首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
18F-FDG PET-CT功能影像被推荐用于非小细胞肺癌(NSCLC)的诊断和治疗决策并指导放疗计划的优化。依据功能影像所携带的肿瘤生物学信息而确定的治疗靶区范围被定义为生物靶区(BTV),然而BTV与目前ICRU报告中定义的大体肿瘤靶区、内靶区等范围还有着明显差别。PET图像自身的局限性、与辅助解剖图像的融合精度、呼吸运动的影响等因素导致了BTV定义的不确定性。参照不同解剖图像以实现BTV运动信息补偿的方法也不尽相同。通过PET-CT对NSCLC放疗后疗效预测以及对生物亚靶区复发风险的区分,有助于实现放疗计划剂量雕刻。  相似文献   

2.
Accurate delineation of the primary tumor and of involved lymph nodes is a key requisite for successful curative radiotherapy in non-small cell lung cancer (NSCLC). In recent years, it has become clear that the incorporation of FDG PET-CT scan information into the related processes of patient selection and radiotherapy planning has lead to significant improvements for patients with NSCLC. The use of FDG PET-CT information in radiotherapy planning allows better target volume definition, reduces inter-observer variability and encourages selective irradiation of involved mediastinal lymph nodes. PET-CT also opens the door for innovative radiotherapy delivery and the development of new concepts. However, care must be taken to avoid a variety of technical pitfalls and specific education is necessary, for clinicians and physicists alike.  相似文献   

3.
The additional benefit of positron emission tomography (PET) in the initial staging of non-small cell lung cancer (NSCLC) has generated interest in 18F-fluorodeoxyglucose (FDG) PET as a means of defining the extent of primary lung tumour for radiotherapy treatment planning (RTP). A review of published data suggests that PET results in a reduction in the CT-derived GTV for NSCLC primary target volume in 15% of the patients. This is principally due to the ability of PET to distinguish tumour from atelectasis. However, the difficulty of tumour edge definition, limited spatial resolution and tumour motion during image acquisition currently limits the accuracy of PET in target volume delineation in NSCLC without adjacent lung consolidation. This is compounded by the lack of data correlating PET with spatial pathology at the primary tumour site. With the current technical limitations, it is not established that PET can add accuracy to the CT-defined primary target delineation in RTP of NSCLC. It is hoped that advances in PET and combined PET/CT imaging may overcome some of the technical limitations. Future use of PET for primary tumour delineation in NSCLC will also be critically dependent on the detailed studies of imaging-pathology correlation.  相似文献   

4.
PURPOSE: The aim of this study was to investigate the impact of a hybrid fluorodeoxyglucose positron-emission tomography/computed tomography (FDG-PET/CT) scanner in radiotherapy planning for esophageal and non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: A total of 30 patients (16 with esophageal cancer, 14 with NSCLC) underwent an FDG-PET/CT for radiotherapy planning purposes. Noncontrast total-body spiral CT scans were obtained first, followed immediately by FDG-PET imaging which was automatically co-registered to the CT scan. A physician not involved in the patients' original treatment planning designed a gross tumor volume (GTV) based first on the CT dataset alone, while blinded to the FDG-PET dataset. Afterward, the physician designed a GTV based on the fused PET/CT dataset. To standardize PET GTV margin definition, background liver PET activity was standardized in all images. The CT-based and PET/CT-based GTVs were then quantitatively compared by way of an index of conformality, which is the ratio of the intersection of the two GTVs to their union. RESULTS: The mean index of conformality was 0.44 (range, 0.00-0.70) for patients with NSCLC and 0.46 (range, 0.13-0.80) for patients with esophageal cancer. In 10 of the 16 (62.5%) esophageal cancer patients, and in 12 of the 14 (85.7%) NSCLC patients, the addition of the FDG-PET data led to the definition of a smaller GTV. CONCLUSION: The incorporation of a hybrid FDG-PET/CT scanner had an impact on the radiotherapy planning of esophageal cancer and NSCLC. In future studies, we recommend adoption of a conformality index for a more comprehensive comparison of newer treatment planning imaging modalities to conventional options.  相似文献   

5.
目的探讨氟脱氧葡萄糖(FDG)正电子发射型体层摄影术(PET)在非小细胞肺癌(NSCLC)三维适形放疗定位中的辅助作用。方法13例非小细胞肺癌患者行FDG PET和CT检查,利用CT和FDG PET-CT图像融合软件分别勾画大体肿瘤体积(GTVCT和GTVPET-CT),并对两者进行比较。结果13例患者除2例外,其他患者的GTVCT和GTVPET-CT均不同,其中5例GTVPET-CT大于GTVCT,平均增加29.2cm^3;6例GTVPET-CT小于GTVCT,平均减少41.6cm^3。结论与单纯CT图像相比,FDG PET-CT融合图像不仅能更好地分清肿瘤与正常组织,而且对纵隔淋巴结具有更高的敏感性和特异性。  相似文献   

6.
PURPOSE: With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients. METHODS AND MATERIALS: Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions. RESULTS: The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2% +/- 4.9% to 34.0% +/- 5.8% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6% +/- 3.2% to 21.9% +/- 3.8% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9% +/- 2.3% to 22.3% +/- 2.2% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2% +/- 5.6% for CT and 22.8% +/- 7.1% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5% and 18.3% (p = 0.009) for CT and PET-CT planning, respectively. CONCLUSION: In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13% to 18%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning.  相似文献   

7.
PURPOSE: Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. METHODS: Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. RESULTS: The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation therapy volume in 14 (58%), as follows. PET helped to distinguish tumor from atelectasis in all 3 patients with atelectasis. Unsuspected nodal disease was detected by PET in 10 patients, and 1 patient had a separate tumor focus detected within the same lobe of the lung. Increases in the target volumes led to increases in the mean lung dose, V20, and mean esophageal dose. Decreases in the target volumes in the patients with atelectasis led to decreases in these normal-tissue toxicity parameters. CONCLUSIONS: Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in over 50% of patients by comparison with CT targeting. The increasing availability of integrated PET/CT units will facilitate the use of this technology for radiation treatment planning. A confirmatory multicenter, cooperative group trial is planned within the Radiation Therapy Oncology Group.  相似文献   

8.
PURPOSE: To compare the planning target volume (PTV) definitions for computed tomography (CT) vs. positron emission tomography (PET) in non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: A total of 21 patients with NSCLC underwent three-dimensional conformal radiotherapy planning. All underwent a staging F-18 fluorodeoxyglucose-position emission tomography (18FDG-PET) scan and underwent treatment simulation using CT plus a separate planning 18FDG-PET scan. Three sets of target volumes were defined: Set 1, CT volumes (CT tumor + staging PET nodal disease); Set 2, PET volumes (planning PET tumor {gross tumor volume (GTV) = [(0.3069 x mean standardized uptake value) + 0.5853])}; Set 3, composite CT-PET volumes (fused CT-PET tumor). Sets 1 and 2 were compared using a matching index. Three-dimensional conformal radiotherapy plans were created using the Set 1 (CT) volumes; and coverage of the Set 3 (composite) volumes was evaluated. Separate three-dimensional conformal radiotherapy plans were designed for the Set 3 volumes. RESULTS: For the primary tumor GTV, the Set 1 (CT) volume was larger than the Set 2 (PET) volume in 48%, smaller in 33%, and equal in 19%. The mean matching index was 0.65 (35% CT-PET mismatch). Although quantitatively similar, the volumes differed qualitatively. The Set 3 (composite) volume was larger than either CT or PET alone in 62%, smaller in 24%, and equal in 14%. The dose-volume histogram parameters did not differ among the plans for Set 1 (CT) vs. Set 3 (composite) volumes. Small portions of the Set 3 PTV were significantly underdosed in 40% of cases using the CT-only plan. CONCLUSION: Computed tomography and PET are complementary and should be obtained in the treatment position and fused to define the GTV for NSCLC. Although the quantitative absolute target volume is sometimes similar, the qualitative target locations can be substantially different, leading to underdosage of the target when planning is done using CT alone without PET fusion.  相似文献   

9.
Positron emission tomography (PET) using [(18)F]-2-deoxy-2-fluoro-d-glucose (FDG) has emerged as a valuable diagnostic modality in patients with non-small cell lung cancer (NSCLC). Data in the literature show that the addition of FDG-PET definitely alters clinical management in patients with potentially resectable NSCLC by adequately staging the mediastinum and detecting previously unknown distant metastases. Thus, the number of noncurative thoracotomies and unnecessary mediastinoscopies is reduced. Furthermore, there is increasing evidence that FDG-PET will change radiation treatment planning by defining a biologic treatment volume, incorporating unsuspected additional locoregional disease, and avoiding overtreatment by identifying computerized tomography abnormalities as benign. For follow-up during systemic therapy, early FDG-PET appears to be predictive for the response to therapy. However, before FDG-PET-induced changes in patient management can be incorporated into clinical practice both for radiation treatment planning and chemotherapy, technical issues must be resolved, validation studies should be performed and, most importantly, randomized trials are necessary to evaluate the effect of FDG-PET on patient outcome parameters.  相似文献   

10.
目的 探讨PET-CT对局部晚期非小细胞肺癌(NSCLC)临床分期的诊断及其融合图像下勾画靶区对调强放疗计划的影响。方法 对13例局部晚期NSCLC患者同一体位分别进行增强CT和PET同机扫描,图像重建后传输至三维治疗计划系统(3D-TPS)进行自动图像融合。PET-CT下诊断患者的分期;分别在CT、PET-CT融合图像上勾画靶区,设计放疗计划。患者均采用5野调强放疗,常规处方剂量60Gy/30f。比较两个计划的V20、全肺平均受量(MLD)、心脏平均受量、脊髓最大受量。结果 5例患者分期改变:3例升高,2例下降;CT下勾画靶区GTV、PTV分别为(159.35±84.44)cm3 、(442.12±172.57)cm3,显著高于PET-CT下勾画的GTV和PTV[(148.22±75.08)cm3 、(428.64±157.91)cm3]; PET CT下计划的全肺V20、MLD、心脏平均受量、脊髓最大受量等各项剂量学参数均优于CT下的计划(P<0.05)。结论 PET-CT较CT更有利于局部晚期NSCLC放疗靶区的勾画,可以更好地保护周围正常组织和器官。  相似文献   

11.
Positron emission tomography (PET) using [18F]-2-deoxy-2-fluoro-d-glucose (FDG) has emerged as a valuable diagnostic modality in patients with non-small cell lung cancer (NSCLC). Data in the literature show that the addition of FDG-PET definitely alters clinical management in patients with potentially resectable NSCLC by adequately staging the mediastinum and detecting previously unknown distant metastases. Thus, the number of noncurative thoracotomies and unnecessary mediastinoscopies is reduced. Furthermore, there is increasing evidence that FDG-PET will change radiation treatment planning by defining a biologic treatment volume, incorporating unsuspected additional locoregional disease, and avoiding overtreatment by identifying computerized tomography abnormalities as benign. For follow-up during systemic therapy, early FDG-PET appears to be predictive for the response to therapy. However, before FDG-PET-induced changes in patient management can be incorporated into clinical practice both for radiation treatment planning and chemotherapy, technical issues must be resolved, validation studies should be performed and, most importantly, randomized trials are necessary to evaluate the effect of FDG-PET on patient outcome parameters.  相似文献   

12.
PET-CT融合图像在非小细胞肺癌(NSCLC)放疗靶区勾画中具有显著的优势.确定和勾画PET-CT融合图像的病变范围,并尽可能与病理标准接近,对NSCLC放疗具有至关重要的作用.  相似文献   

13.
PURPOSE: (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) combined with computer tomography (PET-CT) is superior to CT alone in mediastinal lymph node (LN) staging in non-small cell lung cancer (NSCLC). We studied the potential impact of this non-invasive LN staging procedure on the radiation treatment plan of patients with NSCLC. PATIENTS AND METHODS: The imaging and surgical pathology data from 105 patients included in two previously published prospective LN staging protocols form the basis for the present analysis. For 73 of these patients, with positive LN's on CT and/or on PET, a theoretical study was performed in which for each patient the gross tumour volume (GTV) was defined based on CT and on PET-CT data. For each GTV, the completeness of tumour coverage was assessed, using the available surgical pathology data as gold standard. A more detailed analysis was done for the first ten consecutive patients in whom the PET-CT-GTV was smaller than the CT-GTV. Theoretical radiation treatment plans were constructed based on both CT-GTV and PET-CT-GTV. Dose-volume histograms for the planning target volume (PTV), for the total lung volume and the lung volume receiving more than 20 Gy (V(lung(20))), were calculated. RESULTS: Data from 988 assessed LN stations were available. In the subgroup of 73 patients with CT or PET positive LN's, tumour coverage improved from 75% when the CT-GTV was used to 89% with the PET-CT-GTV (P=0.005). In 45 patients (62%) the information obtained from PET would have led to a change of the treatment volumes. For the ten patients in the dosimetry study, the use of PET-CT to define the GTV, resulted in an average reduction of the PTV by 29+/-18% (+/-1 SD) (P=0.002) and of the V(lung(20)) of 27+/-18% (+/-1 SD) (P=0.001). CONCLUSION: In patients with NSCLC considered for curative radiation treatment, assessment of locoregional LN tumour extension by PET will improve tumour coverage, and in selected patients, will reduce the volume of normal tissues irradiated, and thus toxicity. This subgroup of patients could then become candidates for treatment intensification.  相似文献   

14.
Target volume delineation of lung cancer is well known to be prone to large inter-observer variability. The advent of PET/CT devices, with co-registered functional and anatomical data, has opened new exciting possibilities for target volume definition in radiation oncology. PET/CT imaging is rapidly being embraced by the radiation oncology community as a tool to improve the accuracy of target volume delineation for treatment optimization in NSCLC. Several studies have dealt with the feasibility of incorporating FDG-PET information into contour delineation with the aim to improve overall accuracy and to reduce inter-observer variation. A significant impact of PET-derived contours on treatment planning has been shown in 30-60% of the plans with respect to the CT-only target volume. The most prominent changes in the gross tumour volume (GTV) have been reported in cases with atelectasis and following the incorporation of PET-positive nodes in otherwise CT-insignificant nodal areas. Although inter-observer variability is still present following target volume delineation with PET/CT, it is greatly reduced compared to conventional CT-only contouring. PET/CT may also provide improved therapeutic ratio compared to conventional CT planning. Increased target coverage and often reduced target volumes may potentially result in PET/CT-based planning to yield better tumour control probability through dose escalation, while still complying with dose/volume constrains for normal tissues. Despite these exciting results, more clinical studies need to be performed to better define the role of combined PET/CT in treatment planning for NSCLC.  相似文献   

15.
Molecular imaging with PET, and certainly integrated PET-CT, combining functional and anatomical imaging, has many potential advantages over anatomical imaging alone in the combined modality treatment of lung cancer. The aim of the current article is to review the available evidence regarding PET with FDG and other tracers in the combined modality treatment of locally advanced lung cancer. The following topics are addressed: tumor volume definition, outcome prediction and the added value of PET after therapy, and finally its clinical implications and future perspectives.The additional value of FDG-PET in defining the primary tumor volume has been established, mainly in regions with atelectasis or post-treatment effects. Selective nodal irradiation (SNI) of FDG-PET positive nodal stations is the preferred treatment in NSCLC, being safe and leading to decreased normal tissue exposure, providing opportunities for dose escalation. First results in SCLC show similar results. FDG-uptake on the pre-treatment PET scan is of prognostic value. Data on the value of pre-treatment FDG-uptake to predict response to combined modality treatment are conflicting, but the limited data regarding early metabolic response during treatment do show predictive value. The FDG response after radical treatment is of prognostic significance. FDG-PET in the follow-up has potential benefit in NSCLC, while data in SCLC are lacking. Radiotherapy boosting of radioresistant areas identified with FDG-PET is subject of current research.Tracers other than 18FDG are promising for treatment response assessment and the visualization of intra-tumor heterogeneity, but more research is needed before they can be clinically implemented.  相似文献   

16.
PET-CT融合图像在非小细胞肺癌(NSCLC)放疗靶区勾画中具有显著的优势。确定和勾画PET—CT融合图像的病变范围,并尽可能与病理标准接近,对NSCLC放疗具有至关重要的作用。  相似文献   

17.
The recent advances in medical imaging have profoundly altered the radiotherapy of non-small cell lung cancers (NSCLC). A meta-analysis has confirmed the superiority of FDG PET-CT over CT for initial staging. FDG PET-CT improves the reproducibility of target volume delineation, especially close to the mediastinum or in the presence of atelectasia. Although not formally validated by a randomized trial, the reduction of the mediastinal target volume, by restricting the irradiation to FDG-avid nodes, is widely accepted. The optimal method of delineation still remains to be defined. The role of FDG PET-CT in monitoring tumor response during radiotherapy is under investigation, potentially opening the way to adapting the treatment modalities to tumor radiation sensitivity. Other tracers, such as F-miso (hypoxia), are also under clinical investigation. To avoid excessive delays, the integration of PET-CT in routine practice requires quick access to the imaging equipment, technical support (fusion and image processing) and multidisciplinary delineation of target volumes.  相似文献   

18.
PET-CT图像融合在食管癌精确放疗中的应用   总被引:1,自引:0,他引:1  
邢军  李建彬  刘娟  卢洁  范廷勇  邵倩 《实用癌症杂志》2007,22(3):290-292,297
目的探讨PET-CT融合图像勾画靶区的食管癌三维适形放疗计划的优势。方法对16例食管癌病例分别进行CT、PET同机扫描,图像重建后传输至三维治疗计划系统(3D-Treatment planning system,TPS),进行自动图像融合,由同一临床医师分别在CT、PET-CT融合图像上勾画出,同一物理师分别设计优化TPS计划,给予常规处方剂量2.0Gy×30次,每个计划采用5个方向照射野来实现较好的靶区剂量分布,并达到周围正常组织保护的目的。计算各计划的靶区体积并显示剂量体积直方图(dose-volume histogram,DVH),比较2个计划的全肺平均受量(mean lung dose,MLD)、双肺受照超过20Gy的体积占全肺体积的百分比(V20)、气管平均受量、心脏平均受量、脊髓最大受量。结果CT勾画的GTV体积均值为67.10cm3,大于PET-CT融合图像下勾划的GTV均值60.82cm3,包括MLD、全肺V20、气管平均受量、心脏平均受量、脊髓最大受量在内的各项DVH参数的比较显示,均以PET-CT勾画靶区的计划明显优于CT勾画靶区的计划。结论PET-CT图像融合基础上勾画靶区制定放疗计划,可更有效的保护周围正常组织和器官。  相似文献   

19.
The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV–GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned.  相似文献   

20.
Positron Emission Tomography (PET) is a significant advance in cancer imaging with great potential for optimizing radiation therapy (RT) treatment planning and thereby improving outcomes for patients. The use of PET and PET/CT in RT planning was reviewed by an international panel. The International Atomic Energy Agency (IAEA) organized two synchronized and overlapping consultants’ meetings with experts from different regions of the world in Vienna in July 2006. Nine experts and three IAEA staff evaluated the available data on the use of PET in RT planning, and considered practical methods for integrating it into routine practice. For RT planning, 18F fluorodeoxyglucose (FDG) was the most valuable pharmaceutical. Numerous studies supported the routine use of FDG-PET for RT target volume determination in non-small cell lung cancer (NSCLC). There was also evidence for utility of PET in head and neck cancers, lymphoma and in esophageal cancers, with promising preliminary data in many other cancers. The best available approach employs integrated PET/CT images, acquired on a dual scanner in the radiotherapy treatment position after administration of tracer according to a standardized protocol, with careful optimization of images within the RT planning system and carefully considered rules for contouring tumor volumes. PET scans that are not recent or were acquired without proper patient positioning should be repeated for RT planning. PET will play an increasing valuable role in RT planning for a wide range of cancers. When requesting PET scans, physicians should be aware of their potential role in RT planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号