首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several different families of vacuolating toxin (vacA) alleles are present in Helicobacter pylori, and they encode products with differing functional activities. H. pylori strains containing certain types of vacA alleles have been associated with an increased risk for peptic ulcer disease. In this study, we tested serum samples and gastric juice from 19 H. pylori-negative and 39 H. pylori-positive patients for enzyme-linked immunosorbent assay reactivity with two different types of VacA antigens (types s1/m1 and s2/m2), which were purified from H. pylori 60190 and 86-338, respectively. Both antigens were recognized better by serum immunoglobulin G (IgG) from H. pylori-positive persons than by serum IgG from H. pylori-negative persons (P < 0.01). The s1/m1 VacA antigen was better recognized by sera from patients carrying vacA type s1/m1 strains than by sera from patients carrying vacA type s2/m2 or s1/m2 strains (P < 0.01). Conversely, the s2/m2 VacA antigen was better recognized by sera from patients carrying type s2/m2 or s1/m2 strains (P = 0.03). Serum IgG anti-VacA antibodies were present more frequently in patients carrying type s1/m1 strains than in other H. pylori-positive patients (P = 0.0002). In addition, the highest levels of IgA anti-VacA antibodies were detected in the gastric juice of patients carrying type s1/m1 strains. These data indicate that different VacA isoforms have distinct antigenic properties and that multiple forms of VacA elicit antibody responses in H. pylori-positive humans.  相似文献   

2.
Most Helicobacter pylori strains secrete a toxin (VacA) that causes massive vacuolization of target cells and which is a major virulence factor of H. pylori. The VacA amino-terminal region is required for the induction of vacuolization. The aim of the present study was a deeper understanding of the critical role of the N-terminal regions that are protected from proteolysis when VacA interacts with artificial membranes. Using a counterselection system, we constructed an H. pylori strain, SPM 326-Delta49-57, that produces a mutant toxin with a deletion of eight amino acids in one of these protected regions. VacA Delta49-57 was correctly secreted by H. pylori but failed to oligomerize and did not have any detectable vacuolating cytotoxic activity. However, the mutant toxin was internalized normally and stained the perinuclear region of HeLa cells. Moreover, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. This loss of activity was correlated with the disappearance of oligomers in electron microscopy. These findings indicate that the deletion in VacA Delta49-57 disrupts the intermolecular interactions required for the oligomerization of the toxin.  相似文献   

3.
The partial amino acid sequence of the light-chain (Lc) component of Clostridium botulinum type C1 toxin was determined. The sequence was quite similar to those of the other types of botulinum and tetanus toxins. Nine monoclonal antibodies against botulinum type E toxin were established by immunizing BALB/c mice with type E toxoid or its Lc component. Six antibodies reacted with the heavy-chain component and three reacted with the Lc component of the toxin. One of the latter three antibodies reacted with botulinum type B, C1, and D toxins and tetanus toxin, as well as botulinum type E toxin. This antibody recognized the Lc components of these toxins, indicating that there exists one common antigenic determinant on the Lc regions of these toxins.  相似文献   

4.
We have attempted to express the Helicobacter pylori vacuolating cytotoxin in Escherichia coli. Although the 95-kDa VacA polypeptide was expressed abundantly, it completely lacked any biological activity. In addition, this material failed to induce neutralizing antibodies after immunization of rabbits. In contrast, highly purified high-molecular-mass cytotoxin from the supernatant of H. pylori cultures was active in a HeLa cell assay and effectively induced a neutralizing response in rabbits. Neutralizing sera were shown to contain a high proportion of antibodies which recognized conformational epitopes found only on the native toxin. The data indicate that toxin-neutralizing epitopes are conformational and that potential vaccines based on the cytotoxin may benefit from the use of the intact molecule.  相似文献   

5.
Human and avian influenza A strains with a known amino acid sequence of NP protein were studied in radioimmunoprecipitation test with a panel of anti-NP monoclonal antibodies. Two of 7 MAbs (315 and IVE8) reacted with variable epitopes. One of the epitopes was present only in human strains, while the other in both human and avian strains, but absent in gull strains and in one human strain, A/Puerto Rico/8/34 (H1N1). The variations recognized by antibodies 315 and IVE8 correlated with amino acid substitutes in positions 16 and 353, respectively.  相似文献   

6.
Recently, we reported the production of three new monoclonal antibodies with high specificity for a Helicobacter pylori antigen suitable for diagnosis of H. pylori infection. The aim of the present study was to identify the antigen recognized by these monoclonal antibodies concerning both H. pylori and the feces of human subjects infected with H. pylori. The cellular antigen was purified from an H. pylori cell extract by immunoaffinity column chromatography with the monoclonal antibody as a ligand. The amino-terminal amino acid sequences (eight residues) of the purified antigen and H. pylori catalase were the same. The molecular weights of native and subunit, specific catalase activity, and UV and visible spectra of the purified antigen were in good agreement with those of H. pylori catalase. The human fecal antigens were purified from two fecal samples of two H. pylori-positive subjects by ammonium sulfate precipitation, CM-Sephadex C(50) chromatography, and the same immunoaffinity chromatography used for the H. pylori cellular antigen. The fecal antigens had catalase activity. The amino-terminal amino acid sequences (five residues) of the human fecal antigen and H. pylori catalase were the same. The monoclonal antibodies reacted with the native cellular antigen, but did not react with the denatured antigen, human catalase, and bovine catalase. The results show that the target antigen of the monoclonal antibodies is native H. pylori catalase and that the monoclonal antibodies are able to specifically detect the antigen, which exists in an intact form, retaining the catalase activity in human feces.  相似文献   

7.
Cytotoxic necrotizing factor type 1 (CNF1) of uropathogenic Escherichia coli belongs to a family of bacterial toxins that target the small GTP-binding Rho proteins that regulate the actin cytoskeleton. Members of this toxin family typically inactivate Rho; however, CNF1 and the highly related CNF2 activate Rho by deamidation. Other investigators have reported that the first 190 amino acids of CNF1 constitute the cellular binding domain and that the CNF1 enzymatic domain lies within a 300-amino-acid stretch in the C terminus of the toxin. Amino acids 53 to 75 appear to be critical for cell receptor recognition, while amino acids Cys866 and His881 are considered essential for deamidation activity. To delineate further the functional domains of CNF1, we generated 16 monoclonal antibodies (MAbs) against the toxin and used them for epitope mapping studies. Based on Western blot immunoreactivity patterns obtained from a series of truncated CNF1 proteins, this panel of MAbs mapped to epitopes located throughout the toxin, including the binding and enzymatic domains. All MAbs showed reactivity to CNF1 by Western and dot blot analyses. However, only 7 of the 16 MAbs exhibited cross-reactivity with CNF2. Furthermore, only three MAbs demonstrated the capacity to neutralize toxin in either HEp-2 cell assays (inhibition of multinucleation) or 5637 bladder cell assays (inhibition of cytotoxicity). Since CNF1 epitopes recognized by neutralizing MAbs are likely to represent domains or regions necessary for the biological activities of the toxin, the epitopes recognized by these three MAbs, designated JC4 (immunoglobulin G2a [IgG2a]), BF8 (IgA), and NG8 (IgG2a), were more precisely defined. MAbs JC4 and BF8 reacted with epitopes that were common to CNF1 and CNF2 and located within the putative CNF1 binding domain. MAb JC4 recognized an epitope spanning amino acids 169 to 191, whereas MAb BF8 mapped to an epitope between amino acids 135 and 164. Despite the capacity of both MAbs to recognize CNF2 in Western blot analyses, only MAb BF8 neutralized CNF2. MAb NG8 showed reactivity to a CNF1-specific epitope located between amino acids 683 and 730, a region that includes a very small portion of the putative enzymatic domain. Taken together, these findings identify three new regions of the toxin that appear to be critical for the biological activity of CNF1.  相似文献   

8.
Clostridium botulinum type C1 toxin was purified from C-Stockholm (C-ST), and D toxin was purified from D-1873 and D-South African. Polyclonal antibodies against these toxins were prepared in rabbits. Twenty-eight monoclonal antibodies to these toxins were also prepared with BALB/c myeloma cells. The antibodies were analyzed by both enzyme-linked immunosorbent assay (ELISA) and a toxin neutralization test. ELISA was performed with the three purified toxins and heavy-chain (Hc) and light-chain (Lc) components derived from C-ST and D-1873 toxins. A neutralization test was carried out with 11 toxin preparations (7 from type C and 4 from type D cultures). ELISA results indicated that there exists at least one common antigenic determinant on each of the Hc and Lc components of the three purified toxins. The results of the neutralization test also indicated that type C1 and D toxin preparations contain several common antigenic sites in their molecules. Some are common to toxins from several specific cultures, whereas others are common to toxins from a large number of cultures. It was speculated that toxins from two type C strains are composed of Hc and Lc components which are somewhat similar to those of D-1873 and C-ST toxins, respectively.  相似文献   

9.
The Clostridium perfringens epsilon-toxin causes a severe, often fatal illness (enterotoxemia) characterized by cardiac, pulmonary, kidney, and brain edema. In this study, we examined the activities of two neutralizing monoclonal antibodies against the C. perfringens epsilon-toxin. Both antibodies inhibited epsilon-toxin cytotoxicity towards cultured MDCK cells and inhibited the ability of the toxin to form pores in the plasma membranes of cells, as shown by staining cells with the membrane-impermeant dye 7-aminoactinomycin D. Using an antibody competition enzyme-linked immunosorbent assay (ELISA), a peptide array, and analysis of mutant toxins, we mapped the epitope recognized by one of the neutralizing monoclonal antibodies to amino acids 134 to 145. The antibody competition ELISA and analysis of mutant toxins suggest that the second neutralizing monoclonal antibody also recognizes an epitope in close proximity to this region. The region comprised of amino acids 134 to 145 overlaps an amphipathic loop corresponding to the putative membrane insertion domain of the toxin. Identifying the epitopes recognized by these neutralizing antibodies constitutes an important first step in the development of therapeutic agents that could be used to counter the effects of the epsilon-toxin.  相似文献   

10.
Helicobacter pylori, the causative agent of gastritis and ulcer disease in humans, secretes a toxin called VacA (vacuolating cytotoxin) into culture supernatants. VacA was initially characterized and purified on the basis of its ability to induce the formation of intracellular vacuoles in tissue culture cells. H. pylori strains possessing different alleles of vacA differ in their ability to express active toxin. Those strains expressing higher toxin levels are correlated with more severe gastric disease. However, the specific role(s) played by VacA during the course of infection and disease is not clear. We have used a mouse model of H. pylori infection to begin to address this role. A null mutation of vacA compromises H. pylori in its ability to initially establish infection. If an infection by a vacA mutant is established, the bacterial load and degree of inflammation are similar to those associated with an isogenic wild-type strain. Thus, in this infection model, vacA plays a role in the initial colonization of the host, suggesting that strains of H. pylori expressing active alleles of vacA may be better adapted for host-to-host transmission.  相似文献   

11.
Several different families of vacuolating toxin (vacA) alleles are present in Helicobacter pylori, and they encode products with differing functional activities. H. pylori strains containing certain types of vacA alleles have been associated with an increased risk for peptic ulcer disease. In this study, we tested serum samples and gastric juice from 19 H. pylori-negative and 39 H. pylori-positive patients for enzyme-linked immunosorbent assay reactivity with two different types of VacA antigens (types s1/m1 and s2/m2), which were purified from H. pylori 60190 and 86-338, respectively. Both antigens were recognized better by serum immunoglobulin G (IgG) from H. pylori-positive persons than by serum IgG from H. pylori-negative persons (P < 0.01). The s1/m1 VacA antigen was better recognized by sera from patients carrying vacA type s1/m1 strains than by sera from patients carrying vacA type s2/m2 or s1/m2 strains (P < 0.01). Conversely, the s2/m2 VacA antigen was better recognized by sera from patients carrying type s2/m2 or s1/m2 strains (P = 0.03). Serum IgG anti-VacA antibodies were present more frequently in patients carrying type s1/m1 strains than in other H. pylori-positive patients (P = 0.0002). In addition, the highest levels of IgA anti-VacA antibodies were detected in the gastric juice of patients carrying type s1/m1 strains. These data indicate that different VacA isoforms have distinct antigenic properties and that multiple forms of VacA elicit antibody responses in H. pylori-positive humans.  相似文献   

12.
Helicobacter pylori is the etiological agent of diseases such as gastritis, gastric and duodenal ulcers, and two types of gastric cancers. While some insight has been gained into the etiology of these diverse manifestations, by and large, the reason that some individuals develop more severe disease remains elusive. Recent studies have focused on the roles of H. pylori toxins CagA and VacA on the disease process and have suggested that both toxins are intimately involved. Moreover, CagA and VacA are polymorphic within different H. pylori strains, and particular polymorphisms seem to show a correlation with the development of particular disease states. Among VacA polymorphisms, the intermediate region has recently been proposed to play a major role in disease outcome. In this article, we describe a detailed sequence analysis of the polymorphic intermediate region of vacA from strains obtained from a large South Korean population. We show that polymorphisms found at amino acid position 196 are associated with more severe disease manifestations. Additionally, polymorphisms found at amino acid position 231 are linked to disease in strains that carry the non-EPIYA-ABD allele of CagA. Collectively, these data help explain the impact of the VacA intermediate region on disease and lead to the hypothesis that there are allele-driven interactions between VacA and CagA.  相似文献   

13.
Pseudomonas exotoxin (PE) is a protein toxin composed of three structural domains. In its native form, the toxin is a 66,000-Mr proenzyme that must be activated to express full ADP-ribosylating activity. To study the process of activation and accompanying conformational changes, we have isolated 10 monoclonal antibodies to a 40,000-Mr fragment of the toxin (PE40) that exhibits full enzyme activity but lacks the toxin's cell-binding domain and contains amino acids 253 to 613 (comprising domains II, Ib, and III). By using mutant PE molecules in which all of domain I and portions of domains II, Ib, and III were deleted, the locations of the epitopes for each of the antibodies were determined. Eight of these monoclonal antibodies were further characterized. Of these eight, all reacted with soluble PE40 and an interleukin-2-PE40 conjugate, but only two reacted strongly with native soluble PE. However, all eight reacted with PE after it had been immobilized on nitrocellulose or after it had been activated to express full ADP-ribosylating activity. Antibodies were also assessed for their ability to neutralize the cytotoxic activity of either PE or interleukin-2-PE40. These antibodies should be useful as probes for monitoring the activation and processing of PE that occur during endocytosis and in determining the location of epitopes that are important for toxin activity.  相似文献   

14.
Colonization of the human stomach with Helicobacter pylori is a risk factor for peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. The secreted VacA toxin is an important H. pylori virulence factor that causes multiple alterations in gastric epithelial cells and T cells. Several families of vacA alleles have been described, and H. pylori strains containing certain vacA types (s1, i1, and m1) are associated with an increased risk of gastric disease, compared to strains containing other vacA types (s2, i2, and m2). Thus far, there has been relatively little study of the role of the VacA intermediate region (i-region) in toxin activity. In this study, we compared the ability of i1 and i2 forms of VacA to cause functional alterations in Jurkat cells. To do this, we manipulated the chromosomal vacA gene in two H. pylori strains to introduce alterations in the region encoding the VacA i-region. We did not detect any differences in the capacity of i1 and i2 forms of VacA to cause vacuolation of RK13 cells. In comparison to i1 forms of VacA, i2 forms of VacA had a diminished capacity to inhibit the activation of nuclear factor of activated T cells (NFAT) and suppress interleukin-2 (IL-2) production. Correspondingly, i2 forms of VacA bound to Jurkat cells less avidly than did i1 forms of VacA. These results indicate that the VacA i-region is an important determinant of VacA effects on human T cell function.  相似文献   

15.
Chlamydia trachomatis DnaK is an important immunogen in chlamydial infections. DnaK is composed of a conserved N-terminal ATP-binding domain and a variable C-terminal peptide-binding domain. To locate the immunogenic part of C. trachomatis Dnak, we generated monoclonal antibodies (MAbs) against this protein. By use of recombinant DNA techniques, we located the epitopes for two MAbs in the C-terminal variable part. Although the antibodies reacted in an immunoblot assay, it was not possible to map the epitopes completely by use of 16-mer synthetic peptides displaced by one amino acid corresponding to the C-terminal part of C. trachomatis DnaK. To determine the limits of the epitopes, C. trachomatis DnaK and glutatione S-transferase fusion proteins were constructed and affinity purified. The purified DnaK fusion proteins were used for a fluid-phase inhibition enzyme-linked immunosorbent assay with the two antibodies. The epitopes were found not to overlap. To obtain DnaK fragments recognized by the antibodies with the same affinity as native C. trachomatis DnaK, it was necessary to express, respectively, regions of 127 and 77 amino acids. The MAbs described in this study thus recognized conformational epitopes of C. trachomatis DnaK.  相似文献   

16.
Monoclonal antibodies against type C1 toxin produced by Clostridium botulinum type C strain Stockholm (C-ST) were prepared by fusion of BALB/c myeloma cells P3X63-Ag8, with spleen cells from the mice immunized by C-ST toxoid. About 5% of single-cell colonies in wells were found to produce antibodies against the toxin as determined by an enzyme-linked immunosorbent assay (ELISA). Four different hybridoma cell lines, no. 9, 12, 14, and 17, were established, cloned by limiting dilution, and intraperitoneally injected into mice to obtain the ascites fluids containing high-titered antibodies. The reactions of these antibodies to type C1 and D toxins of strains C-ST, D-1873, and D-South African (D-SA) were observed by both neutralization and ELISA tests. Three monoclonal antibodies, no. 9, 14, and 17, reacted with C-ST toxin, but only no. 17 highly neutralized the toxin. These antibodies did not react with type D toxins. On the contrary, no. 12 reacted with toxins of both C-ST and D-SA (but not of D-1873) and commonly neutralized these two toxins. This indicates that there is a common antigenic part between C-ST and D-SA toxin molecules which participates in the toxin-neutralizing reaction. The neutralization profiles of C-ST toxin by no. 12 and 17 antibodies were different in a time-to-death test of mice. The mechanisms of neutralization by no. 12 and 17 may be different.  相似文献   

17.
Fourteen hybridoma cell lines were isolated that produced monoclonal antibodies (MAbs) to purified Verotoxins 1 and 2 (VT1, VT2) of Escherichia coli of serotype O157:H7. Of these MAbs, eight were obtained by immunisation of BALB/c mice with purified VT1, and six were obtained from BALB/c mice immunised with purified VT2. With the exception of MAb 1C5, with a heavy chain of IgG2b class, antibodies produced from mice immunised with heat-treated toxin were of IgM class. MAbs produced from mice immunised with heat-treated VT1 or VT2 reacted with both verotoxins in ELISA, and Western-blot analysis revealed that they reacted with subunit A and the A1 fragment of nicked subunit A of both toxins, but not with subunit B; furthermore, none of them neutralised Vero cytotoxicity or mouse lethality of either toxin. In contrast, MAbs produced from mice immunised with heat-treated and formalin-treated VT1 reacted in Western blots with subunits A and B of VT1 and subunit A, but not subunit B, of VT2, reacted in ELISA with VT1 only, and neutralised Vero cytotoxicity and mouse lethality of VT1 but not of VT2. Results indicate the existence of a common epitope on subunit A of VT1 and VT2 that is not responsible for the biological activity of these toxins, and that subunit B is essential for the biological activity of VT1. MAbs capable of reacting with both verotoxins from E. coli of serotype O157:H7 may be useful reagents for screening bacterial isolates capable of producing one or both of these toxins.  相似文献   

18.
Monoclonal antibodies against the elastase of Pseudomonas aeruginosa were produced from spleen cells of BALB/c mice primed with purified elastase of P. aeruginosa and P3-X63-Ag8-U1 myeloma cells. The six clones established generated antibodies which reacted with a 33,000-Da peptide and recognized four different elastase epitopes by a competitive binding enzyme-linked immunosorbent assay. The monoclonal antibodies designated as ELA-17 and ELA-42 that recognize two different epitopes reacted by dot-enzyme immunoassay and by Western immunoblotting with all clinical and International Antigen Typing Scheme strains of P. aeruginosa positive for elastase.  相似文献   

19.
Shiga toxin from Shigella dysenteriae 60R was purified to homogeneity by a novel one-step receptor analog affinity chromatography method. The method was based on the binding affinity of Shiga toxin for a specific disaccharide, Gal alpha 1----4Gal, which was also present in glycoproteins with P1 blood group seroreactivity produced in hydatid cysts from sheep infected with Echinococcus granulosus. Having shown that cyst fluid P1 glycoprotein bound Shiga toxin on a solid phase, a P1 glycoprotein affinity column was made by coupling P1-active substance to Sepharose 4B. Shiga toxin was purified by this method in large quantities (5 to 10 mg/20-liter batch) with a consistently good yield (greater than 80% of starting toxin). Shiga-like toxins I and II (SLT-I and -II, respectively) from Escherichia coli were also purified by the same method. A preparation containing SLT-II and SLT-I purified by receptor analog affinity chromatography was used to raise four monoclonal antibodies (MAbs) that were reactive with SLT-II by enzyme-linked immunosorbent assay. Three of these antibodies also reacted with Shiga toxin, which was the first clear demonstration of cross-reactivity between these toxins. One MAb, 4D1, which was specific for the B subunit of SLT-II and Shiga toxin, neutralized both toxins in a HeLa cell cytotoxicity assay. Two MAbs recognized the A subunit of both SLT-II and Shiga toxin by Western blot (immunoblot) analysis but were unable to neutralize either toxin. In addition, one B-subunit-specific MAb neutralized SLT-II alone, and a previously described Shiga toxin B-subunit-specific MAb was shown to be specific for Shiga toxin but not SLT-II.  相似文献   

20.
Huang H  Zhou R  Fan H  Dan H  Chen M  Yan L  Bei W  Chen H 《Molecular immunology》2006,43(13):2130-2134
To study functions of ApxIV, a species-specific and in vivo inducible RTX toxin identified in Actinobacillus pleuropneumoniae recently, and to develop a diagnostic trial distinguishing the pigs infected naturally and vaccinated with inactivated and/or subunit vaccines, we attempted to prepare monoclonal antibodies against ApxIV. BALB/c mice were immunized with ApxIVAN and ApxIVAC which are N- and C-terminal halvies (814 and 997 amino acids, respectively) of ApxIVA produced in E. coli BL21 (DE3), respectively. Eight monoclonal antibodies were selected, four (designated as 1A8, 1G5, 3E7 and 4H9) against ApxIVAN and another four (named as 1B12, 2E5, 4D8 and 4G2) against ApxIVAC. Western blot and ELISA additivity assays suggested that all monoclonal antibodies except 1A8 are specific to the corresponding immunogen, 1A8 reacts with both immunogens which have a overlapping region of 156 residues. ELISA additivity tests revealed that at least five epitopes in ApxIV are defined by eight monoclonal antibodies, two between 1 and 866 amino acids, one between 867 and 1022 amino acids and two between 1023 and 1863 amino acids. In conclusion, we have succeeded in producing eight monoclonal antibodies, which react with five different epitopes of ApxIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号