首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The authors studied the effects of the beach chair (BC) position, 10 cm H2O positive end-expiratory pressure (PEEP), and pneumoperitoneum on respiratory function in morbidly obese patients undergoing laparoscopic gastric banding. METHODS: The authors studied 20 patients (body mass index 42 +/- 5 kg/m2) during the supine and BC positions, before and after pneumoperitoneum was instituted (13.6 +/- 1.2 mmHg). PEEP was applied during each combination of position and pneumoperitoneum. The authors measured elastance (E,rs) of the respiratory system, end-expiratory lung volume (helium technique), and arterial oxygen tension. Pressure-volume curves were also taken (occlusion technique). Patients were paralyzed during total intravenous anesthesia. Tidal volume (10.5 +/- 1 ml/kg ideal body weight) and respiratory rate (11 +/- 1 breaths/min) were kept constant throughout. RESULTS: In the supine position, respiratory function was abnormal: E,rs was 21.71 +/- 5.26 cm H2O/l, and end-expiratory lung volume was 0.46 +/- 0.1 l. Both the BC position and PEEP improved E,rs (P < 0.01). End-expiratory lung volume almost doubled (0.83 +/- 0.3 and 0.85 +/- 0.3 l, BC and PEEP, respectively; P < 0.01 vs. supine zero end-expiratory pressure), with no evidence of lung recruitment (0.04 +/- 0.1 l in the supine and 0.07 +/- 0.2 in the BC position). PEEP was associated with higher airway pressures than the BC position (22.1 +/- 2.01 vs. 13.8 +/- 1.8 cm H2O; P < 0.01). Pneumoperitoneum further worsened E,rs (31.59 +/- 6.73; P < 0.01) and end-expiratory lung volume (0.35 +/- 0.1 l; P < 0.01). Changes of lung volume correlated with changes of oxygenation (linear regression, R2 = 0.524, P < 0.001) so that during pneumoperitoneum, only the combination of the BC position and PEEP improved oxygenation. CONCLUSIONS: The BC position and PEEP counteracted the major derangements of respiratory function produced by anesthesia and paralysis. During pneumoperitoneum, only the combination of the two maneuvers improved oxygenation.  相似文献   

2.
Background: Morbidly obese patients, during anesthesia and paralysis, experience more severe impairment of respiratory mechanics and gas exchange than normal subjects. The authors hypothesized that positive end-expiratory pressure (PEEP) induces different responses in normal subjects (n = 9; body mass index < 25 kg/m2) versus obese patients (n = 9; body mass index > 40 kg/m2).

Methods: The authors measured lung volumes (helium technique), the elastances of the respiratory system, lung, and chest wall, the pressure-volume curves (occlusion technique and esophageal balloon), and the intraabdominal pressure (intrabladder catheter) at PEEP 0 and 10 cm H2O in paralyzed, anesthetized postoperative patients in the intensive care unit or operating room after abdominal surgery.

Results: At PEEP 0 cm H2O, obese patients had lower lung volume (0.59 +/- 0.17 vs. 2.15 +/- 0.58 l [mean +/- SD], P < 0.01); higher elastances of the respiratory system (26.8 +/- 4.2 vs. 16.4 +/- 3.6 cm H2O/l, P < 0.01), lung (17.4 +/- 4.5 vs. 10.3 +/- 3.2 cm H2O/l, P < 0.01), and chest wall (9.4 +/- 3.0 vs. 6.1 +/- 1.4 cm H2O/l, P < 0.01); and higher intraabdominal pressure (18.8 +/- 7.8 vs. 9.0 +/- 2.4 cm H2O, P < 0.01) than normal subjects. The arterial oxygen tension was significantly lower (110 +/- 30 vs. 218 +/- 47 mmHg, P < 0.01; inspired oxygen fraction = 50%), and the arterial carbon dioxide tension significantly higher (37.8 +/- 6.8 vs. 28.4 +/- 3.1, P < 0.01) in obese patients compared with normal subjects. Increasing PEEP to 10 cm H2O significantly reduced elastances of the respiratory system, lung, and chest wall in obese patients but not in normal subjects. The pressure-volume curves were shifted upward and to the left in obese patients but were unchanged in normal subjects. The oxygenation increased with PEEP in obese patients (from 110 +/- 30 to 130 +/- 28 mmHg, P < 0.01) but was unchanged in normal subjects. The oxygenation changes were significantly correlated with alveolar recruitment (r = 0.81, P < 0.01).  相似文献   


3.
BACKGROUND: Morbidly obese patients, during anesthesia and paralysis, experience more severe impairment of respiratory mechanics and gas exchange than normal subjects. The authors hypothesized that positive end-expiratory pressure (PEEP) induces different responses in normal subjects (n = 9; body mass index < 25 kg/m2) versus obese patients (n = 9; body mass index > 40 kg/m2). METHODS: The authors measured lung volumes (helium technique), the elastances of the respiratory system, lung, and chest wall, the pressure-volume curves (occlusion technique and esophageal balloon), and the intraabdominal pressure (intrabladder catheter) at PEEP 0 and 10 cm H2O in paralyzed, anesthetized postoperative patients in the intensive care unit or operating room after abdominal surgery. RESULTS: At PEEP 0 cm H2O, obese patients had lower lung volume (0.59 +/- 0.17 vs. 2.15 +/- 0.58 l [mean +/- SD], P < 0.01); higher elastances of the respiratory system (26.8 +/- 4.2 vs. 16.4 +/- 3.6 cm H2O/l, P < 0.01), lung (17.4 +/- 4.5 vs. 10.3 +/- 3.2 cm H2O/l, P < 0.01), and chest wall (9.4 +/- 3.0 vs. 6.1 +/- 1.4 cm H2O/l, P < 0.01); and higher intraabdominal pressure (18.8 +/-7.8 vs. 9.0 +/- 2.4 cm H2O, P < 0.01) than normal subjects. The arterial oxygen tension was significantly lower (110 +/- 30 vs. 218 +/- 47 mmHg, P < 0.01; inspired oxygen fraction = 50%), and the arterial carbon dioxide tension significantly higher (37.8 +/- 6.8 vs. 28.4 +/- 3.1, P < 0.01) in obese patients compared with normal subjects. Increasing PEEP to 10 cm H2O significantly reduced elastances of the respiratory system, lung, and chest wall in obese patients but not in normal subjects. The pressure-volume curves were shifted upward and to the left in obese patients but were unchanged in normal subjects. The oxygenation increased with PEEP in obese patients (from 110 +/-30 to 130 +/- 28 mmHg, P < 0.01) but was unchanged in normal subjects. The oxygenation changes were significantly correlated with alveolar recruitment (r = 0.81, P < 0.01). CONCLUSIONS: During anesthesia and paralysis, PEEP improves respiratory function in morbidly obese patients but not in normal subjects.  相似文献   

4.
BACKGROUND AND OBJECTIVE: The aim of this study was to test the efficacy of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation, taking into consideration underlying lung function in order to select responders to PEEP. METHODS: Forty-six patients undergoing open-chest thoracic surgical procedures were studied in an operating room of a university hospital. Patients were randomized to receive zero end-expiratory pressure (ZEEP) or 10 cmH2O of PEEP to the dependent lung during one-lung ventilation in lateral decubitus. The patients were stratified according to preoperative forced expiratory volume in 1 s (FEV1) as an indicator of lung function (below or above 72%). Oxygenation was measured in the supine position, in the lateral decubitus with an open chest, and after 20 min of ZEEP or PEEP. The respiratory system pressure-volume curve of the dependent hemithorax was measured in supine and open-chest lateral decubitus positions with a super-syringe. RESULTS: Application of 10 cmH2O of PEEP resulted in a significant increase in PaO2 (P < 0.05). This did not occur in ZEEP group, considered as a time matched control. PEEP improved oxygenation only in patients with high FEV1 (from 11.6+/-4.8 to 15.3+/-7.1 kPa, P < 0.05). There was no significant change in the low FEV1 group. Dependent hemithorax compliance decreased in lateral decubitus, more in patients with high FEV1 (P < 0.05). PEEP improved compliance to a greater extent in patients with high FEV1 (from 33.6+/-3.6 to 48.4+/-3.9 mLcmH2O(-1), P < 0.05). CONCLUSIONS: During one-lung ventilation in lateral decubitus, PEEP applied to the dependent lung significantly improves oxygenation and respiratory mechanics in patients with rather normal lungs as assessed by high FEV1.  相似文献   

5.
BACKGROUND: Although the use of external positive end-expiratory pressure (PEEP) is recommended for patients with intrinsic PEEP, no simple method exists for bedside titration. We hypothesized that the occlusion pressure, measured from airway pressure during the phase of ventilator triggering (P0.1t), could help to indicate the effects of PEEP on the work of breathing (WOB). METHODS: Twenty patients under assisted ventilation with chronic obstructive pulmonary disease were studied with 0, 5, and 10 cm H2O of PEEP while ventilated with a fixed level of pressure support. RESULTS: PEEP 5 significantly reduced intrinsic PEEP (mean +/- SD, 5.2 +/- 2.4 cm H2O at PEEP 0 to 3.6 +/- 1.9 at PEEP 5; P < 0.001), WOB per min (12. 6 +/- 6.7 J/min to 9.1 +/- 5.9 J/min; P = 0.003), WOB per liter (1.2 +/- 0.4 J/l to 0.8 +/- 0.4 J/l; P < 0.001), pressure time product of the diaphragm (216 +/- 86 cm H2O. s-1. min-1 to 155 +/- 179 cm H2O. s-1. min-1; P = 0.001) and P0.1t (3.3 +/- 1.5 cm H2O to 2.3 +/- 1.4 cm H2O; P = 0.002). At PEEP 10, no further significant reduction in muscle effort nor in P0.1t (2.5 +/- 2.1 cm H2O) occurred, and transpulmonary pressure indicated an increase in end-expiratory lung volume. Significant correlations were found between WOB per min and P0.1t at the three levels of PEEP (P < 0.001), and between the changes in P0.1t versus the changes in WOB per min (P < 0.005), indicating that P0.1t and WOB changed in the same direction. A decrease in P0.1 with PEEP indicated a decrease in intrinsic PEEP with a specificity of 71% and a sensitivity of 88% and a decrease in WOB with a specificity of 86% and a sensitivity of 91%. CONCLUSION: These results show that P0.1t may help to assess the effects of PEEP in patients with intrinsic PEEP.  相似文献   

6.
Background: Although the use of external positive end-expiratory pressure (PEEP) is recommended for patients with intrinsic PEEP, no simple method exists for bedside titration. We hypothesized that the occlusion pressure, measured from airway pressure during the phase of ventilator triggering (P0.1t), could help to indicate the effects of PEEP on the work of breathing (WOB).

Methods: Twenty patients under assisted ventilation with chronic obstructive pulmonary disease were studied with 0, 5, and 10 cm H2O of PEEP while ventilated with a fixed level of pressure support.

Results: PEEP 5 significantly reduced intrinsic PEEP (mean +/- SD, 5.2 +/- 2.4 cm H2O at PEEP 0 to 3.6 +/- 1.9 at PEEP 5;P < 0.001), WOB per min (12.6 +/- 6.7 J/min to 9.1 +/- 5.9 J/min;P = 0.003), WOB per liter (1.2 +/- 0.4 J/l to 0.8 +/- 0.4 J/l;P < 0.001), pressure time product of the diaphragm (216 +/- 86 cm H2O [middle dot] s-1 [middle dot] min-1 to 155 +/- 179 cm H2O [middle dot] s-1 [middle dot] min-1;P = 0.001) and P0.1t (3.3 +/- 1.5 cm H2O to 2.3 +/- 1.4 cm H2O;P = 0.002). At PEEP 10, no further significant reduction in muscle effort nor in P0.1t (2.5 +/- 2.1 cm H2O) occurred, and transpulmonary pressure indicated an increase in end-expiratory lung volume. Significant correlations were found between WOB per min and P0.1t at the three levels of PEEP (P < 0.001), and between the changes in P0.1tversus the changes in WOB per min (P < 0.005), indicating that P0.1t and WOB changed in the same direction. A decrease in P0.1 with PEEP indicated a decrease in intrinsic PEEP with a specificity of 71% and a sensitivity of 88% and a decrease in WOB with a specificity of 86% and a sensitivity of 91%.  相似文献   


7.
BACKGROUND: Lung protective ventilation using low end-inspiratory pressures and tidal volumes (VT) has been shown to impair alveolar recruitment and to promote derecruitment in acute lung injury. The aim of the present study was to compare the effects of two different end-inspiratory pressure levels on alveolar recruitment, alveolar derecruitment and potential overdistention at incremental levels of positive end-expiratory pressure. METHODS: Sixteen adult sheep were randomized to be ventilated with a peak inspiratory pressure of either 35 cm H2O (P35, low VT) or 45 cm H2O (P45, high VT) after saline washout-induced lung injury. Positive end-expiratory pressure (PEEP) was increased in a stepwise manner from zero (ZEEP) to 7, 14 and 21 cm of H2O in hourly intervals. Tidal volume, initially set to 12 ml kg(-1), was reduced according to the pressure limits. Computed tomographic scans during end-expiratory and end-inspiratory hold were performed along with hemodynamic and respiratory measurements at each level of PEEP. RESULTS: Tidal volumes for the two groups (P35/P45) were: 7.7 +/- 0.9/11.2 +/- 1.3 ml kg(-1) (ZEEP), 7.9 +/- 2.1/11.3 +/- 1.3 ml kg(-1) (PEEP 7 cm H2O), 8.3 +/- 2.5/11.6 +/- 1.4 ml kg(-1) (PEEP 14 cm H2O) and 6.5 +/- 1.7/11.0 +/- 1.6 ml kg(-1) (PEEP 21 cm H2O); P < 0.001 for differences between the two groups. Absolute nonaerated lung volumes during end-expiration and end-inspiration showed no difference between the two groups for given levels of PEEP, while tidal-induced changes in nonaerated lung volume (termed cyclic alveolar instability, CAI) were larger in the P45 group at low levels of PEEP. The decrease in nonaerated lung volume was significant for PEEP 14 and 21 cm H2O in both groups compared with ZEEP (P < 0.005). Over-inflated lung volumes, although small, were significantly higher in the P45 group. Significant respiratory acidosis was noted in the P35 group despite increases in the respiratory rate. CONCLUSION: Limiting peak inspiratory pressure and VT does not impair alveolar recruitment or promote derecruitment when using sufficient levels of PEEP.  相似文献   

8.
BACKGROUND: The aim of our study was to assess the effect of periodic hyperinflations (sighs) during pressure support ventilation (PSV) on lung volume, gas exchange, and respiratory pattern in patients with early acute respiratory distress syndrome (ARDS). METHODS: Thirteen patients undergoing PSV were enrolled. The study comprised 3 steps: baseline 1, sigh, and baseline 2, of 1 h each. During baseline 1 and baseline 2, patients underwent PSV. Sighs were administered once per minute by adding to baseline PSV a 3- to 5-s continuous positive airway pressure (CPAP) period, set at a level 20% higher than the peak airway pressure of the PSV breaths or at least 35 cm H2O. Mean airway pressure was kept constant by reducing the positive end-expiratory pressure (PEEP) during the sigh period as required. At the end of each study period, arterial blood gas tensions, air flow and pressures traces, end-expiratory lung volume (EELV), compliance of respiratory system (Crs), and ventilatory parameters were recorded. RESULTS: Pao2 improved (P < 0.001) from baseline 1 (91.4 +/- 27.4 mmHg) to sigh (133 +/- 42.5 mmHg), without changes of Paco2. EELV increased (P < 0.01) from baseline 1 (1,242 +/- 507 ml) to sigh (1,377 +/- 484 ml). Crs improved (P < 0.01) from baseline 1 (40.2 +/- 12.5 ml/cm H2O) to sigh (45.1 +/- 15.3 ml/cm H2O). Tidal volume of pressure-supported breaths and the airway occlusion pressure (P0.1) decreased (P < 0.01) during the sigh period. There were no significant differences between baselines 1 and 2 for all parameters. CONCLUSIONS: The addition of 1 sigh per minute during PSV in patients with early ARDS improved gas exchange and lung volume and decreased the respiratory drive.  相似文献   

9.
PURPOSE: The goal of this study was to analyze the effect of positive end-expiratory pressure (PEEP), with and without a lung recruitment maneuver, on dead space. METHODS: 16 anesthetized patients were sequentially studied in three steps: 1) without PEEP (ZEEP), 2) with 5 cm H(2)O of PEEP and 3) with 5 cm H(2)O of PEEP after an alveolar recruitment strategy (ARS). Ventilation was maintained constant. The single breath test of CO(2) (SBT-CO(2)), arterial oxygenation, end-expiratory lung volume (EELV) and respiratory compliance were recorded every 30 min. RESULTS: Physiological dead space to tidal volume decreased after ARS (0.45 +/- 0.01) compared with ZEEP (0.50 +/- 0.07, P < 0.05) and PEEP (0.51 +/- 0.06, P < 0.05). The elimination of CO(2) per breath increased during PEEP (25 +/- 3.3 mL.min(-1)) and ARS (27 +/- 3.2 mL.min(-1)) compared to ZEEP (23 +/- 2.6 mL.min(-1), P < 0.05), although ARS showed larger values than PEEP (P < 0.05). Pa-etCO(2) difference was lower after recruitment (0.9 +/- 0.5 kPa, P < 0.05) compared to ZEEP (1.1 +/- 0.5 kPa) and PEEP (1.2 +/- 0.5 kPa). Slope II increased after ARS (63 +/- 11%/L, P < 0.05) compared with ZEEP (46 +/- 7.7%/L) and PEEP (56 +/- 10%/L). Slope III decreased significantly after recruitment (0.13 +/- 0.07 1/L) compared with ZEEP (0.21 +/- 0.11 1/L) and PEEP (0.18 +/- 0.10 1/L). The angle between slope II and III decreased only after ARS. After lung recruitment, PaO(2), EELV, and compliance increased significantly compared with ZEEP and PEEP. CONCLUSION: Lung recruitment improved the efficiency of ventilation in anesthetized patients.  相似文献   

10.
Background: The aim of our study was to assess the effect of periodic hyperinflations (sighs) during pressure support ventilation (PSV) on lung volume, gas exchange, and respiratory pattern in patients with early acute respiratory distress syndrome (ARDS).

Methods: Thirteen patients undergoing PSV were enrolled. The study comprised 3 steps: baseline 1, sigh, and baseline 2, of 1 h each. During baseline 1 and baseline 2, patients underwent PSV. Sighs were administered once per minute by adding to baseline PSV a 3- to 5-s continuous positive airway pressure (CPAP) period, set at a level 20% higher than the peak airway pressure of the PSV breaths or at least 35 cm H2O. Mean airway pressure was kept constant by reducing the positive end-expiratory pressure (PEEP) during the sigh period as required. At the end of each study period, arterial blood gas tensions, air flow and pressures traces, end-expiratory lung volume (EELV), compliance of respiratory system (Crs), and ventilatory parameters were recorded.

Results: Pao2 improved (P < 0.001) from baseline 1 (91.4 +/- 27.4 mmHg) to sigh (133 +/- 42.5 mmHg), without changes of Paco2. EELV increased (P < 0.01) from baseline 1 (1,242 +/- 507 ml) to sigh (1,377 +/- 484 ml). Crs improved (P < 0.01) from baseline 1 (40.2 +/- 12.5 ml/cm H2O) to sigh (45.1 +/- 15.3 ml/cm H2O). Tidal volume of pressure-supported breaths and the airway occlusion pressure (P0.1) decreased (P < 0.01) during the sigh period. There were no significant differences between baselines 1 and 2 for all parameters.  相似文献   


11.
Tzoufi M  Mentzelopoulos SD  Roussos C  Armaganidis A 《Anesthesia and analgesia》2005,101(3):843-50, table of contents
We hypothesized that combined salbutamol and external positive end-expiratory pressure (PEEPe) may present additive benefits in chronic obstructive pulmonary disease (COPD) exacerbation. In 10 anesthetized, mechanically ventilated, and bronchodilator-responsive COPD patients exhibiting moderate intrinsic PEEP (PEEPi), we assessed respiratory system (rs) mechanics, hemodynamics, and gas exchange at (a) baseline (zero PEEPe [ZEEPe]), (b) 30 min after 5 mg of nebulized salbutamol administration (ZEEPe-S), (c) 30 min after setting PEEPe at baseline PEEPi level (PEEPe), and (d) 30 min after 5 mg of nebulized salbutamol administration with PEEPe maintained unchanged (PEEPe-S). Return of determined variable values to baseline values was confirmed before PEEPe application. Relative to ZEEPe, (a) at ZEEP-S, PEEPi (4.8 +/- 0.7 versus 7.0 +/- 1.1 cm H(2)O), functional residual capacity change (115.6 +/- 23.1 versus 202.1 +/- 46.0 mL), minimal rs (airway) resistance (9.3 +/- 1.4 versus 11.8 +/- 2.2 cm H(2)O.L(-1).s(-1)), and additional rs resistance (5.2 +/- 1.4 versus 7.2 +/- 1.3 cm H(2)O.L(-1).s(-1)) were reduced (P < 0.01), and hemodynamics were improved; (b) at PEEPe, PEEPi (3.7 +/- 1.3 cm H(2)O) was reduced (P < 0.01), and gas exchange was improved; and (c) at PEEPe-S, PEEPi (2.0 +/- 1.2 cm H(2)O) was minimized, and rs mechanics (static rs elastance included), hemodynamics, and gas exchange were improved. Conclusively, in carefully preselected COPD patients, bronchodilation/PEEPe exhibits additive benefits.  相似文献   

12.
Background: The morphologic effect of positive end-expiratory pressure (PEEP) and of two tidal volumes were studied by computed tomography to determine whether setting the tidal volume (Vt) at the upper inflection point (UIP) of the pressure-volume (P-V) curve of the respiratory system or 10 ml/kg have different effects on hyperinflation and alveolar recruitment.

Methods: Alveolar recruitment and hyperinflation were quantified by computed tomography in nine patients with the acute respiratory distress syndrome (ARDS). First, end expiration was compared without PEEP and with PEEP set at the lower inflection point of the P-V curve; second, at end inspiration above PEEP, a reduced Vt set at the UIP (rVt) and a standard 10 ml/kg Vt (Vt) ending above the UIP were compared. Three lung zones were defined from computed tomographic densities: hyperdense, normal, and hyperinflated zones.

Results: Positive end-expiratory pressure induced a significant decrease in hyperdensities (from 46.8 +/- 18% to 38 +/- 15.1% of zero end-expiratory pressure (ZEEP) area; P < 0.02) with a concomitant increase in normal zones (from 47.3 +/- 20.9% to 56.5 +/- 13.2% of the ZEEP area; P < 0.05), and a significant increase in hyperinflation (from 8.1 +/- 5.9% to 17.8 +/- 12.7% of ZEEP area; P < 0.01). At end inspiration, a significant increase in hyperinflated areas was observed with Vt compared with rVt (33.4 +/- 17.8 vs. 26.8 +/- 17.3% of ZEEP area; P < 0.05), whereas no significant difference was observed for both normal and hyperdense zones.  相似文献   


13.
Background: A lung-protective ventilatory strategy with low tidal volume (VT) has been proposed for use in acute respiratory distress syndrome (ARDS). Alveolar derecruitment may occur during the use of a lung-protective ventilatory strategy and may be prevented by recruiting maneuvers. This study examined the hypothesis that the effectiveness of a recruiting maneuver to improve oxygenation in patients with ARDS would be influenced by the elastic properties of the lung and chest wall.

Methods: Twenty-two patients with ARDS were studied during use of the ARDSNet lung-protective ventilatory strategy: VT was set at 6 ml/kg predicted body weight and positive end-expiratory pressure (PEEP) and inspiratory oxygen fraction (Fio2) were set to obtain an arterial oxygen saturation of 90-95% and/or an arterial oxygen partial pressure (Pao2) of 60- 80 mmHg (baseline). Measurements of Pao2/Fio2, static volume-pressure curve, recruited volume (vertical shift of the volume-pressure curve), and chest wall and lung elastance (EstW and EstL: esophageal pressure) were obtained on zero end-expiratory pressure, at baseline, and at 2 and 20 min after application of a recruiting maneuver (40 cm H2O of continuous positive airway pressure for 40 s). Cardiac output (transesophageal Doppler) and mean arterial pressure were measured immediately before, during, and immediately after the recruiting maneuver. Patients were classified a priori as responders and nonresponders on the basis of the occurrence or nonoccurrence of a 50% increase in Pao2/Fio2 after the recruiting maneuver.

Results: Recruiting maneuvers increased Pao2/Fio2 by 20 +/- 3% in nonresponders (n = 11) and by 175 +/- 23% (n = 11; mean +/- standard deviation) in responders. On zero end-expiratory pressure, EstL (28.4 +/- 2.2 vs. 24.2 +/- 2.9 cm H2O/l) and EstW (10.4 +/- 1.8 vs. 5.6 +/- 0.8 cm H2O/l) were higher in nonresponders than in responders (P < 0.01). Nonresponders had been ventilated for a longer period of time than responders (7 +/- 1 vs. 1 +/- 0.3 days;P < 0.001). Cardiac output and mean arterial pressure decreased by 31 +/- 2 and 19 +/- 3% in nonresponders and by 2 +/- 1 and 2 +/- 1% in responders (P < 0.01).  相似文献   


14.
Sprung J  Whalley DG  Falcone T  Wilks W  Navratil JE  Bourke DL 《Anesthesia and analgesia》2003,97(1):268-74, table of contents
Morbidly obese (MO) patients undergoing laparoscopy have lower PaO(2) compared with normal-weight (NW) patients. We hypothesized that increases in tidal volume (V(T)) or respiratory rate (RR) would improve oxygenation. All measurements were performed at: 1) baseline: V(T) 600-700 mL and 10 breaths/min, 2) double V(T): V(T) 1200-1400 mL and 10 breaths/min, and 3) double rate: V(T) 600-700 mL and 20 breaths/min. We calculated static respiratory system compliance (Cst,rs) and inspiratory resistance (RI,rs). End-tidal CO(2) was measured with a mass spectrometer, and PaO(2) and PaCO(2) with a continuous blood gas monitor. Supine anesthetized MO patients had 29% lower Cst,rs than the NW patients (P < 0.05). Positioning patients head-up or head-down before pneumoperitoneum did not significantly affect Cst,rs in either group (P = 0.8). Doubling the V(T), but not RR, increased Cst,rs in both groups. Pneumoperitoneum caused large decreases in Cst,rs in both groups (both P < 0.001). During pneumoperitoneum, changing the body position, V(T), or RR did not further affect Cst,rs in either group (P > 0.7). Before pneumoperitoneum, RI,rs was higher in the MO patients compared with the NW patients regardless of body position (P = 0.01). Doubling either RR or V(T) before pneumoperitoneum did not change RI,rs in either group. After pneumoperitoneum, RI,rs increased in both the head-down and head-up positions (P < 0.05), but not in the supine position. Regardless of the conditions studied, alveolar-arterial difference in oxygen tension was always significantly higher in MO patients (P < 0.05). The alveolar-arterial difference in oxygen tension was not affected by body position, pneumoperitoneum, or the mode of ventilation. Arterial oxygenation during laparoscopy was affected only by body weight and could not be improved by increasing either the V(T) or RR. IMPLICATIONS: Morbid obesity decreases arterial oxygenation and respiratory system compliance. During laparoscopy, arterial oxygenation is affected only by the patient's body weight. Increases in tidal volume or respiratory rate do not improve arterial oxygenation.  相似文献   

15.
BACKGROUND: Patients ventilated after cardiac surgery commonly have impaired oxygenation, mainly due to lung collapse. We have previously found that PaO2 and end-expiratory lung volume (EELV) were increased by a lung recruitment maneuver (LRM) followed by positive end-expiratory pressure (PEEP). The aim of this study was to evaluate whether only PEEP or only a LRM could give similar effects. METHODS: Thirty circulatory stable patients (aged 55-79 years) mechanically ventilated after cardiac surgery were randomized to receive LRM (four 10-s insufflations to an airway pressure of 45 cmH2O) and zero end-expiratory pressure (LRM-group), PEEP 12 cmH2O (PEEP-group) or LRM in combination with PEEP 12 cmH2O (LRM + PEEP-group). The set end-expiratory pressure was kept for 75 min. Before, during and after the intervention, EELV (SF6 washout technique) and blood gases were measured. RESULTS: Initial EELV and PaO2 were similar in all groups. In the LRM-group, PaO2 and EELV increased transiently (P < 0.0001), but returned at 5 min to the initial values. In the PEEP-group, PaO2 did not change but EELV increased to 155 +/- 27% of the initial value (P < 0.0001). In the LRM+PEEP-group, PaO2 and EELV increased to 212 +/- 66% and 178 +/- 31% of the initial values (P < 0.0001), respectively, and were maintained during PEEP application. CONCLUSION: In patients ventilated after cardiac surgery: (1) PEEP increased lung volume but not PaO2, (2) a lung recruitment maneuver without subsequent PEEP had no sustained effect, and (3) both a lung recruitment maneuver and PEEP were needed to increase and maintain the increased lung volume and PaO2.  相似文献   

16.
BACKGROUND: Densities in dependent lung regions worsen oxygenation in patients with acute respiratory distress syndrome. Identification of these densities requires examination using computed tomography (CT). In this study, the authors evaluated the use of transesophageal echocardiography (TEE) to estimate densities in the dependent lung. METHODS: Forty consecutive patients with acute lung injury or acute respiratory distress syndrome who underwent CT and TEE examination were included in this study. Densities in the lower left lung area were detected through the descending aorta by TEE. Density areas observed by TEE were compared with those obtained by CT. The effect of positive end-expiratory pressure (PEEP) application on density area was also evaluated. RESULTS: Density areas in the dependent lung region measured by TEE were 12.0+/-6.1 cm2 (mean +/- SD) at mid esophageal position. Density areas evaluated using TEE in the left lung correlated significantly with those estimated with CT in the left and right lungs (P < 0.01 in both lungs). In addition, the authors observed a significant correlation between PaO2/FIO2 and density areas estimated using TEE (P < 0.05). During positive end-expiratory pressure application, the area of density estimated with TEE decreased and PaO2 improved. CONCLUSIONS: The authors clearly demonstrated that it is possible to estimate the density area of the dependent left lung regions in patients with acute lung injury or acute respiratory distress syndrome using TEE. It is also possible to observe the changes of density areas during application of positive end-expiratory pressure.  相似文献   

17.
The influence of position (sphinx, lateral, supine), surfactant depletion, and different positive end-expiratory pressure (PEEP) on functional residual capacity (FRC), series dead space (VdS) and compliance of the respiratory system (Crs) were evaluated in five dogs. Ventilation homogeneity as measured by an index (multiple breath alveolar mixing efficiency), oxygenation, and cardiovascular hemodynamics were additionally examined. The dogs were anesthetized with halothane, paralyzed, and mechanically ventilated. FRC and VdS were found to be notably large in dogs, 45 +/- 8 ml/kg and 6 +/- 1 ml/kg, respectively. FRC and ventilation homogeneity were improved in the sphinx position (prone position with upright head). Surfactant depletion by lung lavage with 37 degrees C saline caused an immediate and stable decrease in FRC, Crs, and oxygenation (P less than 0.05, respectively) for about 5 h without marked effects on the circulatory system. FRC and VdS increased with increasing PEEP. At the highest PEEP, 10 cmH2O (1 kPa), Crs decreased (P less than 0.05) and ventilation became more uneven, indicating alveolar overdistension.  相似文献   

18.
STUDY OBJECTIVE: To investigate the influence of pneumoperitoneum (PP) and posture on respiratory compliance and ventilation pressures. DESIGN: Prospective, single blind trial. PATIENTS: 10 female ASA physical status I and II patients scheduled for elective gynecologic laparoscopy. SETTING: University medical center. INTERVENTIONS: Anesthesia was performed as total IV anesthesia (TIVA) with propofol, alfentanil, and atracurium. After induction of anesthesia and orotracheal intubation, the lungs were ventilated to maintain partial pressure of CO(2) (P(ET)CO(2)) of 30 +/- 3 mmHg. Ventilation was kept constant. As gas mixture oxygen and air 1:1 was used without positive end-expiratory pressure (PEEP). MEASUREMENTS: Measurements were taken before and after creation of pneumoperitoneum with an intraabdominal pressure (IAP) of 10 mmHg, of 15 mmHg in 20 degrees head-down tilt, then in 20 degrees head-up tilt, and after deflation of PP. We determined peak inspiratory pressure (PIP), mean airway pressure (mPaw), P(ET)CO(2), expiratory minute volume (V(E)), heart rate (HR), and systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP). Respiratory system compliance (C(eff rs)) was calculated as quotient of tidal volume (V(T)) and PIP. MAIN RESULTS: After creation of PP (IAP 10 mmHg), there was a significant increase of median PIP (3 cmH(2)O), mPaw (1 cm H(2)O) and arterial pressure (BP), (MAP by 7 mmHg), C(eff rs) decreased by 6 mL. cm H(2)O(-1). Increase of IAP to 15 mmHg led to a further increase of PIP (2 cm H(2)O) and mPaw (1 cm H(2)O), and a further decrease of C(eff rs) by 5 mL cm H(2)O(-1); BP decreased (MAP by 5.5 mmHg). Head-up or head down positions showed no significant hemodynamic or pulmonary changes. P(ET)CO(2)increased from 29.5 to 36 mmHg at an IAP of 15 mmHg, but then no further changes were noticed. Five minutes after deflation of pneumoperitoneum all values returned to baseline levels. CONCLUSIONS: Creation of PP at an IAP of 15 mmHg reduced respiratory system compliance, and increased peak inspiratory and mean airway pressures, which quickly returned to normal values after deflation. Head-down or head-up position did not further alter those parameters.  相似文献   

19.
BACKGROUND: A lung-protective ventilatory strategy with low tidal volume (VT) has been proposed for use in acute respiratory distress syndrome (ARDS). Alveolar derecruitment may occur during the use of a lung-protective ventilatory strategy and may be prevented by recruiting maneuvers. This study examined the hypothesis that the effectiveness of a recruiting maneuver to improve oxygenation in patients with ARDS would be influenced by the elastic properties of the lung and chest wall. METHODS: Twenty-two patients with ARDS were studied during use of the ARDSNet lung-protective ventilatory strategy: VT was set at 6 ml/kg predicted body weight and positive end-expiratory pressure (PEEP) and inspiratory oxygen fraction (Fio2) were set to obtain an arterial oxygen saturation of 90-95% and/or an arterial oxygen partial pressure (Pao2) of 60- 80 mmHg (baseline). Measurements of Pao2/Fio2, static volume-pressure curve, recruited volume (vertical shift of the volume-pressure curve), and chest wall and lung elastance (EstW and EstL: esophageal pressure) were obtained on zero end-expiratory pressure, at baseline, and at 2 and 20 min after application of a recruiting maneuver (40 cm H2O of continuous positive airway pressure for 40 s). Cardiac output (transesophageal Doppler) and mean arterial pressure were measured immediately before, during, and immediately after the recruiting maneuver. Patients were classified a priori as responders and nonresponders on the basis of the occurrence or nonoccurrence of a 50% increase in Pao2/Fio2 after the recruiting maneuver. RESULTS: Recruiting maneuvers increased Pao2/Fio2 by 20 +/- 3% in nonresponders (n = 11) and by 175 +/- 23% (n = 11; mean +/- standard deviation) in responders. On zero end-expiratory pressure, EstL (28.4 +/- 2.2 vs. 24.2 +/- 2.9 cm H2O/l) and EstW (10.4 +/- 1.8 vs. 5.6 +/- 0.8 cm H2O/l) were higher in nonresponders than in responders (P < 0.01). Nonresponders had been ventilated for a longer period of time than responders (7 +/- 1 vs. 1 +/- 0.3 days; P < 0.001). Cardiac output and mean arterial pressure decreased by 31 +/- 2 and 19 +/- 3% in nonresponders and by 2 +/- 1 and 2 +/- 1% in responders (P < 0.01). CONCLUSIONS: Application of recruiting maneuvers improves oxygenation only in patients with early ARDS who do not have impairment of chest wall mechanics and with a large potential for recruitment, as indicated by low values of EstL.  相似文献   

20.
BACKGROUND: Morbidly obese patients have an increased risk for peri-operative lung complications and develop a decrease in functional residual capacity (FRC). Electric impedance tomography (EIT) can be used for continuous, fast-response measurement of lung volume changes. This method was used to optimize positive end-expiratory pressure (PEEP) to maintain FRC. METHODS: Fifteen patients with a body mass index of 49 +/- 8 kg/m(2) were studied during anaesthesia for laparoscopic gastric bypass surgery. Before induction, 16 electrodes were placed around the thorax to monitor ventilation-induced impedance changes. Calibration of the electric impedance tomograph against lung volume changes was made by increasing the tidal volume in steps of 200 ml. PEEP was titrated stepwise to maintain a horizontal baseline of the EIT curve, corresponding to a stable FRC. Absolute FRC was measured with a nitrogen wash-out/wash-in technique. Cardiac output was measured with an oesophageal Doppler method. Volume expanders, 1 +/- 0.5 l, were given to prevent PEEP-induced haemodynamic impairment. RESULTS: Impedance changes closely followed tidal volume changes (R(2) > 0.95). The optimal PEEP level was 15 +/- 1 cmH(2)O, and FRC at this PEEP level was 1706 +/- 447 ml before and 2210 +/- 540 ml after surgery (P < 0.01). The cardiac index increased significantly from 2.6 +/- 0.5 before to 3.1 +/- 0.8 l/min/m(2) after surgery, and the alveolar dead space decreased. P(a)O2/F(i)O2, shunt and compliance remained unchanged. CONCLUSION: EIT enables rapid assessment of lung volume changes in morbidly obese patients, and optimization of PEEP. High PEEP levels need to be used to maintain a normal FRC and to minimize shunt. Volume loading prevents circulatory depression in spite of a high PEEP level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号