首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluated the involvement of glucocorticoid in the activation of vasopressinergic and oxytocinergic neurons of hypothalamic nuclei and plasma levels of vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP) and corticosterone (CORT) in response to both isotonic and hypertonic blood volume expansion (BVE). Rats were subjected to isotonic (0.15 M NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 M NaCl, 2 ml/100 g b.w., i.v.) BVE with or without pre-treatment with dexamethasone (1 mg/kg, i.p.). Results showed that isotonic BVE increased OT, ANP and CORT, and decreased AVP plasma levels. On the other hand, hypertonic BVE enhanced AVP, ANP, OT, and CORT plasma concentrations. Both hypertonic and isotonic BVE induced an increase in the number of Fos-OT double-labeled magnocellular neurons in the PVN and SON. Pre-treatment with dexamethasone reduced OT secretion, as well as Fos-OT immunoreactive neurons in response to both isotonic and hypertonic BVE. We also observed that dexamethasone pre-treatment had no effect on AVP secretion in response to hypertonic BVE, although this effect was associated with a blockade of Fos expression in the vasopressinergic magnocellular neurons in the PVN and SON. In conclusion, these data suggest that, not only the rapid OT release from storages, but also the oxytocinergic cellular activation induced by BVE are modulated by glucocorticoids. However, this pattern of response was not observed for AVP cells, suggesting that dexamethasone is not likely to influence rapid release of AVP but seems to modulate the activation of these neurons in response to hypertonic BVE.  相似文献   

2.
The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB1) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB1 receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality.  相似文献   

3.
Atrial natriuretic peptide (ANP), first discovered in the heart, has been also detected in various brain regions involved in the control of cardiovascular function and water and sodium balance. The anteroventral region of the third ventricle (AV3V) and the subfornical organ (SFO) have ANP-immunoreactive projections towards the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Extracellular fluid (ECF) hyperosmolality stimulates the secretion of oxytocin (OT) which induces ANP release by the atrium. On the other hand, passive immunoneutralization of ANP reduces OT secretion in response to ECF hypertonicity. Previous studies have shown the co-localization of ANP and OT in PVN and SON neurons and in the periventricular region, as well as the presence of ANPergic and oxytocinergic neurons in the median eminence. The aim of the present study was to investigate the OT and ANP content in the SON and PVN of the hypothalamus and in the posterior pituitary (PP) after an osmotic stimulus that induces OT secretion. The results showed that intracerebroventricular microinjection of normal rabbit serum (NRS) or of ANP antiserum followed or not by an intraperitoneal injection of isotonic saline did not alter OT secretion or OT content in the PVN, SON, and PP; passive ANP immunoneutralization reduced the basal content of ANP in the PVN, SON, and PP of animals in a situation of isotonicity; the ANP antiserum inhibited the increase of OT secretion and content of OT and ANP in the PVN, SON and PP induced by the osmotic stimulus. Thus, the increase in plasma OT and oxytocinergic neurons of the hypothalamus-posterior pituitary system in response to hypertonicity depends on the action of endogenous ANP, i.e., ECF hypertonicity must activate ANPergic neurons which directly or indirectly stimulate OT release.  相似文献   

4.
Maternal behaviour in the rabbit is unusual among mammals because the doe visits her litter to nurse once every 24 h. In the present study we examined the consequences of milk intake on oxytocinergic (OT) and vasopressinergic (AVP) neurons of the supraoptic (SON) and paraventricular (PVN) nuclei of 7-day-old pups before suckling, after suckling and following anogenital stroking in un-nursed pups. To determine neuronal activation we assessed the expression of the Fos protein combined with antibodies against OT and AVP at two levels in the SON (supraoptic rostral, SOr, and supraoptic retrochiasmatic, SOrch), and three levels in the PVN (anterior, PVab; medial PVm and caudal, PVc). Daily nursing bouts lasted only 228+/-6 s throughout the observed 7 days, and pups ingested up to 34.95+/-9.0% of their body weight in milk on day 7, the day of perfusion. Suckling induced a significant increase in the number of double-labeled Fos/OT cells in both subdivisions of the SON (P<0.01) and in PVab and PVm (P<0.01). The effect in the SON was related to suckling, as it was not seen in stroked, un-nursed pups, which showed Fos increases only in PVab and PVm. All regions in the SON and PVN showed significant increases in the number of Fos/AVP neurons after suckling or stroking but, contrary to OT, the number of double-labeled Fos/AVP cells was very low. In conclusion, our results show that the oxytocinergic system of the SON and PVN is differentially activated by suckling of milk and anogenital stroking, and that the vagal-hypothalamic axis is mature in 7-day-old rabbits.  相似文献   

5.
Vasopressinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei express oestrogen receptor (ER)β and receive afferent projections from osmosensitive neurones that express ERα. However, which subtype of these receptors mediates the effects of oestradiol on vasopressin (AVP) secretion induced by hydromineral challenge has not yet been demonstrated in vivo. Moreover, AVP secretion induced by hyperosmolality is known to involve activation of TRPV1 (transient receptor potential vanilloid, member 1) in magnocellular neurones, although whether oestradiol modulates expression of this receptor is unknown. Thus, the present study aimed to clarify the mechanisms involved in the modulation exerted by oestradiol on AVP secretion, specifically investigating the involvement of ERβ, ERα and TRPV1 receptors in response to water deprivation (WD). We observed that treatment with an ERβ agonist potentiated AVP secretion and vasopressinergic neuronal activation induced by WD. This increase in AVP secretion induced by WD was reversed by an ERβ antagonist. By contrast to ERβ, the ERα agonist did not alter plasma AVP concentrations or activation of AVP neurones in the SON and PVN. Additionally, Fos expression in the subfornical organ was not altered by the ERα agonist. TRPV1 mRNA expression was increased by WD in the SON, although this response was not altered by any treatment. The results of the present study suggest that ERβ mediates the effects of oestradiol on AVP secretion in response to WD, indicating that the effects of oestradiol occur directly in AVP neurones without affecting TRPV1.  相似文献   

6.
The ability of mature oxytocinergic (OT) and vasopressinergic (VP) neurons of the magnocellular neurosecretory system (MNS) to undergo axonal growth implies that one or more growth factors may be active in the adult MNS, yet little is known regarding their possible identity. One such potential factor is insulin-like growth factor I (IGF-I). We have examined the expression of IGF-I mRNA and IGF-I-immunoreactivity (IGF-I-ir) in the mature MNS and have also determined the in vivo response of OT and VP neurons to hypothalamic implants of IGF-I. In situ hybridization revealed moderate labeling of IGF-I mRNA in both the supraoptic (SON) and the paraventricular (PVN) nuclei of adult male rats. RT-PCR analysis confirmed the presence of authentic IGF-I mRNA in extracts of the basal hypothalamus. Faint IGF-I-ir was detected in scattered magnocellular neurons within both the PVN and the SON of normal rats, but IGF-I-ir was much more intense and the majority of MNS neurons including those in the accessory nuclei were immunoreactive in sections from rats given colchicine, as were some parvocellular neurons in the PVN. Confocal microscopy revealed that IGF-I-ir was present in both OT and VP neurons, but VP neurons contained the most intense IGF-I-ir. Finally, a dramatic growth response of OT but not of VP fibers was observed following implantation of polymer rods containing IGF-I into the hypothalamus. A dense OT fiber plexus grew along the cannula track and OT fibers invaded the leptomeninges ventral to the SON and encircled the rostral cerebral artery. To our knowledge this is the first demonstration of axonal sprouting by mature OT neurons in response to an identified growth factor and the first direct demonstration of sprouting in response to exogenous IGF-I in the adult CNS. These findings suggest that IGF-I is synthesized and transported by adult MNS neurons where it may act as an autocrine and/or paracrine growth factor.  相似文献   

7.
The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time‐polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 μg/0.2 μl), vasotocin, an oxytocin antagonist (1 μg/0.2 μl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre‐treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.  相似文献   

8.
Despite several studies showing that the rat supraoptic (SON) and paraventricular (PVN) nuclei are innervated by noradrenergic afferents, the respective contribution of these inputs to the oxytocinergic and vasopressinergic neuronal populations remains to be clearly defined. In the present study, we used the unbiased disector method to estimate the numerical density of noradrenergic varicosities on identified oxytocinergic and vasopressinergic somata in the rat SON and PVN. The analysis was carried out on semithin (1  μm) plastic sections cut from vibratome slices (50  μm) of the SON and PVN which had been double-labelled for noradrenaline (NA) and oxytocin- or vasopressin-related neurophysin. These preparations displayed many noradrenergic varicosities which electron microscopy showed to represent, in the main, synaptic boutons. Our quantitative analysis revealed that noradrenergic varicosities contacted oxytocinergic and vasopressinergic somata to a similar extent in male and female rats, under basal conditions of hormone secretion. The incidence of these axo-somatic contacts was similar in the SON and PVN. In contrast, in lactating rats, in which oxytocin secretion is enhanced, there was a significant increase in the density of noradrenergic varicosities apposed to oxytocinergic somata, in both nuclei. Our observations indicate that, in male and female rats under normal conditions, noradrenergic afferents innervate each type of neurosecretory somata, in both magnocellular nuclei, in a similar fashion. They reveal, moreover, that noradrenergic afferents participate in lactation-induced structural plasticity of synapses impinging on oxytocinergic somata.  相似文献   

9.
Magnocellular vasopressin (VP) neurones are activated by increases in blood osmolality, leading to the secretion of VP into the circulation to promote water retention in the kidney, thus constituting a key mechanism for the regulation of body fluid homeostasis. However, chronic high salt intake can lead to excessive activation of VP neurones and increased circulating levels of VP, contributing to an elevation in blood pressure. Multiple extrinsic factors, such as synaptic inputs and glial cells, modulate the activity of VP neurones. Moreover, magnocellular neurones are intrinsically osmosensitive, and are activated by hypertonicity in the absence of neighbouring cells or synaptic contacts. Hypertonicity triggers cell shrinking, leading to the activation of VP neurones. This cell‐autonomous activation is mediated by a scaffold of dense somatic microtubules, uniquely present in VP magnocellular neurones. Treating isolated magnocellular neurones with drugs modulating microtubule stability modifies the sensitivity of neuronal activation in response to acute hypertonic stimuli. However, whether the microtubule network is altered in conditions associated with enhanced neuronal activation and increased VP release, such as chronic high salt intake, remains unknown. We examined the organisation of microtubules in VP neurones of the supraoptic and paraventricular hypothalamic nuclei (SON and PVN, respectively) of rats subjected to salt‐loading (drinking 2% NaCl for 7 days). Using super‐resolution imaging, we found that the density of microtubules in magnocellular VP neurones from the SON and PVN was significantly increased, whereas the density and organisation of microtubules remain unchanged in other hypothalamic neurones, as well as in neurones from other brain areas (e.g., hippocampus, cortex). We propose that the increase in microtubule density in magnocellular VP neurones in salt‐loading promotes their enhanced activation, possibly contributing to elevated blood pressure in this condition.  相似文献   

10.
11.
Fos expression in the hypothalamus and its quantification in vasopressinergic (AVP), oxytocinergic (OXY) and tyrosine hydroxylase (TH) immunoreactive cells in the hypothalamic paraventricular (PVN), supraoptic (SON), suprachiasmatic (SCh), and arcuate (Arc) nuclei was performed in response to physiologically two different, i.e. osmotic (i.p. hypertonic saline, HS) and immobilization (IMO), stimuli in mouse using a dual Fos-neuropeptide immunohistochemistry. Both 60 min of HS and 120 min of IMO evoked Fos induction in many hypothalamic structures, whereas, HS evoked more extensive Fos labeling than IMO in the SON, ventromedial (VMN) and dorsomedial (NDM) hypothalamic nuclei and the retrochiasmatic area (RCh). Other hypothalamic structures including the anterior hypothalamic area (AHA), the latero-anterior hypothalamic nucleus (LA), the Arc, the perifornical nucleus (PeF), and the lateral hypothalamic area (LH) showed similar Fos incidence after both HS and IMO. However, after both stimuli explicitly most extensive Fos expression was observed in the PVN. In addition, in the PVN substantially more Fos-AVP (62-67% versus 10-15%) and Fos-OXY (38-45% versus 4-8%) perikarya were observed after HS than IMO, respectively. Incidence of TH-immunoreactive Fos labeled cells in the PVN was also more frequent after HS. In the SON, HS activated more than 50% of AVP and OXY neurons while IMO less than 4%. The number of TH activated neurons in Arc was also higher after HS (11%) than IMO (4%). Lowest number of colocalizations was revealed in the SCh where both HS and IMO activated around 2% of AVP neurons. The present data demonstrate that both HS and IMO are powerful stimuli for the majority of hypothalamic structures displaying considerable topographic similarity in Fos expression suggesting their multifunctional involvement. The quantity and phenotypic differences of activated hypothalamic neurons may speak out for functional dissimilarities in response to HS and IMO.  相似文献   

12.
13.
The magnocellular neurones of the hypothalamo-neurohypophysial system (HNS) play a vital role in the maintenance of body homeostasis by regulating oxytocin (OT) and vasopressin (VP) secretion from the posterior pituitary. During hyperosmolality, OT and VP mRNA levels are known to increase by approximately two-fold, whereas during chronic hypoosmolality, OT and VP mRNA levels decrease to approximately 10-20% of basal levels. In these studies, we evaluated changes in cell size associated with these physiological conditions. Cell and nuclear sizes of neurones in the supraoptic nucleus (SON), the nucleus of the lateral olfactory tract (LOT) and the medial habenular nucleus (MHB) were measured from neurones identified by in situ hybridization histochemistry for beta(III)-tubulin mRNA, and measurements were made from OT and AVP magnocellular neurones in the SON after phenotypic identification by immunohistochemistry. Under hypoosmolar conditions, the cell and nuclear sizes of OT and VP magnocellular neurones decreased to approximately 60% of basal values, whereas cell and nuclear sizes of OT and VP neurones in hyperosmolar rats increased to approximately 170% of basal values. In contrast, neither hyperosmolality, nor hypoosmolality significantly affected cell and nuclear sizes in the LOT and MHB. These results confirm previous studies that showed that magnocellular neurones increase cell size in response to hyperosmolar conditions and, for the first time, demonstrate a marked decrease in cell size in the SON in response to chronic hypoosmolar conditions. These dramatic changes in cell and nuclear size directly parallel changes in OT and VP gene expression in the magnocellular neurones of the SON and, consequently, are consistent with the pronounced bidirectional changes in gene expression and cellular activity found during these osmotic perturbations. Our results therefore support the concept of global alterations in the synthetic activity of magnocellular OT and AVP neurones in response to extracellular osmolality.  相似文献   

14.
The physiological demands of parturition and lactation lead to the increased pulsatile release of oxytocin (OT) into the circulation from the neurohypophysial axons of OT neurones in the supraoptic (SON) and paraventricular (PVN) nuclei. These states of increased OT release are accompanied by a significant plasticity in magnocellular OT neurones and their synaptic connections, and many of these changes require activation of a central OT receptor. The mitogen‐activated protein kinase/extracellular signal‐regulated kinase pathway (MAPK/ERK) is assumed to be up‐regulated in the PVN during lactation, and many of the effects of OT in peripheral and brain tissue are mediated through a MAPK/ERK pathway. The present study investigated whether this pathway is altered in the SON and PVN during late pregnancy [embryonic day (E)20–21], which is a critical period for OT plasticity induction, and for lactation, when plastic changes are sustained. Based on immunoreactivity for phosphorylated ERK1/2 (pERK1/2), the results suggest an enhanced activation of MAPK/ERK pathway in OT neurones specifically during late pregnancy in both the SON and PVN. Although immunoblots from the SON confirm this pregnancy‐associated up‐regulation in late pregnancy, they also suggest enhancement into lactation as well. Together, the results suggest an important role for the MAPK/ERK pathway during reproductive changes in the SON and PVN.  相似文献   

15.
Cholecystokinin (CCK) and leptin are two important satiety factors that are considered to act in synergy to reduce meal size. Peripheral injection of CCK activates neurones in several hypothalamic nuclei, including the supraoptic (SON) and paraventricular (PVN) nuclei and neurones in the brainstem of fed rats. We investigated whether peripheral leptin would modulate the effects of CCK on neuronal activity in the hypothalamus and brainstem of fasted rats by investigating Fos expression in the PVN, SON, arcuate nucleus, ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), area postrema (AP) and the nucleus tractus solitarii (NTS). Male rats, fasted for 24 h, received either one i.p. injection of vehicle, leptin or CCK‐8 alone, or received one injection of vehicle or leptin before an i.p. injection of CCK‐8. We found that CCK increased Fos expression in the PVN and SON as well as in the NTS and AP, but had no effect on Fos expression in the arcuate nucleus, VMH or DMH compared to vehicle. Leptin injected alone significantly increased Fos expression in the arcuate nucleus but had no effect on Fos expression in the VMH, DMH, SON, PVN, AP or NTS compared to vehicle. Fos expression was significantly increased in the AP in rats injected with both leptin and CCK compared to rats injected with vehicle and CCK. Unexpectedly, there was significantly less Fos expression in the PVN and SON of fasted rats injected with leptin and CCK than in rats injected with vehicle and CCK, suggesting that leptin attenuated CCK‐induced Fos expression in the SON and PVN. However, Fos expression in the NTS was similar in fasted rats injected with vehicle and CCK or with leptin and CCK. Taken together, these results suggest that leptin dampens the effects of CCK on Fos expression in the SON and PVN, independently from NTS pathways, and this may reflect a direct action on magnocellular neurones.  相似文献   

16.
17.
A growing body of evidence indiates that carbon monoxide (CO) acts as a gas neurotransmitter within the central nervous system. Although CO has been shown to affect neurohypophyseal hormone release in response to osmotic stimuli, the precise sources, targets and mechanisms underlying the actions of CO within the magnocellular neurosecretory system remain largely unknown. In the present study, we combined immunohistochemistry and patch-clamp electrophysiology to study the cellular distribution of the CO-synthase enzyme heme oxygenase type 1 (HO-1), as well as the actions of CO on oxytocin (OT) and vasopressin (VP) magnocellular neurosecretory cells (MNCs), in euhydrated (EU) and 48-h water-deprived rats (48WD). Our results show the expression of HO-1 immunoreactivity both in OT and VP neurones, as well as in a small proportion of astrocytes, both in supraoptic (SON) and paraventricular (PVN) nuclei. HO-1 expression, and its colocalisation with OT and VP neurones within the SON and PVN, was significantly enhanced in 48WD rats. Inhibition of HO activity with chromium mesoporphyrin IX chloride (CrMP; 20 μm) resulted in a slight membrane hyperpolarisation in SON neurones from EU rats, without significantly affecting their firing activity. In 48WD rats, on the other hand, CrMP resulted in a more robust membrane hyperpolarisation, significantly decreasing neuronal firing discharge. Taken together, our results indicate that magnocellular SON and PVN neurones express HO-1, and that CO acts as an excitatory gas neurotransmitter in this system. Moreover, we found that the expression and actions of CO were enhanced in water-deprived rats, suggesting that the state-dependent up-regulation of the HO-1/CO signalling pathway contributes to enhance MNCs firing activity during an osmotic challenge.  相似文献   

18.
Melanocortins stimulate the central oxytocin systems that are involved in regulating social behaviours. Alterations in central oxytocin have been linked to neurological disorders such as autism, and melanocortins have been proposed for therapeutic treatment. In the present study, we investigated how systemic administration of melanotan‐II (MT‐II), a melanocortin agonist, affects oxytocin neuronal activity and secretion in rats. The results obtained show that i.v. , but not intranasal, administration of MT‐II markedly induced Fos expression in magnocellular neurones of the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus, and this response was attenuated by prior i.c.v. administration of the melanocortin antagonist, SHU‐9119. Electrophysiological recordings from identified magnocellular neurones of the SON showed that i.v. administration of MT‐II increased the firing rate in oxytocin neurones but did not trigger somatodendritic oxytocin release within the SON as measured by microdialysis. Our data suggest that, after i.v. , but not intranasal, administration of MT‐II, the activity of magnocellular neurones of the SON is increased. Because previous studies showed that SON oxytocin neurones are inhibited in response to direct application of melanocortin agonists, the actions of i.v. MT‐II are likely to be mediated at least partly indirectly, possibly by activation of inputs from the caudal brainstem, where MT‐II also increased Fos expression.  相似文献   

19.
The anteroventral region of the third ventricle (AV3V) is critical in mediating osmotic sensitivity. AV3V lesions increase plasma osmolality and block osmotic-induced vasopressin (VP) and oxytocin (OT) secretion. The aim was to evaluate the effects of AV3V lesions on neurosecretion under control/water replete conditions and after 48 h dehydration. The focus was on central peptidergic changes with measurement of OT and VP content in the hypothalamic paraventricular (PVN) and supraoptic (OT) regions and the posterior pituitary. AV3V-lesioned rats exhibited an elevated plasma osmolality and higher OT content in SON and PVN. There was an increase in VP content in PVN, but no change in SON. As predicted, the plasma peptide response to dehydration was absent in lesioned animals. However, dehydration produced depletion in posterior pituitary VP in lesioned animals with no change in OT. No changes in nuclear VP and OT levels were seen after dehydration. These results demonstrate that AV3V lesions alter the VP and OT neurosecretory system, seen as a blockade of osmotic-induced release and an increase in basal nuclear peptide content. The data indicate that interruption of the osmotic sensory system affects the central neurosecretory axis, resulting in a backup in content and likely changes in synthesis and processing.  相似文献   

20.
The present study analysed the effects of audiogenic kindling on the functional state of the vasopressinergic system of Krushinsky‐Molodkina (KM) rats. KM rats represent a genetic model of audiogenic reflex epilepsy. Multiple audiogenic seizures in KM rats lead to the involvement of the limbic structures and neocortex in the epileptic network. The phenomenon of epileptic activity that overspreads from the brain stem to the forebrain is called audiogenic kindling and represents a model of limbic epilepsy. In the present study, audiogenic kindling was induced by 25 repetitive audiogenic seizures (AGS) with 1 AGS per day. A proportion of KM rats did not express AGS to sound stimuli, and these rats were characterised as the AGS‐resistant group. The data demonstrated that audiogenic kindling did not change activity of extracellular signal‐regulated kinase 1/2 or cAMP response element‐binding protein, although it led to an increase in vasopressin (VP) expression in the supraoptic nucleus (SON) and in the magnocellular division of the paraventricular nucleus (PVN). Additionally, we observed a decrease in GABAergic innervation of the hypothalamic neuroendocrine neurones after audiogenic kindling, whereas glutamatergic innervation of the SON and PVN was not altered. By contrast, analysis of AGS‐resistant KM rats did not reveal any changes in the activity of the VP‐ergic system, confirming that the activation of VP expression was caused by repetitive AGS expression, rather than by repetitive acoustic stress. Thus, we suggest that overspread of epileptiform activity in the brain is the main factor that affects VP expression in the hypothalamic magnocellular neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号