首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications, primarily in the treatment of clinical depression. They are among the pharmaceuticals most often prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds with an identical mechanism of action in mammals (inhibit reuptake of serotonin), and they have been found in different aqueous as well as biological samples collected in the environment. In the present study, we tested the toxicities of five SSRIs (citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline) as single substances and of citalopram, fluoxetine, and sertraline in binary mixtures in two standardized bioassays. Test organisms were the freshwater algae Pseudokirchneriella subcapitata and the freshwater crustacean Daphnia magna. In algae, test median effect concentrations (EC50s) ranged from 0.027 to 1.6 mg/L, and in daphnids, test EC50s ranged from 0.92 to 20 mg/L, with sertraline being one of the most toxic compounds. The test design and statistical analysis of results from mixture tests were based on isobole analysis. It was demonstrated that the mixture toxicity of the SSRIs in the two bioassays is predictable by the model of concentration addition. Therefore, in risk assessment based on chemical analysis of environmental samples, it is important to include the effect of all SSRIs that are present at low concentrations, and the model of concentration addition may be used to predict the combined effect of the mixture of SSRIs.  相似文献   

2.
The aquatic toxicity of para-methylstyrene was evaluated in acute toxicity studies using fathead minnows (Pimephales promelas), daphnids (Daphnia magna), and freshwater green algae (Selenastrum capricornutum). Static tests were performed in sealed containers with no headspace to minimize loss of this volatile compound to the atmosphere. Concentrations of para-methylstyrene in test solutions were analyzed by gas chromatography equipped with a purge and trap module and flame ionization detection. Test results are based on mean, measured concentrations. para-Methylstyrene was moderately toxic to fathead minnows, daphnids, and green algae. The 96-h LC(50) and NOEC for fathead minnows were 5.2 and 2.6 mg/L, respectively. The 48-h EC(50) and NOEC for daphnids were 1.3 and 0.81 mg/L, respectively. The 72-h EC(50) and NOEC for green algae were 2.3 and 0.53 mg/L, respectively; these effects were algistatic rather than algicidal. para-Methylstyrene's potential impact on aquatic ecosystems is significantly mitigated by its volatility, an important fate process.  相似文献   

3.
In the groundwater of a timber impregnation site higher concentrations of hydroxylated quinolines compared to their parent compounds quinoline and isoquinoline were found. Studying the toxicity of parent compounds and metabolites, genotoxicity was found with metabolic activation in the SOS-Chromotest and Ames fluctuation test only for quinoline. An adverse effect on algae was observed only for the parent compounds quinoline and isoquinoline, while in the Daphnia magna immobilization assay most hydroxylated quinoline derivatives showed toxicity. The highest ecotoxic potential was observed in the Vibrio fischeri luminescence-inhibition assay. Comparing experimental EC50-values with QSAR predicted ones, for all compounds apart from isoquinoline and 2(1H)-quinolinone in the V. fischeri test baseline toxicity or polar nacrosis is indicated. In conclusion, the hydroxylation of quinoline leads to a detoxification of the genotoxic potential, while taken additive mixture toxicity and a safety factor into account parent compounds and metabolites are found of ecotoxicological relevance in the groundwater.  相似文献   

4.
The soil and groundwater of former ordnance plants and their dumping sites have often been highly contaminated with the explosive 2,4,6-trinitrotoluene (2,4,6-TNT) leading to a potential hazard for humans and the environment. Further hazards can arise from metabolites of transformation, by-products of the manufacturing process, or incomplete combustion. This work examines the toxicity of polar nitro compounds relative to their parent compound 2,4,6-TNT using four different ecotoxicological bioassays (algae growth inhibition test, daphnids immobilization test, luminescence inhibition test, and cell growth inhibition test), three genotoxicological assays (umu test, NM2009 test, and SOS Chromotest), and the Ames fluctuation test for detection of mutagenicity. For this study, substances typical for certain steps of degradation/transformation of 2,4,6-TNT were chosen for investigation. This work determines that the parent compounds 2,4,6-TNT and 1,3,5-trinitrobenzene are the most toxic substances followed by 3,5-dinitrophenol, 3,5-dinitroaniline and 4-amino-2-nitrotoluene. Less toxic are the direct degradation products of 2,4,6-TNT like 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene. A weak toxic potential was observed for 2,4,6-trinitrobenzoic acid, 2,4-diamino-6-nitrotoluene, 2,4-dinitrotoluene-5-sulfonic acid, and 2,6-diamino-4-nitrotoluene. Octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-l,3,5-triazine show no hint of acute toxicity. Based on the results of this study, we recommend expanding future monitoring programs of not only the parent substances but also potential metabolites based on conditions at the contaminated sites and to use bioassays as tools for estimating the toxicological potential directly by testing environmental samples. Site-specific protocols should be developed. If hazardous substances are found in relevant concentrations, action should be taken to prevent potential risks for humans and the environment. Analyses can then be used to prioritise reliable estimates of risk.  相似文献   

5.
The degradation of phthalic acid diesters may lead to formation of o-phthalic acid and phthalic acid monoesters. The ecotoxic properties of the monoesters have never been systematically investigated, and concern has been raised that these degradation products may be more toxic than the diesters. Therefore, the aquatic toxicity of phthalic acid, six monoesters, and five diesters of o-phthalic acid was tested in three standardized toxicity tests using the bacteria Vibrio fischeri, the green algae Pseudokirchneriella subcapitata, and the crustacean Daphnia magna. The monoesters tested were monomethyl, monoethyl, monobutyl, monobenzyl, mono(2-ethylhexyl), and monodecyl phthalate, while the diesters tested were dimethyl, diethyl, dibutyl, butylbentyl, and di(2-ethylhexyl)phthalate, which were assumed to be below their water solubility. The median effective concentration (EC50) values for the three organisms ranged from 103 mg/L to >4.710 mg/L for phthalic acid, and corresponding values for the monoesters ranged from 2.3 mg/L (monodecyl phthalate in bacteria test) to 4,130 mg/L (monomethyl phthalate in bacteria test). Dimethyl and diethyl phthalate were found to be the least toxic of the diesters (EC50 26.2-377 mg/L), and the toxicity of the other diesters (butylbenzyl and dibutyl phthalate) ranged from 0.96 to 7.74 mg/L. In general, the phthalate monoesters (degradation products) were less toxic than the corresponding diesters (mother compounds).  相似文献   

6.
Resin acids, a class of wood extractives, are potential toxic constituents in many pulp and paper mill effluents. In the present investigation, the effects of two predominant resin acids, dehydroabietic acid (DHA) and abietic acid (ABA), on survival, reproduction, and growth of the freshwater crustacean Daphnia magna were assessed over its life cycle. Based on the experimentally determined acute toxicity data (48-h EC(50)'s) for DHA (7.48 mg/L) and ABA (7.98 mg/L), D. magna was treated chronically with each resin acid at nominal concentrations of 0, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0mg/L for 21 days. Both DHA and ABA at concentrations as high as 4.0mg/L did not affect physiological and reproductive parameters such as time to maturation, number of molting, number of broods, and number of offspring produced from surviving daphnids, while significant mortality was observed only at 8.0mg/L in both cases. However, a small but statistically significant decrease in Daphnia growth (body length) at the end of exposure was detected at concentrations as low as 0.5mg/L for DHA and 1.0mg/L for ABA, respectively. These results indicated that both DHA and ABA had the potential to exhibit weak growth inhibition without apparent negative effects on reproduction to D. magna at nonlethal concentration levels. This slight effect is not expected to be ecologically significant because the concentrations of DHA and ABA in biologically treated pulp and paper mill effluents are well below the effective levels observed in the present study.  相似文献   

7.
The ecotoxicity of the nonsteroidal anti-inflammatory drugs (NSAIDs) diclofenac, ibuprofen, naproxen, and acetylsalicylic acid (ASA) has been evaluated using acute Daphnia and algal tests. Toxicities were relatively low, with half-maximal effective concentration (EC50) values obtained using Daphnia in the range from 68 to 166 mg L(-1) and from 72 to 626 mg L(-1) in the algal test. Acute effects of these substances seem to be quite improbable. The quantitative structure-activity relationships (QSAR) approach showed that all substances act by nonpolar narcosis; thus, the higher the n-octanol/water partitioning coefficient (log Kow) of the substances, the higher is their toxicity. Mixture toxicity of the compounds could be accurately predicted using the concept of concentration addition. Toxicity of the mixture was considerable, even at concentrations at which the single substances showed no or only very slight effects, with some deviations in the Daphnia test, which could be explained by incompatibility of the very steep dose-response curves and the probit analysis of the data. Because pharmaceuticals in the aquatic environment occur usually as mixtures, an accurate prediction of the mixture toxicity is indispensable for environmental risk assessment.  相似文献   

8.
Textile wastewaters, which contain numerous chemicals such as dyes, surfactants, solvents, organic and inorganic salts, can cause severe pollution problems for the receiving freshwaters. The ecotoxicity of wastewaters in Prato, where there are about 14,000 textile and related factories, was investigated from 1996-1999 by means of bioassays. 147 samples of reclaimed wastewater were collected at the outlets of 4 centralized wastewater treatment plants. The acute and chronic toxicity of the effluents was measured with bioassays using three different target organisms: green algae (Pseudokirchneriella subcapitata), crustaceans (Daphnia magna) and bioluminescent bacteria (Vibrio fischeri). Toxicity was expressed as Effective Concentration 50 (EC50) and Toxic Units (TU). The results indicated that the effluents did not have significant acute toxicity: only 2.74% (EC50<100%, TU>1) of the 146 samples tested with crustaceans and 6.52% (EC50<50%, TU>2) of the 78 tested with bioluminescent bacteria showed toxic effects. With algae, slight chronic toxicity was found in 49.33% (mean EC50 value=86.56%, mean TU=1.16) of the 140 samples tested. The highest relative response was found with the algal assay using Pseudokirchneriella subcapitata: 49.33% of 140 samples showed chronic toxicity at 96 hours (EC50<100%).  相似文献   

9.
The protective effect of reactive sulfide against AgNO3 toxicity to Daphnia magna neonates was studied. Acute (48-h) toxicity tests were performed in the absence (<5 nM) and presence of low (approximately 25 nM) and high (approximately 250 nM) concentrations of zinc sulfide clusters under oxic conditions. In both the presence and the absence of sulfide, lower mean lethal concentration (LC50) values were observed when measured as opposed to nominal silver concentrations were used in calculations. This reflected the fact that measured total silver concentrations were lower than nominal concentrations due to losses of silver from solution observed during the experiment. High concentration (approximately 250 nM) of sulfide completely protected against toxicity up to the highest silver concentration tested (2 microg/L [19 nM]) with measured silver data. In the presence of environmentally realistic levels of sulfide (approximately 25 nM) in receiving waters, acute silver toxicity was reduced by about 5.5-fold. However, when filtered (0.45 microm) silver concentrations alone were considered, toxicity (48-h LC50) was similar in the absence (0.22 microg/L) and presence (0.28 microg/L) of sulfide. The difference between measured total and filtered silver was attributed to chemisorption of the metal sulfide onto the membrane filter and provides evidence that the toxic fraction of silver is that which is unbound to sulfide. Accumulation of silver was greater in daphnids exposed to silver in the presence of sulfide than in its absence, even though a toxic effect was not observed under these conditions. In this case, silver appears to be incorporated by daphnids rather than merely adsorbed on the surface. Our results point out the need to incorporate sulfide into the acute biotic ligand model and to assess its potentially large role in preventing chronic toxicity.  相似文献   

10.
Although aquatic toxicity data exists for tungstate substances, insufficient data of high quality and relevancy are available for conducting an adequate risk assessment. Therefore, a series of acute and chronic toxicity tests with sodium tungstate (Na(2)WO(4)) were conducted on an aquatic invertebrate (Daphnia magna), green alga (Pseudokirchneriella subcapitata), and zebrafish (Danio rerio). Collectively, the data from these studies suggest that sodium tungstate exhibits a relatively low toxicity to these taxa under these test conditions. All studies were conducted in the same laboratory under good laboratory practice standards using Organisation for Economic Co-operation and Development guidelines with the same stock of test material and the same analytical methods. All results are reported as mg W/L. The following toxicity values were based on mean measured concentrations. For D. magna, the 21 day test no-observable effect concentration (NOEC) was 25.9?mg?W/L, and the 48-h median effective concentration (EC(50)) from the acute test was >95.5?mg?W/L (the highest concentration tested). The P. subcapitata test yielded an ErC(50) of 31?mg?W/L. A 38-day test with zebrafish resulted in an NOEC ≥5.74?mg?W/L with no effects at any concentration. The 96-h LC(50) from the acute test with zebrafish was >106?mg?W/L. The results of the current acute study for daphnids and fish are consistent with published literature, whereas the algae results are different from previously reported values. Transformation/dissolution (T/D) studies, which were conducted according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals protocol, confirmed that the WO (4) (-2) anion accounted for most of the tungsten in solution. For classification purposes, the algae ecotoxity reference value was then compared with T/D data and would not classify Na(2)WO(4) as an aquatic toxicant under the European Union Classification, Labelling and Packaging scheme.  相似文献   

11.
Aquatic toxicity of triclosan   总被引:3,自引:0,他引:3  
The aquatic toxicity of triclosan (TCS), a chlorinated biphenyl ether used as an antimicrobial in consumer products, was studied with activated-sludge microorganisms, algae, invertebrates, and fish. Triclosan, a compound used for inhibiting microbial growth, was not toxic to wastewater microorganisms at concentrations less than aqueous solubility. The 48-h Daphnia magna median effective concentration (EC50) was 390 microg/L and the 96-h median lethal concentration values for Pimephales promelas and Lepomis macrochirus were 260 and 370 microg/L, respectively. A no-observed-effect concentration (NOEC) and lowest-observed-effect concentration of 34.1 microg/L and 71.3 microg/L, respectively, were determined with an early life-stage toxicity test with Oncorhynchus mykiss. During a 96-h Scenedesmus study, the 96-h biomass EC50 was 1.4 microg/L and the 96-h NOEC was 0.69 microg/L. Other algae and Lemna also were investigated. Bioconcentration was assessed with Danio rerio. The average TCS accumulation factor over the five-week test period was 4,157 at 3 microg/L and 2,532 at 30 microg/L. Algae were determined to be the most susceptible organisms. Toxicity of a TCS-containing wastewater secondary effluent to P. promelas and Ceriodaphnia was evaluated and no observed differences in toxicity between control and TCS-treated laboratory units were detected. The neutral form of TCS was determined to be associated with toxic effects. Ionization and sorption will mitigate those effects in the aquatic compartment.  相似文献   

12.
The narcosis target lipid model (NTLM) was used to predict the toxicity of water-accommodated fractions (WAFs) of six gasoline blending streams to algae (Pseudokirchnereilla subcapitata, formerly Selenastrum capricornutum), juvenile rainbow trout (Oncorhynchus mykiss), and water flea (Daphnia magna). Gasolines are comprised of hydrocarbons that on dissolution into the aqueous phase are expected to act via narcosis. Aquatic toxicity data were obtained using a lethal-loading test in which WAFs were prepared using different gasoline loadings. The compositions of the gasolines were determined by analysis of C3 to C13 hydrocarbons grouped in classes of n-alkanes, iso-alkanes, aromatics, cyclic alkanes, and olefins. A model was developed to compute the concentrations of hydrocarbon blocks in WAFs based on gasoline composition and loading. The model accounts for the volume change of the gasoline, which varies depending on loading and volatilization loss. The predicted aqueous composition of WAFs compared favorably to measurements, and the predicted aqueous concentrations of WAFs were used in the NTLM to predict the aquatic toxicity of the gasolines. For each gasoline loading and species, total toxic units (TUs) were computed with an assumption of additivity. The acute toxicity of gasolines was predicted to within a factor of two for algae and daphnids. Predicted TUs overestimated toxicity to trout because of experimental factors that were not considered in the model. This analysis demonstrates the importance of aliphatic hydrocarbon loss to headspace during WAF preparation and the contribution of both aromatic and aliphatic hydrocarbons test to the toxicity of gasolines in closed systems and loss of aliphatics to headspace during WAF preparation. Model calculations indicate that satisfactory toxicity predictions can be achieved by describing gasoline composition using a limited number of aromatic and aliphatic hydrocarbon blocks with different octanol-water partition coefficients.  相似文献   

13.
Acute toxicity tests with algae, daphnids, and fish are required for the classification and environmental risk assessment of chemicals. The degree of risk is determined by the lowest of these acute toxicity values. Many ecotoxicological programs are seeking to reduce the numbers of fish used in acute toxicity testing. The acute threshold test is a recently proposed strategy that uses, on average, only 10 (instead of 54) fish per chemical. We examined the consequences of reducing the number of fish used in toxicity testing on the ultimate outcome of risk assessments. We evaluated toxicity data sets for 507 compounds, including agrochemicals, industrial chemicals, and pharmaceuticals from our internal database. Theoretical applications of the acute threshold test gave similar results to those obtained with the standard fish median lethal concentration (LC50) test but required only 12% as many fish (3195 instead of 27,324 fish used for all compounds in the database). In 188 (90%) of the 208 cases for which a complete data set was available, the median effect concentration for algae or daphnids was lower than the LC50 for fish. These results show that replacement of the standard fish LC50 test by the acute threshold test would greatly reduce the number of fish needed for acute ecotoxicity testing without any loss of reliability.  相似文献   

14.
The effects of eight polycyclic aromatic compounds on the survival and reproduction of the collembolan Folsomia fimetaria L. were investigated in a well-characterized Danish agricultural soil. With the exception of acridine, polycyclic aromatic hydrocarbons (PAHs) and neutral N-, S-, and O-monosubstituted analogues showed similar toxicities to soil collembolans when the results were expressed in relation to total soil concentrations (mg/kg). The estimated concentrations resulting in a 10% reduction of reproductive output (EC10 values) were based on measured initial concentrations and were for acridine 290 mg/kg, carbazole 10 mg/kg, dibenzofuran 19 mg/kg, dibenzothiophene 7.8 mg/kg, fluoranthene 37 mg/kg, fluorene 7.7 mg/kg, phenantrene 23 mg/kg, and pyrene 10 mg/kg. When the EC10 values were converted to soil pore-water concentrations, they showed a highly significant correlation (r2 = 0.71, p < 0.01) to no-observed-effect concentrations for the freshwater crustacean Daphnia magna, as estimated by a quantitative structure activity relation (QSAR) for baseline toxicity (nonpolar narcosis). Only carbazole and acridine were more than two times more toxic (4.9 and 3.1, respectively) than expected from the Daphnia QSAR data. The latter result indicates that the toxicity of the tested substances is close to that expected for compounds with nonpolar narcosis as the mode of action. However, the relatively large uncertainties in the extrapolation method prevent final conclusions from being drawn.  相似文献   

15.
Fitchburg, Massachusetts sanitary landfill leachate was subjected to toxicity tests using: fathead minnows (Pimephales promelas), zooplankton (Daphnia magna), green algae (Selenastrum capricornutum) and aerobic luminescent bacteria (Photobacterium phosphorium). The leachate was highly toxic to the test bacteria, moderately toxic to daphnids, and slightly toxic to fathead minnows. Algal cells, unable to grow at the 10-percent leachate exposure level, recovered after centrifugation and reinnocuation into algal nutrient medium. Low-flow summer hydrological data indicated that the leachate contributed about 7% to the total flow of the receiving stream, Flagg Brook, and about 0.6% to Sawmill Pond water located further downstream from the leachate outfall. These data, together with observed toxicity values for the test organisms, indicate that the leachate concentration in Flagg Brook impacts the diversity of aquatic life in this system, but may be less severe in Sawmill Pond where increased dilution results in leachate levels below the acutely toxic level. The considerable variation between toxicity test results obtained with the four test organisms, demonstrates the importance of conducting several such toxicity tests using organisms from different trophic levels, to assess the potential impact of a pollutant discharge on an aquatic ecosystem.  相似文献   

16.
Polycyclic aromatic hydrocarbons and their derivatives are ubiquitous environmental contaminants. They are commonly present in complex mixtures with other contaminants, such as metals. The toxicities of phenanthrene (PHE) and 9,10-phenanthrenequinone (PHQ) with or without Cu were determined using Daphnia magna. Copper was the most toxic among the three chemicals tested, followed by PHQ and then PHE, with 48-h median effective concentrations (EC50s) of 0.96, 1.72, and 5.33 microM, respectively. Copper at 0.31 microM, or approximately the 5% effective concentration, decreased the EC50 of PHQ from 1.72 to 0.28 microM. Likewise, PHQ at 1.2 microM, or approximately the 10% effective concentration, significantly lowered the EC50 of Cu from 0.96 to 0.30 microM. This synergistic effect was not observed, however, in mixtures of Cu and PHE based on the response addition model. Assimilation of Cu wasfound to be similar with or without PHQ at increasing external concentrations of Cu, indicating that the increased toxicity of their mixtures is physiologically based. The ability of Cu plus PHQ to generate reactive oxygen species (ROS) was measured as well. Copper alone caused elevated ROS levels at a low concentration (0.63 microM). With PHQ present, however, this elevation in ROS occurred at an even lower Cu level (0.31 microM). Possible attenuation effects of ascorbic acid (vitamin C) on toxicity and ROS production induced by Cu, PHQ, and their mixtures were then examined. Ascorbic acid protected against Cu and Cu-plus-PHQ mixture-mediated toxicity but did not affect PHQ toxicity. Ascorbic acid also lowered ROS levels in the presence of Cu and Cu plus PHQ. We conclude that there exist potential toxic interactions between metals and modified PAHs and that these interactions can involve ROS formation.  相似文献   

17.
The effects of hydrogen sulfide (H2S) were tested in three ecotoxicological tests in order to evaluate its confounding potential in assessment of pore water and groundwater toxicity. The luminescent bacteria Vibrio fischeri, the water flea Daphnia magna, and the microalgae Scenedesmus vacuolatus often are part of a biotest battery. A new technique for the synthesis of hydrogen sulfide solutions of defined concentrations using an electrochemical generator instead of sodium sulfide solutions was used. Because hydrogen sulfide is volatile, the loss rate of H2S was studied over time to enable estimation of the mean test concentrations over the whole test duration. Loss rates were calculated to be 13 +/- 6% after 30 min, and 39 +/- 11% and 43 +/- 16% after a 24- and 48-h exposure time, respectively. Sensitivities of the test organisms in terms of median effective concentration (EC50), corrected for the above loss rates, varied from 0.28 to 0.0036 and 0.055 mM for the luminescent bacteria, the crustacea, and the algae, respectively. A species-sensitivity distribution using EC and mean lethal concentration literature data for marine and freshwater crustaceans and phytoplankton showed a medium sensitivity of the water flea D. magna, though the bacteria V. fischeri and the algae S. vacuolatus were among the least-sensitive group of organisms. This demonstrates that only the algae and the bacteria are easy to use in the assessment of toxicity of matrices with H2S concentrations above 0.06 mM.  相似文献   

18.
In situ bioassays with daphnids currently employ lethality as an endpoint, and although sublethal responses (reproduction and feeding rate) can be measured in the field, such endpoints pose major practical challenges. Previous studies have indicated that Daphnia magna exposed to toxic substances can exhibit delayed recovery in feeding behavior (postexposure feeding depression). This simple, robust response has the potential to be an ecologically relevant and potentially diagnostic endpoint. This study developed and tested the use of postexposure feeding depression as a toxicity endpoint in the laboratory environment. First, replicate numbers were manipulated to produce statistically reliable results. Second, postexposure feeding depression in D. magna was studied under laboratory conditions, by employing toxic substances with differing modes of action. Although most substances caused feeding inhibition during direct exposure, not all substances produced postexposure feeding depression. However, the use of lethality as a supplementary endpoint provided an alternative measure when no feeding depression was apparent after exposure. In combination, these endpoints offer a potentially more sensitive, ecologically relevant alternative to the use of lethality alone for in situ bioassay studies.  相似文献   

19.
The toxicity of leather tanning wastewater from a traditional tannery (TT), which is based on vegetable tannin (VT), was compared with wastewater from a tannery combining the use of chromium-based tanning (CT) with VT-based tanning operations. Wastewater samples from a TT and a CT plant as well as from five sewer sampling points were collected in Marrakesh, Morocco, and the concentrations of VT and some selected inorganics were measured. A set of bioassays were used to test wastewater toxicity in sea urchin (Paracentrotus lividus) embryos and sperm, in Daphnia magna, and in marine microalgae (Dunaliella tertiolecta). Toxicity end points included: (1) developmental defects, embryonic mortality, sperm fertilization success, and offspring damage in sea urchins; (2) D. magna immobilization; and (3) algal growth rate inhibition. Toxicity tests on TT and CT effluents (TTE and CTE) were run at dilutions ranging from 0.1% to 2% (sea urchins and algae) or up to 12% in D. magna. Parallel bioassays were run on VT extract (VTE) at nominal tannin concentrations ranging from 0.1 to 10 mg l–1. The results showed higher toxicity of CTE compared with TTE. CTE toxicity in sea urchins and algae showed concentration-related trends, whereas TTE exerted hormetic effects at levels of 0.1% to 0.2% and toxic effects at levels ≥1%. The same trends were observed for VTE, suggesting a prevailing role of tannin in TTE-associated effects. The moderate wastewater toxicity of VT-based tanneries might prompt interest in the VT tanning process.  相似文献   

20.
Acute and reproductive toxicity tests were performed to assess the effects of two polybrominated flame retardants, polybrominated biphenyl (PBB)-153, polybrominated diphenyl ether (PBDE)-153, and polychlorinated biphenyl (PCB)-153 on Daphnia magna. According to the 24-h acute toxicity test, up to concentration of 210 microg/L, these chemicals were not toxic to Daphnia. In the reproductive tests, we used concentrations of 12.5, 25, 50, and 100 microg/L. At the concentrations of 50 and 100 microg/L, the Daphnia started to die after the second test day, and there were no Daphnia alive on the fourth test day. The testing was continued using the concentrations of 12.5 and 25 microg/L. The reproductive tests were then repeated using only concentrations of 12.5 and 25 microg/L. The results, based on the weight per volume (w/v) concentrations, showed that of the three compounds we tested PCB-153 had the most severe effects on the Daphnia reproduction. PBDE-153 was the least toxic, although in this group, too, offspring production was significantly lower and mortality significantly higher than those in the control group. Also, it was observed that PCB-153 accumulated into the parent Daphnia nearly three times more actively than the two other chemicals we tested. These chemicals, although having very similar structures, seem to affect differently the reproduction of Daphnia. They also seem to accumulate differently into Daphnia. Thus, further research data are needed to understand the mechanisms responsible for the effects caused by these kinds of chemicals and to assess their risks accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号