首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of parthenolide across human intestinal cells (Caco-2)   总被引:4,自引:0,他引:4  
This study examined the intestinal epithelial membrane transport of the sesquiterpene lactone parthenolide, a bioactive compound present in the migraine prophylactic herb feverfew. The Caco-2 human colonic cell line was used as an in vitro model of the human intestinal mucosal barrier. The bidirectional transport (apical to basolateral and basolateral to apical) of parthenolide was investigated using Caco-2 monolayers grown on Transwell inserts. Quantitation of parthenolide was performed using high performance liquid chromatography (HPLC). Apical to basolateral and basolateral to apical permeability coefficients and percent transport were calculated and a potential bioavailability of parthenolide was determined. Sodium fluorescein was used as a marker for paracellular leakage. Parthenolide, at a concentration of 250 microM, demonstrated substantial linear transport across the monolayer. The transport parameters were not affected by the presence of MK-571, an inhibitor of multidrug resistance transporter P-glycoprotein (MRP). Upon comparison of the transport parameters of parthenolide with atenolol under identical conditions and the reported values for model compounds like mannitol and propranolol, it is concluded that parthenolide is effectively absorbed through the intestinal mucosa via a passive diffusion mechanism.  相似文献   

2.
The aim of the present study was to investigate the mechanisms for membrane transport of metformin in human intestinal epithelial Caco-2 cells. The mRNA of not only organic cation transporter (OCT) 3, but also OCT1 and OCT2, was expressed in Caco-2 cells. The uptake of 100 μm metformin at the apical membrane of Caco-2 cells grown on porous filter membrane was significantly greater than that at the basolateral membrane. The apical uptake of 100 μm metformin in Caco-2 cells grown on plastic dishes was inhibited significantly by 1 mm unlabeled metformin, quinidine and pyrilamine, indicating that a specific transport system is involved in the apical uptake of metformin in Caco-2 cells. The apical uptake of 100 μm metformin in Caco-2 cells was decreased by acidification of the medium, but not increased by alkalization. In addition, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a protonophore) had no effect on the apical uptake of metformin in Caco-2 cells at apical medium pH 8.4. These findings suggested that the apical uptake of metformin in Caco-2 cells is mediated at least partly by OCTs, but that the postulated H(+) /tertiary amine antiport system is not responsible for the apical uptake of metformin.  相似文献   

3.
  1. Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin.
  2. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect.
  3. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM).
  4. Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK.
  5. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl or K+ in the bathing media.
  6. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia.
  相似文献   

4.
p-Hydroxybenzoate ester (paraben) preservatives are used in numerous orally administered products. The recognized route of metabolism for parabens is hydrolysis to p-hydroxybenzoic acid followed by conjugation and excretion. However, in the presence of alcohols, a presystemic transesterification pathway not previously reported for the human intestine can occur. Using human intestinal (Caco-2) cells, it was observed that hydrolysis of parabens to p-hydroxybenzoic acid is reduced markedly by ethanol concentrations that can occur in the human intestine, 0.25-0.5% (v/v). Ethanol concentrations of 1.0-2.5% (v/v) were optimal for transesterification to ethylparaben in Caco-2 cell homogenates. The kinetics of the transesterification reaction with regard to ethanol concentration (0-20%), time, pH (3-9), protein concentration (1-5 mg ml-1) and substrate concentration (6.25-200 microM) as well as the effects of different alcohols were studied. The Km and Vmax values for transesterification with ethanol for methyl, propyl, butyl, heptyl and octyl parabens were 449.7, 165.7, 86.1, 24.2 and 45.9 microM and 114.4, 37.5, 19.5, 7.5 and 7.6 micromol h-1 mg-1 Caco-2 cell protein, respectively. The Vmax values for transesterification of methylparaben with ethanol, propan-1-ol, butan-1-ol were 114.4, 5.1 and 4.9 micromol h-1 mg-1, respectively. Collectively, the kinetic data demonstrate that the enzyme responsible for the transesterification reaction has a preference for short-chain esters and represents the first report of transesterification in human intestinal cells. An implication of this mechanism is that alcohol-containing in vitro biosystems or protocols for the study of parabens disposition could generate transesterified artefacts. The clinical or toxicological implication is that, following co-ingestion of ester compounds with ethanol, transesterification could provide the basis for a previously unrecognized drug-alcohol interaction.  相似文献   

5.
1. The role of proton-linked solute transport in the absorption of the angiotensin-converting enzyme (ACE) inhibitors captopril, enalapril maleate and lisinopril has been investigated in human intestinal epithelial (Caco-2) cell monolayers. 2. In Caco-2 cell monolayers the transepithelial apical-to-basal transport and intracellular accumulation (across the apical membrane) of the hydrolysis-resistant dipeptide, glycylsarcosine (Gly-Sar), were stimulated by acidification (pH 6.0) of the apical environment. In contrast, transport and intracellular accumulation of the angiotensin-converting enzyme (ACE) inhibitor, lisinopril, were low (lower than the paracellular marker mannitol) and were not stimulated by apical acidification. Furthermore, [14C]-lisinopril transport showed little reduction when excess unlabelled lisinopril (20 mM) was added. 3. pH-dependent [14C]-Gly-Sar transport was inhibited by the orally-active ACE inhibitors, enalapril maleate and captopril (both at 20 mM). Lisinopril (20 mM) had a relatively small inhibitory effect on [14C]-Gly-Sar transport. pH-dependent [3H]-proline transport was not inhibited by captopril, enalapril maleate or lisinopril. 4. Experiments with BCECF[2',7',-bis(2-carboxyethyl)-5(6)-carboxyfluorescein]-loaded Caco-2 cells demonstrate that dipeptide transport across the apical membrane is associated with proton flow into the cell. The dipeptide, carnosine (beta-alanyl-L-histidine) and the ACE inhibitors enalapril maleate and captopril, all lowered intracellular pH when perfused at the apical surface of Caco-2 cell monolayers. However, lisinopril was without effect. 5. The effects of enalapril maleate and captopril on [14C]-Gly-Sar transport and pHi suggest that these two ACE inhibitors share the H(+)-coupled mechanism involved in dipeptide transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. Human intestinal epithelial Caco-2 cells, T84 cells, and MDCKII cells transfected with human MDR1, were used to investigate the mechanistic basis of transintestinal fluoroquinolone secretion. 2. The fluoroquinolone grepafloxacin was secreted across Caco-2 monolayers by a saturable process (V(max)=16.9 +/- 3.4 nmol.cm(-2).h(-1)). Net secretion was reduced by 2-deoxyglucose/azide treatment to reduce intracellular ATP. 3. Grepafloxacin inhibited [(14)C]-ciprofloxacin (100 microM) secretion across Caco-2 monolayers (K(0.5)=0.8 mM), and concurrently increased the cellular accumulation of ciprofloxacin from the basal medium, indicating inhibition of export across the apical membrane. 4. The unconjugated bile acid, cholic acid, was secreted across Caco-2 monolayers, and this secretion was sensitive to inhibition by the MRP-selective inhibitor MK-571, suggesting MRP2 involvement. Secretion of cholic acid (10 microM) across the apical membrane was also inhibited by grepafloxacin (K(0.5)=0.3 mM), but not by ciprofloxacin. 5. In MDCKII-MDR1 monolayers, net secretion of grepafloxacin was increased by 3.5 fold compared with untransfected controls. Neither ciprofloxacin nor cholic acid showed net secretion in either MDCKII or MDCKII-MDR1 monolayers, showing that in contrast to grepafloxacin, neither are substrates for MDR1. 6. In T84 monolayers, which express MDR1 but not MRP2, neither ciprofloxacin nor cholic acid was secreted, whilst the V(max) for grepafloxacin secretion was lower than in Caco-2 cells, which express both MDR1 and MRP2. 7. In conclusion, the transepithelial secretion of grepafloxacin is mediated by both MRP2 and MDR1, whereas ciprofloxacin is a substrate for neither. Grepafloxacin also competes for the ciprofloxacin-sensitive pathway, which remains to be elucidated.  相似文献   

7.
Yu LS  Zhao NP  Yao TW  Zeng S 《Die Pharmazie》2006,61(10):862-865
The oral uptake of zolmitriptan, a novel and highly selectively 5-HT 1B/1D receptor agonist, was evaluated in the human epithelial cell line caco-2 that possesses intestinal enterocyte-like properties when cultured in vitro. The study demonstrated that zolmitriptan uptake significantly depended upon the extracelluar temperature and pH in the Caco-2 cell. The zolmitriptan uptake at 39 degrees C was 2.1 fold as that at 23 degrees C and the zolmitriptan uptake at pH 8.0 was 2.7 fold as that at pH 6.0. The uptake rates of zolmitriptan on both sides increased with increasing zolmitriptan concentration from 0.1 to 10 mmol x L(-1), and it shows concave concentration-dependency at high concentration. The uptake rates of zolmitriptan on the basolateral side (BL) were 3-7 times higher than that on the apical side (AP). Verapamil, nimodipine, nifedipine, flunarizine, amiloride and sumatriptan significantly increased the uptake rates of zolmitriptan on the apical sides. Propafenone significantly inhibited the uptake rate of zolmitriptan on both sides. Propranolol and aspirin have no significant effect. The results indicated that the zolmitriptan uptake in Caco-2 cells was temperature, pH and concentration dependent, and was partially counteracted by the action of an outwardly directed efflux pump, presumably p-glycoprotein. Absorption interactions should be considered when P-gp substrates or inhibitors, Na+ -H+ exchange inhibitors, P-gp ATPase agonists or inhibitors are co-administered with zomitriptan in clinical practice.  相似文献   

8.
Aconitine (AC) is a highly toxic compound present in plants of the genus Aconitum. The transcellular transport mechanism of AC was investigated using Caco-2 cells. The flux of AC was time- and concentration-dependent in both apical-to-basolateral and the reverse direction. The efflux of AC was more than two-fold that in the opposite direction. The influx of AC was temperature-, pH- and Na+-dependent. Glucose markedly decreased the absorption of AC. However, the efflux of AC was temperature- and pH-dependent, but Na+-independent. Cyclosporin A and verapamil, both inhibitors of P-glycoprotein (P-gp), significantly decreased the efflux of AC. In addition, MK-571, an inhibitor of multidrug resistance-associated protein 2 (MRP2), exhibited the same trend but to a lesser extent. These results indicate that both the influx and efflux of AC across Caco-2 monolayers were through an active process. A pH-dependent carrier-mediated transport system was the major absorption mechanism and a sodium-dependent glucose transporter may be involved. The active efflux of AC across Caco-2 cells was mediated mainly by ABC-transporter P-gp. It is involved in reducing the toxicity of AC to organisms and is the major reasons for the poor absorption of AC in vivo.  相似文献   

9.
Resveratrol transport and metabolism by human intestinal Caco-2 cells   总被引:6,自引:0,他引:6  
Resveratrol is a dietary constituent suggested to have protective effects against cancer as well as cardiovascular disease. The purpose of the study was to learn whether this agent could be absorbed in man and enter the systemic circulation. This was examined by measuring transport and metabolism of resveratrol (5-40 microM) by the human intestinal epithelial cell line Caco-2 cultured in Transwells. Transport across the Caco-2 monolayer occurred in a direction-independent manner with P(app) values of approximately 7 x 10(-6) cm s(-1), much higher than for the paracellular transport marker mannitol (approximately 0.4 x 10(-6) cm s(-1)), suggesting efficient absorption in-vivo. At the highest resveratrol concentration, the absorption increased, possibly due to saturation of metabolism. In sharp contrast to previous findings in the rat, the metabolism of resveratrol in Caco-2 cells involved mainly sulfation and, to a minor extent, glucuronidation. At low resveratrol concentrations, most of the sulfate conjugate was exported to the apical side, presumably by MRP2, which is well expressed in these cells. At high concentrations, there was a shift towards the basolateral side, possibly involving MRP3, which was recently shown also to be expressed in Caco-2 cells. These results indicate that absorption of resveratrol in-vivo may be high but with limited bioavailability due to efficient sulfate conjugation. Extensive accumulation of resveratrol in the Caco-2 cells, demonstrated in additional experiments, suggests enterocytes as a major target site for this cancer preventive agent.  相似文献   

10.
目的利用Caco-2细胞模型研究8-异丙胺亚甲基橙皮素(IPHP)在小肠吸收转运的机制。方法在Caco-2细胞模型上进行IPHP的跨膜转运实验,探讨药物浓度、p H、温度、P-gp抑制剂维拉帕米、MRP2抑制剂MK-571和丙磺舒对IPHP在体外细胞模型上跨膜转运的影响。结果 IPHP在Caco-2细胞模型上的转运具有一定的浓度依赖性,IPHP不同浓度从A侧到B侧的渗透系数Papp(AP-BL)(×10-5)分别为:(2.21±0.200)、(3.56±0.306)、(3.81±0.179)、(4.23±0.229)、(4.17±0.262)cm·s-1,B侧到A侧的渗透系数Papp(BL-AP)(×10-5)分别为:(3.57±0.209)、(4.51±0.113)、(4.97±0.229)、(5.24±0.550)、(5.07±0.557)cm·s-1,外排率分别为:1.61、1.26、1.3、1.23、1.21。温度和p H对其转运均有影响,而P-gp抑制剂对于IPHP的转运没有明显的影响,MRP2抑制剂在一定程度上增加了IPHP的转运量(P<0.05)。结论 IPHP在Caco-2细胞模型上的转运方式主要是被动扩散,且其转运不受P-gp外排蛋白影响,而外排蛋白MRP2可能参与了IPHP的外排转运。  相似文献   

11.
The aim of the present paper is to investigate intestinal absorption and toxicity of Fumonisin B(1) (FB(1)) and its partially (PHFB(1) and PHFB(2)) and totally hydrolyzed (HFB(1)) metabolites, using the human intestinal cell line Caco-2, a very well known in vitro model of intestinal epithelium for absorption and metabolism studies. Caco-2 cells were treated for 48 h with several toxin concentrations (in the range of 1-138 microM). At the end of exposure period, no significant variation on cell viability has been observed with all chemicals tested, either in undifferentiated cells or in differentiated ones, suggesting a poor toxicity of these mycotoxins for intestinal cells. In any case, FB(1) appears the most active in this respect. For which concerns the cellular absorption, FB(1), PHFB(1) and PHFB(2) are never detected into Caco-2 cells. On the contrary, a dose-dependent absorption of HFB(1) has been observed in differentiated cells, which express enzymatic and metabolic characteristics of mature enterocytes. Thus HFB(1), losing the tricarballylic acid chain, is more bioavailable than FB(1) on intestinal cell, supporting the hypothesis that in risk evaluation of fumonisins exposure its metabolites are also relevant.  相似文献   

12.
The biological implications of cholesterol oxidation products have been investigated, though research on plant sterol oxidation products is scarce and in some cases contradictory.  相似文献   

13.
Inorganic arsenic has been classified as a carcinogen for humans (Group I). However, its transit across the human intestinal epithelium has not been characterized. Using Caco-2 cells, the thiol-redox balance and apparent permeability coefficients (P(app)) for As(III) in the apical to basolateral (AP-BL) and basolateral to apical (BL-AP) direction were evaluated. After As(III) exposure, GSH-induced synthesis was observed, increasing the GSH/GSSG ratio by elevating the As(III) concentration. The AP-BL permeabilities decreased as the As(III) concentrations increased, indicating the existence of a mediated transport mechanism. The (BL-AP)/(AP-BL) permeability ratios were higher than unity, suggesting the existence of a secretion process.  相似文献   

14.
Irinotecan (CPT-11) is a camptothecin analog with low (about 10--20%) and variable oral bioavailability in animal models. Here, Caco-2 cells were used to evaluate the transepithelial transport of CPT-11 and its metabolites. Caco-2 cells demonstrated significant expression of P-glycoprotein (P-gp), multidrug resistance-associated protein and canalicular multispecific organic anion transporter. Both the lactone and carboxylate forms of CPT-11 and SN-38 were actively transported across the cell monolayers, mainly by the apical-localized P-gp pump. Cellular permeability of CPT-11 at a concentration of 17 microM converted from active to passive-diffusional transport between the 2 and 6 h exposure time points. Antiproliferative effects of CPT-11 were related to permeability of the lactone form, whereas for SN-38 efficacy was dependent on lactone accumulation. Exposure of CPT-11 with cyclosporin A significantly enhanced its efficacy, whereas this was not observed with verapamil and R101933. In contrast, SN-38 efficacy decreased in the presence of P-gp inhibitors due to active transport toward the basolateral side, thereby reducing drug accumulation. Hence, multiple-active transport systems could be demonstrated to be responsible for not only accumulation profiles but also cytotoxic efficacy of CPT-11 and SN-38 in the intestinal Caco-2 cells. It is suggested that CPT-11 might act in a time-dependent manner and that SN-38-mediated cytotoxicity relates to (dose-dependent) lactone kinetics. The results detailed in this report could contribute toward the development of a clinically useful oral formulation of CPT-11 with improved absorption characteristics and suggest that cyclosporin A is a suitable agent for further research of this concept.  相似文献   

15.
The mycotoxin zearalenone (ZEA) is found worldwide as contaminant in cereals and grains. It is implicated in reproductive disorders and hyperestrogenic syndromes in animals and humans exposed by food. We investigated metabolism and transfer of ZEA using the human Caco-2 cell line as a model of intestinal epithelial barrier. Cells exposed to 10–200 μM ZEA showed efficacious metabolism of the toxin. α-zearalenol and β-zearalenol were the measured preponderant metabolites (respectively 40.7 ± 3.1% and 31.9 ± 4.9% of total metabolites, after a 3 h exposure to 10 μM ZEA), whereas ZEA-glucuronide and α-zearalenol glucuronide were less produced (respectively 8.2 ± 0.9% and 19.1 ± 1.3% of total metabolites, after a 3 h exposure to 10 μM ZEA). Cell production of reduced metabolites was strongly inhibited by α-and β-hydroxysteroid dehydrogenase inhibitors, and Caco-2 cells exhibited α-hydroxysteroid dehydrogenase type II and β-hydroxysteroid dehydrogenase type I mRNA. After cell apical exposure to ZEA, α-zearalenol was preponderantly found at the basal side, whereas β-zearalenol and both glucuronides were preferentially excreted at the apical side. As α-zearalenol shows the strongest estrogenic activity, the preferential production and basal transfer of this metabolite suggests that intestinal cells may contribute to the manifestation of zearalenone adverse effects.  相似文献   

16.
1. Transintestinal absorption of gamma-aminobutyric acid (GABA) via a pH-dependent mechanism is demonstrated in the model human intestinal epithelial cell line Caco-2. 2. Experiments with BCECF [2',7',-bis(2-carboxyethyl)-5(6)- carboxyfluorescein]-loaded Caco-2 cells demonstrate that GABA transport across the apical membrane is coupled to proton flow into the cell. 3. Short-circuit current (ISC) measurements using Caco-2 cell monolayers under voltage-clamped conditions demonstrate that pH-dependent GABA transport is a rheogenic process even in the absence of extracellular Na+, consistent with H+/GABA symport. 4. A range of GABA analogues were tested for their abilities to: (a) inhibit pH-dependent [3H]GABA uptake across the apical membrane; (b) stimulate H+ flow across the apical surface of BCECF-loaded Caco-2 cell monolayers; (c) increase inward ISC across voltage-clamped Caco-2 cell monolayers. 5. Nipecotic acid, isonipecotic acid, D,L-beta-aminobutyric acid, and 3-amino-1-propanesulphonic acid each caused a marked acidification of intracellular pH and an increase in ISC when superfused at the apical surface of Caco-2 cell monolayers. In contrast L-alpha-amino-n-butyric acid failed to induce proton flow or ISC. The ability of these compounds to induce proton or current flow across the apical surface of this intestinal epithelium was closely related to the relative inhibitory effects on [3H]GABA uptake. 6. These observations demonstrate H+/GABA symport and suggest that this transport mechanism may be accessible as a route for oral absorption of therapeutically-useful GABA analogues.  相似文献   

17.
Amiodarone (AMD) is a benzofurane derivative with class III antiarrhythmic activity that is effective in controlling intractable cardiac arrhythmias. One of the most common and serious drug interactions in clinical practice is the interaction between digoxin and an antiarrhythmic agent. It has been reported that AMD and N-monodesethylamiodarone (DEA), the active metabolite of AMD, inhibit the P-glycoprotein (P-gp/MDR1)-mediated digoxin transport. However, the intestinal transport processes of AMD and DEA have not been fully revealed. In this study, we focused on the intestinal transport mechanism of DEA and characterized the intestinal transport of DEA using Caco-2 cells. Basal-to-apical transport of DEA by Caco-2 cells was greater than apical-to-basal transport. The relationship between concentration and basal-to-apical flux rate appeared to approach saturation. The uptake of DEA by Caco-2 cells was increased in the presence of typical ATP-depletion compounds and thyroid hormones. On the other hand, substrates for P-gp, multidrug resistance-associated proteins (MRPs/ABCCs) and breast cancer resistance protein (BCRP/ABCG2) had no effect on the efflux of DEA. These results suggest that an ATP-binding cassette (ABC) transporter, which is different from P-gp, MRPs and BCRP, mediates the efflux of DEA across the apical membrane in Caco-2 cells and that thyroid hormone inhibits this transporter.  相似文献   

18.
《Nanotoxicology》2013,7(4):355-364
Abstract

The use of engineered nanoparticles in the food sector is anticipated to increase dramatically, whereas their potential hazards for the gastrointestinal tract are still largely unknown. We investigated the cytotoxic and DNA-damaging effects of several types of nanoparticles and fine particles relevant as food additives (TiO2 and SiO2) or for food packaging (ZnO and MgO) as well as carbon black on human intestinal Caco-2 cells. All particles, except for MgO, were cytotoxic (LDH and WST-1 assay). ZnO, and to lesser extent SiO2, induced significant DNA damage (Fpg-comet), while SiO2 and carbon black were the most potent in causing glutathione depletion. DNA damage by TiO2 was found to depend on sample processing conditions. Interestingly, application of different TiO2 and ZnO particles revealed no relation between particle surface area and DNA damage. Our results indicate a potential hazard of several food-related nanoparticles which necessitate investigations on the actual exposure in humans.  相似文献   

19.
Indirect evidence suggests that lactoferrin (Lf), a major iron-binding protein in human milk, induces enterocyte growth and proliferation, depending on its concentration and affects the function and permeability of the intestinal mucosa. The bacterial endotoxin (lipopolysaccharide, LPS) is known to cause mucosal hyperpermeability in vivo. However, protective effects of Lf against LPS-mediated intestinal mucosal damage and barrier function in epithelial cells are not yet fully clarified. The aim of this study was to investigate whether Lf can reduce the cellular injury and alter epithelial hyperpermeability caused by LPS in human intestinal Caco-2 cells. When cell viability was measured by a WST-1 assay (tetrazolium salt-based assay), the protective effects against LPS-induced damage to Caco-2 cells were observed at doses of 800 and 1000 microg/ml Lf. The barrier function of Caco-2 monolayer tight junctions was assessed by measuring transepithelial electrical resistance (TEER) and permeability of FITC-labeled dextran 4000 (FD-4). The treatment of Caco-2 cells with Lf at doses of 400 and 1000 microg/ml significantly increased TEER as compared to treatment with LPS alone for 2 h (p<0.05). Further, at doses of 400 and 1000 microg/ml, Lf inhibited the enhancement of LPS-mediated permeability in Caco-2 cell monolayer. The results of this study suggest that Lf may have protective effects against LPS-mediated intestinal mucosal damage and impairment of barrier function in intestinal epithelial cells.  相似文献   

20.
The angiotensin-converting enzyme (ACE)-inhibitor ceronapril (SQ 29852) is shown to be a substrate of the intestinal dipeptide transporter. Uptake by Caco-2 cells, grown as confluent monolayers, follows a major saturable pathway (Km, 0.91 ± 0.11 mM; 90% at 1 mM) together with a minor passive component (kJ, 32.3 ± 6.6 ng (106 cells)−1 (20 min)−1. Uptake was inhibited by competition with dipeptides such as l-AIa-l-Pro (Ki, 2.96 mM) and l-Phe-Gly (Ki, 3.84 mM) but not by cephalosporins such as cephalexin. In contrast, transport was non-saturable, flux increased linearly with concentration and data were consistent with a passive transepithelial transport mechanism. Transport profiles showed a biphasic dependence upon time with an initial flux of 0.83 ± 0.02 ng insert−1 min−1 (k1) and a terminal value of 1.65 ± 0.08 ng insert−1 min−1 ((k2) at 100 μM. It is concluded that the basolateral efflux is retarded so that the passive paracellular transport controls the overall transepithelial transport characteristics in the Caco-2 model. Carrier-mediated uptake into intestinal enterocytres, followed by rate-limiting basolateral efflux, may explain the extended tmax in vivo following oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号