic decrease in ALP activity. The cells treated with 10 ng/ml of TGF-beta1 followed by rhBMP-2 alone exhibited an intermediate ALP activity. The cells treated with 100 ng/ml of rhBMP-2 demonstrated Von-Kossa positive solid deposits after 3 weeks, while there were few Von-Kossa positive solid deposits when the cells treated with 10 ng/ml of TGF-beta1. These results show that TGF-beta1 inhibits the effects of rhBMP-2 on the osteoblast differentiation of HBMSCs in a dose dependant manner. Furthermore, the effects of TGF-beta1 on HBMSCs are reversible. This suggest that TGF-beta1 and rhBMP-2 are coordinately controlled during the osteoblast differentiation of HMBSCs.  相似文献   

4.
The purposes of this study were to investigate the effects of erythropoietin (EPO) on the proliferation and function of human osteoblast cells (hFOB 1.19) cultured in vitro and to explore the underlying molecular mechanisms to provide a theoretical foundation for clinical applications of EPO in oral implant and restoration therapies. Cultured hFOB 1.19 cells were treated with high and low doses of EPO. Changes in cell viability after 24 and 48 h of treatment were evaluated with the Mosmann tetrazolium assay. Changes in cell proliferation after 48 h of EPO treatment were measured by bromodeoxyuridine (BrdU) labeling, and changes in alkaline phosphatase (ALP) activity were determined by a specific assay. The effects of EPO on osteocalcin secretion were determined with the enzyme-linked immunosorbent assay, and changes in the protein expression of osteoprotegerin (OPG), osteopontin (OPN) and receptor activator of NF-κB ligand (RANKL) were assayed by western blot. The effects of EPO treatment on the levels of the EPO receptor (EPOR), phosphorylated Jak2 (P-Jak2) and phosphorylated Stat3 (P-Stat3) in hFOB 1.19 cells were evaluated in conjunction with a Jak2/Stat3 inhibitor. After 24 h of EPO treatment, hFOB 1.19 cells showed increased cell viability compared with the blank control group (p < 0.05). After 48 h, cell viability and growth were further improved relative to controls, with a significant increase observed for viability (p < 0.05). A significant increase in the proportion of BrdU-labeled proliferating cells was observed in the high-dose EPO group (p < 0.05), and EPO-treated cells also showed enhanced ALP activity (p < 0.05). There were no statistically significant differences in osteocalcin secretion between groups after 48 h of EPO treatment (p > 0.05); however, increased secretion was observed in EPO-treated cells after 96 h of treatment (p < 0.05). EPO treatment significantly promoted OPG and OPN expression (p < 0.05) while significantly inhibiting RANKL expression (p < 0.01). EPO treatment also significantly upregulated the levels of EPOR, P-Jak2 and P-Stat3 in hFOB 1.19 cells (p < 0.01); these effects were abrogated by co-treatment with a Jak2/Stat3 inhibitor (AG490) (p < 0.01). EPO significantly stimulated osteoblast proliferation and differentiation. The underlying molecular mechanism is associated with the ability of EPO to promote ALP activity, osteocalcin secretion and OPG and OPN expression and to inhibit RANKL expression in osteoblasts. This mechanism appears to be mediated by the Jak2/Stat3 pathway.  相似文献   

5.
In this study, the functions of rat osteoblasts on o-carboxymethyl chitosan-modified poly(D,L-lactic acid) (PDLLA) films were investigated in vitro. The surface characterization was measured by contact angle and electron spectroscopy for chemical analysis (ESCA). Cell adhesion and proliferation were used to assess cell behavior on the modified surface and control. The MTT assay was used to determined cell viability and alkaline phosphatase (ALP) activity was performed to evaluate differentiated cell function. Compared to the control films, cell adhesion of osteoblasts on o-carboxymethyl chitosan-modified PDLLA films was significantly higher (p < 0.05) after 6 and 8 h culture, and osteoblast proliferation was also significantly higher (p < 0.01) between 4 and 7 days. The MTT assay suggested cell viability of osteoblasts cultured on o-carboxymethyl chitosan modified PDLLA films was significantly greater (p < 0.05) than that seeded on control one, and the ALP activity of cells cultured on modified PDLLA films was significantly higher (p < 0.01) than that found on control. These results give the first evidence that o-carboxymethyl chitosan could be used to modify PDLLA surface for improving biocompatibility.  相似文献   

6.
Bone defects caused by various etiologies must be filled with suitable substances to promote bone repair. Autogenous iliac crest graft is most frequently used, but is often associated with morbidities. Several bone graft substitutes have been developed to provide osteoconductive matrices as well as to enhance osteoinductivity. A tricalcium phosphate and glutaraldehyde crosslinked gelatin (GTG) scaffold, incorporated with bone morphogenetic proteins (BMPs), was developed to provide an alternative mean of bone tissue engineering. This study investigated differences between GTG and BMP-4 immobilized GTG (GTG-BMP) scaffolds on neonatal rat calvaria osteoblast activities. The GTG scaffold possessed an average pore size of 200 microm and a porosity of 75%. HE staining revealed uniform cell distribution throughout the scaffold 24 h post cell seeding. Alkaline phosphatase (ALP) activity of the GTG samples increased initially and then stabilized at 3 weeks postseeding. ALP activity of the GTG-BMP samples was similar to that of the GTG samples in the second and third weeks, but it continued increasing and became significantly greater than that of the GTG samples by the fourth week. Gla-type osteocalcin (Gla-OC) activity of the GTG-BMP samples was initially lower, but also became significantly greater than that of the GTG samples by the fourth week. An HE stain revealed greater numbers of attached cells and a richer matrix deposits in the GTG-BMP samples. A von Kossa stain showed larger mineralizing nodules, in greater numbers, after 4 weeks of in vitro cultivation. These findings suggest that the GTG scaffold provides an excellent porous structure, conductive to greater cell attachment and osteoblast differentiation, and that utility can be significantly enhanced by the inclusion of BMPs. A GTG-BMP scaffold holds promise as a superior bioactive material for bone tissue engineering.  相似文献   

7.
Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour   总被引:2,自引:0,他引:2  
Ku CH  Pioletti DP  Browne M  Gregson PJ 《Biomaterials》2002,23(6):1447-1454
The purpose of the present work was to examine the effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Previous work in this laboratory has demonstrated that an ageing treatment reduces metal ion release from this alloy compared to standard passivation procedures. In this study. human osteosarcoma MG-63 were used in short-term in vitro tests to assay for cell viability and cell proliferation at 12, 24 and 72 h while SaOS-2 were used in long-term in vitro tests to assay for osteonectin, osteopontin, osteocalcin gene expression, total protein amount (TP). alkaline phosphatase activity (ALP) and fibronectin production (FN) for 1-4 weeks. Epifluorescence microscopy was used to observe SaOS-2 cell morphology. After 24h, there was no difference in MG-63 cell viability proliferation or in SaOS-2 cell morphology between the different surface treatments. For the long-term tests, the aged Ti-6Al4V induced significantly higher cell proliferation than the control Ti-6Al-4V at 72h. At week 1, no difference in the osteonectin, osteopontin, and osteocalcin gene expression was found between samples. The peak of ALP activity appeared earlier at week 2 for the control surface compared with the passivated and aged surfaces. The early increase in ALP activity for the control sample could be a compensatory effect of decreased osteoblasts proliferation. There was no difference in the expression of FN for the different surface treatments. Our present results showed that the different surface treatments, which induced different metal ion release kinetics and surface properties, influenced the cell proliferation and ALP activity of osteoblast cells. Aluminium ions release kinetics as well as presence of vanadium ions may play a major role in influencing the osteoblasts behaviour in the present study.  相似文献   

8.
In this study, the functions of rat osteoblasts on o-carboxymethyl chitosan-modified poly(D,L-lactic acid) (PDLLA) films were investigated in vitro. The surface characterization was measured by contact angle and electron spectroscopy for chemical analysis (ESCA). Cell adhesion and proliferation were used to assess cell behavior on the modified surface and control. The MTT assay was used to determined cell viability and alkaline phosphatase (ALP) activity was performed to evaluate differentiated cell function. Compared to the control films, cell adhesion of osteoblasts on o-carboxymethyl chitosan-modified PDLLA films was significantly higher (p < 0.05) after 6 and 8 h culture, and osteoblast proliferation was also significantly hlgher (p < 0.01) between 4 and 7 days. The MTT assay suggested cell viability of osteoblasts cultured on o-carboxymethyl chitosan modified PDLLA films was significantly greater (p < 0.05) than that seeded on control one, and the ALP activity of cells cultured on modified PDLLA films was significantly higher (p < 0.01) than that found on control. These results give the first evidence that o-carboxymethyl chitosan could be used to modify PDLLA surface for improving biocompatibility.  相似文献   

9.
Transforming growth factor (TGF)-beta may play a significant role in nasal polyposis pathogenesis, possibly through fibroblast activation. We studied the effects of two TGF-beta isoforms (TGF-beta1 and TGF-beta2) on nasal polyposis fibroblasts by evaluating cell proliferation and differentiation into myofibroblasts. In addition, the inhibitory activity of different concentrations of fluticasone propionate (F.P.) was tested in this in vitro system. Primary nasal polyp tissue-derived fibroblasts were stimulated with different concentrations (1, 10 and 20 ng/ml) of TGF-beta1 and TGF-beta2 for different incubation periods (24, 48 and 72 h) and cell proliferation [3H thymidine ([3H]TdR) incorporation] and alpha-smooth muscle actin (alpha-SMA) expression (immunocytochemistry) was evaluated. The lowest concentration of TGF-beta1 (1 ng/ml) induced a significant increase in [3H]TdR incorporation at 48 and 72 h (p<0.05, each comparison), while in the presence of TGF-beta (10 ng/ml) and TGF-beta2 (1 ng/ml) the enhancement in cell proliferation was significant only after 48 h (p<0.05, each comparison with the unstimulated cells). In contrast, a significant increase in alpha-SMA expression was observed in the presence of the two highest concentration of both TGF-beta isoforms, at 48 and 72 h for TGF-beta1 (p<0.05, each comparison), but only at 72 h for TGF-beta2 (<0.05, each comparison). Finally, at all concentrations tested, F.P. significantly inhibited the TGF-beta1 and TGF-beta2-induced 3HTdR incorporation (p<0.01, each comparison) and the alpha-SMA expression (p<0.05, each comparison). Thus, in vitro different concentrations of TGF-beta1 and TGF-beta2 appear to sequentially stimulate primary nasal polyp tissue-derived fibroblast proliferation and myofibroblast differentiation. These activities are effectively inhibited by F.P.  相似文献   

10.
目的:观察脂多糖(LPS)对脐静脉血管内皮细胞(HUVECs)表达组织因子(TF)、组织因子抑制物(TFPI)和凝血酶调节蛋白(TM)的影响。方法:应用胰酶消化HUVECs并进行传代培养,用生长良好的第2、3代细胞进行实验。同时应用CCK-8测定细胞在不同浓度的LPS(1-100 mg/L)处理前后细胞活性;应用反转录聚合酶链反应(RT-PCR)法检测细胞内TM、TF和TFPI mRNA水平。结果:浓度为10 mg/L的LPS对细胞活力与对照组相比没有显著差异。浓度为10 mg/L的LPS作用使HUVECs显著上调TF mRNA表达,6-24 h可以使细胞TFPI mRNA表达下调,以后渐恢复正常表达,72 h达到正常对照组水平,同时下调TM mRNA表达。结论:LPS(10 mg/L)对HUVECs的活性不造成直接的影响,可显著上调HUVECs的TF mRNA转录,抑制TFPI mRNA 的转录,而不改变TM mRNA的转录,这可能与LPS在感染过程中诱导血栓形成,血液凝固和DIC发生相关。  相似文献   

11.
Gretzer C  Thomsen P 《Biomaterials》2000,21(10):1047-1055
The secretion of hydrogen peroxide (H2O2) and interleukin-1alpha (IL-1alpha) was evaluated during in vitro culturing of human monocytes. The oxidative metabolism and cytokine secretion were correlated to the cell distribution (number of surface-associated cells), the DNA content and their integrity, evaluated by lactate dehydrogenase (LDH) assay. The differentiation of cultured monocytes was determined by the expression of CD14, 27E10 and RM3/1. After 24 h cultivation, unstimulated cells had a low production of H2O2 and IL-1alpha. A four-fold increase in the production of H2O2 was detected with 5 and 10 microg/ml of lipopolysaccharide (LPS) and polystyrene (PS) particles. PS particles induced a concentration-dependent increase in IL-1alpha after 24 h. In contrast, cultivation for 48 h, did not result in any measurable production of H2O2, irrespective of the type of stimulus. A decreased viability of monocytes was shown after stimulation with PS particles in high concentrations. Our results indicate that the phenotype expression, adhesion, integrity and secretory pattern of human monocytes is dependent on the culture time and the type and concentration of stimulus.  相似文献   

12.
Wounds on fetal skin can be repaired without leaving scars until the second trimester, but after this period, skin wounds leave scars as in adults. It's known that certain growth factors such as TGF-beta, and bFGF are present at a very low levels during wound repair in fetal skin. These low levels of growth factors minimize inflammatory response and fibroblast proliferation at the wound site, which in turn inhibit collagen synthesis, and thus, allows scarless wound healing. Recently bone morphogenetic proteins (BMPs), one of the TGF-beta superfamily members, have been studied in the wound healing process. According to several studies, BMPs are related to the differentiation and growth of epithelial and mesenchymal cells, but the precise functions of BMPs and of BMP receptors on skin wound healing have not been elucidated. In this study, we investigated the expression pattern of BMP receptors in fetal skin during the second trimester and in adult skin by immunohistochemical staining and RT-PCR. BMP receptors were detected on the suprabasal epithelial cells and in the hair follicles in adult skin, but were not defected in the fetal skin except for the hair follicles. This was confirmed by confirming mRNA levels of BMP receptors by RT-PCR in both adult and fetal skins. In conclusion, BMPs and BMP receptors seem to be related to fetal and adult wound healing, and low levels of BMPs and BMP receptors during the second trimester seem to contribute to scarless wound healing in the fetus, as is TGF-beta during the second trimester.  相似文献   

13.
背景:肿瘤坏死因子α可降低牙周膜纤维细胞碱性磷酸酶的活性,抑制牙周膜纤维细胞向成骨细胞的功能转化。 目的:观察肿瘤坏死因子α对小鼠成骨细胞生长及cbfa1/runx2基因表达的影响。 方法:取生长良好的小鼠成骨细胞系MC3T3/E1细胞,分别以20,40,60,80 μg/L的肿瘤坏死因子α进行干预,以正常培养的细胞作为对照。采用RT-PCR法检测MC3T3/E1细胞cbfa1/runx2 mRNA的表达;PNPP法测定碱性磷酸酶活性;MTT法检测细胞活力。 结果与结论:正常培养的MC3T3/E1细胞cbfa1/runx2 mRNA呈阳性表达,随着肿瘤坏死因子α浓度的增高,其表达水平逐渐下降。同时MC3T3/E1细胞活力和碱性磷酸酶活性也随肿瘤坏死因子α浓度的增高而下降。提示肿瘤坏死因子α可抑制MC3T3/E1细胞生长,而cbfa1/runx2可能参与了成骨细胞的分化过程。  相似文献   

14.
目的 研究转化生长因子(TGF)-β1对横纹肌肉瘤RD细胞系的生长调节及作用机制。方法^3H-thymidine掺入实验、四甲基偶氮唑盐(MTT)实验和生长曲线检测经TGF-β1处理不同时间的RD细胞生长活力的变化;应用流式细胞术榆测RD细胞周期的改变;激光扫描共聚焦显微镜观察细胞周期抑制蛋白p15、p21和p27在RD中分布的变化;逆转录一聚合酶链反应(RT-PCR)和Western bolt检测RD细胞中细胞周期抑制蛋白P15、p21、p27mRNA和蛋白水平的变化:结果TGF-β1处理RD细胞后,其牛长活力明显降低,并出现G1期停滞。p21,p27在mRNA和蛋白水平表达上升,且p21南胞核表达改变为胞核胞质内均有表达。p15在mRNA和蛋白水平上均无明显改变。结论 TGF-β1对RD细胞具有生长抑制作用,促使细胞G1期停滞。TGF-β1可在mRNA和蛋白水平上调RD细胞中p21、p27的表达。TGF-β1可能通过上调p2和p27而非p15抑制RD细胞生长。  相似文献   

15.
Rosa AL  Beloti MM 《Biomaterials》2003,24(17):2927-2932
TAK-778 induces bone growth in in vitro and in vivo models. The aim of this study was to evaluate the osteogenic potential of TAK-778 on human bone marrow cells cultured on commercially pure titanium (cpTi). Cells were cultured either in absence or in presence of TAK-778 (10(-5)M) on cpTi in supplemented alpha-MEM. For attachment evaluation, cells were cultured for 4 and 24h. After 7, 14, and 21 days, cell proliferation, cell viability, total protein content, alkaline phosphatase (ALP) activity, and bone-like formation were evaluated. TAK-778 did not affect cell attachment and viability. Cell number was reduced by TAK-778. ALP activity, total protein content, and bone-like formation were increased by TAK-778. These results suggest that initial cell events such as cell attachment are not affected by TAK-778 while events that indicate osteoblast differentiation including reduced cell proliferation, and increased both ALP activity and bone-like formation are enhanced by TAK-778 in presence of cpTi. It means that TAK-778 could be a useful drug to improve the osseointegration of implants by both enhancing and accelerating bone formation on Ti surface.  相似文献   

16.
A biomaterial named P558 is a new austenitic stainless steel (SS) with a negligible amount of Ni (<0.20%). In previous in vitro and in vivo studies it was compared with conventional SS and Ti6Al4V and shown to be a promising material in orthopedics. Because osteoporosis is a type of pathology very often encountered in implanted patients and can be studied with in vitro models, the purpose of the present study was to evaluate P558 in vitro through comparison of normal (nOB) with osteopenic (oOB) bone-derived primary rat osteoblasts. Osteoblasts were cultured directly on P558 and polystyrene as controls for 72 h. Osteoblast proliferation, adhesion, and activity (ALP, OC, TGF-beta1, and IL-6) were evaluated at 24 and 72 h. Results demonstrated that the growth of nOB and oOB cultured on P558 was not affected negatively when compared to control. Cells on P558 did not show any alteration in terms of adhesion, proliferation, and metabolic marker production in nOB and oOB cultures, and a significant increase in ALP, OC, and TGF-beta1 production was observed. SEM images revealed no alteration in cell morphology. The current findings demonstrate that P558 promotes osteoblast proliferation, activation, and differentiation not only in normal bone, but also in osteopenic bone-derived osteoblasts.  相似文献   

17.
目的:观察抑制泛素1(UBQLN1)基因表达对乳腺癌细胞增殖、凋亡、侵袭的影响。方法: Western blot检测UBQLN1在乳腺癌T47D、BT549、MDA-MB-231、MCF7细胞中相对于正常乳腺上皮细胞MCF-10A的蛋白表达;用LipofectamineTM2000将干扰UBQLN1表达的siRNA(UBQLN1-siRNA)转染MDA-MB-231细胞,同时转染阴性对照组(NC组),并设置空白对照组,收集转染48 h的细胞Western blot检测其UBQLN1的蛋白表达;CCK8法检测UBQLN1-siRNA转染24 h、48 h和72 h的细胞活力;流式细胞仪及Transwell小室分别检测UBQLN1-siRNA转染48 h的细胞凋亡率及侵袭能力;Western blot检测促凋亡蛋白p53和抑凋亡蛋白Survivin、侵袭相关蛋白基质金属蛋白酶2(MMP-2)和基质金属蛋白酶9(MMP-9)及STAT3和磷酸化的信号转导与转录因子3(p STAT3)的蛋白表达。结果:与MCF-10A细胞比较,UBQLN1在T47D、BT549、MDA-MB-231、MCF7乳腺癌细胞中的表达均显著升高(P<0.01);与NC组比较,UBQLN1-siRNA组UBQLN1的蛋白表达显著降低,24 h、48 h和72 h的细胞活力均显著降低,细胞凋亡率显著升高,细胞侵袭能力显著降低,Survivin、MMP-2、MMP-9和p-STAT3的蛋白表达均显著降低,p53蛋白表达显著升高(P<0.01),三组间STAT3的蛋白表达差异无统计学意义(P>0.05)。结论:抑制乳腺癌细胞中UBQLN1基因表达可降低乳腺癌细胞活力和侵袭能力,并诱导细胞凋亡和下调STAT3信号通路。  相似文献   

18.
目的:探讨细胞焦亡(pyroptosis)能否介导高糖(HG;45 mmol/L葡萄糖)引起的小鼠胚胎成骨细胞MC3T3-E1炎症和损伤。方法:应用细胞计数试剂盒8(CCK-8)检测成骨细胞活力;Western blot测定成骨细胞的核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)和胱天蛋白酶1(CASP1)的表达水平;ELISA法测定细胞培养上清液中白细胞介素18(IL-18)和IL-1β的水平;2’,7’-二氯二氢荧光素二乙酯染色荧光显微镜照相法检测胞内活性氧(ROS)水平;罗丹明123染色荧光显微镜照相法测定线粒体膜电位(MMP)水平;碱性磷酸酶(ALP)试剂盒测定成骨细胞早期标志物ALP的活性;茜素红染色观察成骨细胞晚期标志物矿化结节的形成。结果:HG处理MC3T3-E1细胞24 h可明显促进NLRP3和CASP1的表达,引起IL-18和IL-1β的分泌增多,同时可使细胞活力降低,ROS生成和MMP丢失增加,成骨细胞分化与矿化功能下降(表现为ALP活性降低和矿化结节数量减少)。利用siRNA沉默CASP1表达可显著减轻HG引起的上述成骨细胞炎症和损伤。结论:焦亡可介导HG引起的...  相似文献   

19.
Background: Understanding the pathophysiological process of calvarial bones development is important for the treatments on relative diseases such as craniosynostosis. While, the role of fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) and how they interacted in osteoblast differentiation remain unclear. Methods: we digested bone fragments around the coronal and sagittal sutures from newborn rats to harvest suture cells. Markers expression at different osteoblast differentiation stage was analyzed by increasing FGF2 concentration and BMP2 blocking in these cells. Results: BMP2 expression could be stimulated by FGF2 in a dose and time dependent manner. FGF2 stimulation may decrease early marker of osteoblast differentiation (collagen type-1, COL-1) and increase the expression of continuously-expressed or late markers (alkaline phosphatase, ALP; osteocalcin, OC and bone sialoprotein, BSP) to accelerate mineralization. Inhibition of BMP2 signaling by Noggin weakens the effect of FGF2 on induction of later-stage osteoblastic differentiation of cranial suture cells. Conclusion: Our data suggest that BMP2 signaling is required for FGF2-dependent induction of later-stage of cranial suture cell osteoblastic differentiation.  相似文献   

20.
Collagen has been extensively described as a beneficial material in bone tissue engineering due to its biocompatibility, biodegradability, low antigenicity, and high tensile strength. However, collagen scaffolds in their pure form have some drawbacks and improvements in the physical, chemical, and biologic properties of collagen are necessary to overcome those inadequacies. Recently, the selective hydrolysis of carboxyamides of asparagine and glutamine residues of collagen has been employed to increase the number of negative sites and enhance the piezoelectric properties of collagen. Anionic collagen scaffolds were prepared by use of a hydrolysis treatment for either 24 h [bovine pericardium (BP 24)] or 48 h (BP 48). Bovine osteoblasts were cultured on them and on native matrices to understand the cellular interactions responsible for the good osteoconductivity and biocompatibility reported with in vivo tests. Based on the data obtained on cell adhesion, alkaline phosphatase (ALP) and extracellular matrix macromolecule production, and cellular proliferation through histological analysis, we may conclude that the materials tested reveal sufficient biocompatibility level for bone repair. Further, the evidence of some connection between ALP activity and the mineralization process should be emphasized. BP 48 presented the most promising results stimulating in vitro mineralization, ALP production, and possible osteoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号