首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

BACKGROUND AND PURPOSE

Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB1 antagonists / inverse agonists. Concentrations of 0.5–10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABAA receptors but found a significant positive allosteric modulation instead.

EXPERIMENTAL APPROACH

Recombinant GABAA receptors were expressed in Xenopus oocytes. Receptors were exposed to AM251 or rimonabant in the absence and presence of GABA. Standard electrophysiological techniques were used to monitor the elicited ionic currents.

KEY RESULTS

AM251 dose-dependently potentiated responses to 0.5 µM GABA at the recombinant α1β2γ2 GABAA receptor with an EC50 below 1 µM and a maximal potentiation of about eightfold. The Hill coefficient indicated that more than one binding site for AM251 was located in this receptor. Rimonabant had a lower affinity, but a fourfold higher efficacy. AM251 potentiated also currents mediated by α1β2, αxβ2γ2 (x = 2,3,5,6), α1β3γ2 and α4β2δ GABAA receptors, but not those mediated by α1β1γ2. Interestingly, the CB1 receptor antagonists LY320135 and O-2050 did not significantly affect α1β2γ2 GABAA receptor-mediated currents at concentrations of 1 µM.

CONCLUSIONS AND IMPLICATIONS

This study identified rimonabant and AM251 as positive allosteric modulators of GABAA receptors. Thus, potential GABAergic effects of commonly used concentrations of these compounds should be considered in in vitro experiments, especially at extrasynaptic sites where GABA concentrations are low.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

2.
BACKGROUND AND PURPOSE: Rimonabant (SR141716) is the first selective cannabinoid receptor CB(1) antagonist described. Along with its anti-obesity action, emerging findings show potential anti-proliferative and anti-inflammatory action of SR141716 in several in vitro and in vivo models. In this study we have investigated the anti-proliferative and immunomodulatory effects of SR141716 in human peripheral blood mononuclear cells (PBMCs). EXPERIMENTAL APPROACH: We have evaluated in vitro the effect of SR141716 in human PBMCs stimulated with different mitogens. Cell proliferation was assessed by (3)H-thymidine incorporation. Cell cycle, cell death and apoptosis were analysed by flow cytometry. Protein expression was investigated by Western blot. KEY RESULTS: SR141716 significantly inhibited the proliferative response of PBMCs and this effect was accompanied by block of G(1)/S phase of the cell cycle without induction of apoptosis and cell death. SR141716 used in combination with 2-methyl-arachidonyl-2'-fluoro-ethylamide (Met-F-AEA), a stable analogue of the endogenous cannabinoid anandamide, showed synergism rather than antagonism of the inhibition of cell proliferation. The immunomodulatory effects of SR141716 were associated with increased expression of IkappaB, phosphorylated AKT (p-AKT) and decreased expression of NF-kappaB, p-IkappaB, p-ERK, COX-2 and iNOS. CONCLUSIONS AND IMPLICATIONS: Our findings suggest SR141716 is a novel immunomodulatory drug with anti-inflammatory properties.  相似文献   

3.
The synthetic cannabinoid CB1 receptor antagonist rimonabant (sold in the United Kingdom under the brand name Acomplia) was reported to improve the profile of cardiovascular risk factors in obese patients with the metabolic syndrome, a cluster of metabolic disorders that often precedes the onset of type II diabetes. Rimonabant is shown in the current issue of British Journal of Pharmacology to attenuate weight gain in Zucker rats, an experimental model of insulin resistance. Neutrophil and monocyte counts were lowered by rimonabant administration. Both platelet activation (by ADP) and aggregation (in response to thrombin) were inhibited. Circulating pro-inflammatory cytokine levels (monocyte chemotactic protein 1, MCP1 and Regulated upon Activation, Normal T-cell Expressed and Secreted, RANTES) were also reduced. Furthermore, fibrinogen levels returned to normal. These favourable anti-inflammatory and anti-thrombotic actions imply for rimonabant a peripheral, direct action on some cardiovascular risk factors.  相似文献   

4.
The cannabinoid receptor antagonist SR141716A has been suggested to be an inverse agonist at CB1 receptors in some isolated intact tissues. We found that the basal incorporation of [35S]-GTPγS in Chinese hamster ovary cells expressing human recombinant CB1 and CB2 receptors was inhibited by SR141716A (mean pEC50s 8.26 and 6.00, respectively), whereas cannabinol (10 μM) had no significant effect at hCB1 receptors but inhibited the binding at hCB2 receptors. As cannabinol had no effect on basal [35S]-GTPγS binding at hCB1 at a concentration 100 fold higher than its binding affinity (Ki=0.1 μM), we conclude that endogenous cannabinoid receptor agonists are not a confounding factor and suggest the actions of SR141716A at the hCB1 receptor, and the actions of SR141716A and cannabinol at the hCB2 receptor, are due to inverse agonism.  相似文献   

5.
An endogenous cannabinoid system may play an important role in controlling memory processes. SR141716A (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride), a selective cannabinoid CB(1) receptor antagonist, was studied in an eight-arm radial maze task in which either deficits or improvements in memory could be detected. This task required well-trained rats to recall after either a relatively short (3 h) or long (7 h) delay period where they had received rewards during an information phase in order to obtain the remaining rewards during a retention phase. SR141716A was administered intraperitoneally immediately after the information phase in order to determine the drug's effects on memory consolidation. Although SR141716A had no effect on the number of errors committed after a short interval, SR141716A significantly reduced the number of errors that occurred after 7 h. These results suggest that a cannabinoid CB(1) receptor antagonist can improve consolidation processes and thus may be useful in treating memory disorders.  相似文献   

6.

BACKGROUND AND PURPOSE

Numerous studies have shown that N-arachidonoylethanolamine (AEA) can inhibit sperm motility and function but the ability of cannabinoids to inhibit sperm motility is not well understood. We investigated the effects of WIN 55,212-2, a CB1 cannabinoid receptor agonist, and Δ9-tetrahydracannabinol (Δ9-THC) on the ATP levels and motility of murine sperm in vitro. In addition, the effects of acute administration of Δ9-THC on male fecundity were determined.

EXPERIMENTAL APPROACH

Effects of Δ9-THC on basal sperm kinematics were determined using computer-assisted sperm analysis (CASA). Stop-motion imaging was performed to measure sperm beat frequency. The effect of Δ9-THC on sperm ATP was determined using a luciferase assay. Male fertility was determined by evaluating the size of litters sired by Δ9-THC-treated males.

KEY RESULTS

Pretreatment of sperm for 15 min with 1 µM Δ9-THC reduced their basal motility and attenuated the ability of bicarbonate to stimulate flagellar beat frequency. Treatment with 5 µM WIN 55,212-2 or 10 µM Δ9-THC for 30 min reduced sperm ATP levels. In sperm lacking CB1 receptors this inhibitory effect of WIN 55,212-2 on ATP was attenuated whereas that of Δ9-THC persisted. Administration of 50 mg·kg−1Δ9-THC to male mice just before mating caused a 20% decrease in embryonic litter size.

CONCLUSIONS AND IMPLICATIONS

Δ9-THC inhibits both basal and bicarbonate-stimulated sperm motility in vitro and reduces male fertility in vivo. High concentrations of WIN 55,212-2 or Δ9-THC inhibit ATP production in sperm; this effect of WIN 55,212-2 is CB1 receptor-dependent whereas that of Δ9-THC is not.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

7.
BACKGROUND AND PURPOSE: Although participation of opioids in antinociception induced by cannabinoids has been documented, there is little information regarding the participation of cannabinoids in the antinociceptive mechanisms of opioids. The aim of the present study was to determine whether endocannabinoids could be involved in peripheral antinociception induced by activation of mu-, delta- and kappa-opioid receptors. EXPERIMENTAL APPROACH: Nociceptive thresholds to mechanical stimulation of rat paws treated with intraplantar prostaglandin E2 (PGE2, 2 microg) to induce hyperalgesia were measured 3 h after injection using an algesimetric apparatus. Opioid agonists morphine (200 microg), (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80) (80 microg), bremazocine (50 microg); cannabinoid receptor antagonists N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (20-80 microg), 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl(4-methoxyphenyl) methanone (AM630) (12.5-100 microg); and an inhibitor of methyl arachidonyl fluorophosphonate (MAFP) (1-4 microg) were also injected in the paw. KEY RESULTS: The CB1-selective cannabinoid receptor antagonist AM251 completely reversed the peripheral antinociception induced by morphine in a dose-dependent manner. In contrast, the CB2-selective cannabinoid receptor antagonist AM630 elicited partial antagonism of this effect. In addition, the administration of the fatty acid amide hydrolase inhibitor, MAFP, enhanced the antinociception induced by morphine. The cannabinoid receptor antagonists AM251 and AM630 did not modify the antinociceptive effect of SNC80 or bremazocine. The antagonists alone did not cause any hyperalgesic or antinociceptive effect. CONCLUSIONS AND IMPLICATIONS: Our results provide evidence for the involvement of endocannabinoids, in the peripheral antinociception induced by the mu-opioid receptor agonist morphine. The release of cannabinoids appears not to be involved in the peripheral antinociceptive effect induced by kappa- and delta-opioid receptor agonists.  相似文献   

8.
BACKGROUND AND PURPOSE: Hyperdynamic circulation and mesenteric hyperaemia are found in cirrhosis. To delineate the role of endocannabinoids in these changes, we examined the cardiovascular effects of anandamide, AM251 (CB(1) antagonist), AM630 (CB(2) antagonist) and capsazepine (VR1 antagonist), in a rat model of cirrhosis. EXPERIMENTAL APPROACH: Cirrhosis was induced by bile duct ligation. Controls underwent sham operation. Four weeks later, diameters of mesenteric arteriole and venule (intravital microscopy), arterial pressure, cardiac output, systemic vascular resistance and superior mesenteric artery (SMA) flow were measured after anandamide, AM251 (with or without anandamide), AM630 and capsazepine administration. CB(1), CB(2) and VR1 receptor expression in SMA was assessed by western blot and RT-PCR. KEY RESULTS: Anandamide increased mesenteric vessel diameter and flow, and cardiac output in cirrhotic rats, but did not affect controls. Anandamide induced a triphasic arterial pressure response in controls, but this pattern differed markedly in cirrhotic rats. Pre-administration of AM251 blocked the effects of anandamide. AM251 (without anandamide) increased arterial pressure and systemic vascular resistance, constricted mesenteric arterioles, decreased SMA flow and changed cardiac output in a time-dependent fashion in cirrhotic rats. Capsazepine decreased cardiac output and mesenteric arteriolar diameter and flow, and increased systemic vascular resistance in cirrhotic rats, but lacked effect in controls. Expression of CB(1) and VR1 receptor proteins were increased in cirrhotic rats. AM630 did not affect any cardiovascular parameter in either group. CONCLUSIONS AND IMPLICATIONS: These data suggest that endocannabinoids contribute to hyperdynamic circulation and mesenteric hyperaemia in cirrhosis, via CB(1)- and VR1-mediated mechanisms.  相似文献   

9.

BACKGROUND AND PURPOSE

Capsaicin, an agonist of transient receptor potential vanilloid 1 (TRPV1) channels, is pro-nociceptive in the periphery but is anti-nociceptive when administered into the ventrolateral periaqueductal gray (vlPAG), a midbrain region for initiating descending pain inhibition. Here, we investigated how activation of TRPV1 channels in the vlPAG leads to anti-nociception.

EXPERIMENTAL APPROACH

We examined synaptic transmission and neuronal activity using whole-cell recordings in vlPAG slices in vitro and hot-plate nociceptive responses in rats after drug microinjection into the vlPAG in vivo.

KEY RESULTS

Capsaicin (1–10 µM) depressed evoked GABAergic inhibitory postsynaptic currents (eIPSCs) in vlPAG slices presynaptically, while increasing miniature excitatory PSC frequency. Capsaicin-induced eIPSC depression was antagonized by cannabinoid CB1 and metabotropic glutamate (mGlu5) receptor antagonists, and prevented by inhibiting diacylglycerol lipase (DAGL), which converts DAG into 2-arachidonoylglycerol (2-AG), an endocannabinoid. Capsaicin induced membrane depolarization in 2/3 neurons recorded but, overall, increased neuronal firings by increasing evoked postsynaptic potentials. Intra-vlPAG capsaicin reduced hot-plate responses in rats, effects blocked by CB1 and mGlu receptor antagonists. Effects of capsaicin were antagonized by SB 366791, a TRPV1 channel antagonist.

CONCLUSIONS AND IMPLICATIONS

Capsaicin activated TRPV1s on glutamatergic terminals to release glutamate which activated postsynaptic mGlu5 receptors, yielding 2-AG from DAG by DAGL hydrolysis. 2-AG induces retrograde inhibition (disinhibition) of GABA release via presynaptic CB1 receptors. This disinhibition in the vlPAG leads to anti-nociception by activating the descending pain inhibitory pathway. This is a novel TRPV1 channel-mediated anti-nociceptive mechanism in the brain and a new interaction between vanilloid and endocannabinoid systems.  相似文献   

10.
BACKGROUND AND PURPOSE: The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. EXPERIMENTAL APPROACH: Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. KEY RESULTS: The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. CONCLUSIONS AND IMPLICATIONS: We show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.  相似文献   

11.

BACKGROUND AND PURPOSE

Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ9-tetrahydrocannabinol (THC).

EXPERIMENTAL APPROACH

Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses.

KEY RESULTS

FAAH (−/−) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role.

CONCLUSIONS AND IMPLICATIONS

AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

12.

BACKGROUND AND PURPOSE

The CB1 cannabinoid receptor is regulated by its association with membrane microdomains such as lipid rafts. Here, we investigated the role of palmitoylation of the CB1 receptor by analysing the functional consequences of site-specific mutation of Cys415, the likely site of palmitoylation at the end of helix 8, in terms of membrane association, raft targeting and signalling.

EXPERIMENTAL APPROACH

The palmitoylation state of CB1 receptors in rat forebrain was assessed by depalmitoylation/repalmitoylation experiments. Cys415 was replaced with alanine by site-directed mutagenesis. Green fluorescence protein chimeras of both wild-type and mutant receptors were transiently expressed and functionally characterized in SH-SY5Y cells and HEK-293 cells by means of confocal microscopy, cytofluorimetry and competitive binding assays. Confocal fluorescence recovery after photobleaching was used to assess receptor membrane dynamics, whereas signalling activity was assessed by [35S]GTPγS, cAMP and co-immunoprecipitation assays.

KEY RESULTS

Endogenous CB1 receptors in rat brain were palmitoylated. Mutation of Cys415 prevented the palmitoylation of the receptor in transfected cells and reduced its recruitment to plasma membrane and lipid rafts; it also increased protein diffusional mobility. The same mutation markedly reduced the functional coupling of CB1 receptors with G-proteins and adenylyl cyclase, whereas depalmitoylation abolished receptor association with a specific subset of G-proteins.

CONCLUSIONS AND IMPLICATIONS

CB1 receptors were post-translationally modified by palmitoylation. Mutation of Cys415 provides a receptor that is functionally impaired in terms of membrane targeting and signalling.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

13.
This study investigated the possible behavioral mechanisms underlying the anorectic effect of the cannabinoid CB(1) receptor antagonist/inverse agonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A). Male or female rats were food-restricted and trained to emit stable responding in daily 10-min, fixed ratio 10 food-reinforced operant sessions. Under these conditions, as well as under free-feeding conditions, SR141716A inhibited food-maintained responding (ED(50) values ranging from 0.92 to 2.52 mg/kg, i.p.). In the same operant procedure, SR141716A suppressed intracranial self-stimulation with a potency which was slightly lower than the anorectic potency (ED(50): 4.50 mg/kg). As assessed during a 10-min test period SR141716A (1-10 mg/kg) did not affect activity counts; suggesting that the observed inhibition of operant behavior is not a direct consequence of impairment of locomotor activity. SR141716A, however, attenuated saccharin-preference in a conditioned taste aversion paradigm (ED(50): 6.45 mg/kg). Although the data support the suggestion that the anorectic effect of SR141716A results from an attenuating effect on the rewarding effect of food, the contribution of drug-induced aversion/malaise cannot be excluded.  相似文献   

14.

BACKGROUND AND PURPOSE

Opioids and cannabinoids interact in drug addiction and relapse. We investigated the effect of the opioid receptor antagonist naloxone and/or the cannabinoid CB1 receptor antagonist rimonabant on cannabinoid-induced reinstatement of heroin seeking and on cannabinoid substitution in heroin-abstinent rats.

EXPERIMENTAL APPROACH

Rats were trained to self-administer heroin (30 µg·kg−1 per infusion) under a fixed-ratio 1 reinforcement schedule. After extinction of self-administration (SA) behaviour, we confirmed the effect of naloxone (0.1–1 mg·kg−1) and rimonabant (0.3–3 mg·kg−1) on the reinstatement of heroin seeking induced by priming with the CB1 receptor agonist WIN55,212-2 (WIN, 0.15–0.3 mg·kg−1). Then, in a parallel set of heroin-trained rats, we evaluated whether WIN (12.5 µg·kg−1 per infusion) SA substituted for heroin SA after different periods of extinction. In groups of rats in which substitution occurred, we studied the effect of both antagonists on cannabinoid intake.

KEY RESULTS

Cannabinoid-induced reinstatement of heroin seeking was significantly attenuated by naloxone (1 mg·kg−1) and rimonabant (3 mg·kg−1) and fully blocked by co-administration of sub-threshold doses of the two antagonists. Moreover, contrary to immediate (1 day) or delayed (90 days) drug substitution, rats readily self-administered WIN when access was given after 7, 14 or 21 days of extinction from heroin, and showed a response rate that was positively correlated with the extinction period. In these animals, cannabinoid intake was increased by naloxone (1 mg·kg−1) and decreased by rimonabant (3 mg·kg−1).

CONCLUSIONS AND IMPLICATIONS

Our findings extend previous research on the crosstalk between cannabinoid and opioid receptors in relapse mechanisms, which suggests a differential role in heroin-seeking reinstatement and cannabinoid substitution in heroin-abstinent rats.

LINKED ARTICLES

This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

15.
Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1, CBe, TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations.Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6  相似文献   

16.
We have characterized desloratadine (5H-benzo[5,6]cyclohepta[1,2-b]pyridine, 8-chloro-6,11-dihydro-11-(4-piperidinylidene), CAS 100643-71-8) as a potent antagonist of the human histamine H(1) receptor. [3H]Desloratadine bound to membranes expressing the recombinant human histamine H(1) receptor in Chinese hamster ovary cells (CHO-H(1)) in a specific and saturable manner with a K(d) of 1.1+/-0.2 nM, a B(max) of 7.9+/-2.0 pmol/mg protein, and an association rate constant of 0.011 nM(-1) x min(-1). The K(d) calculated from the kinetic measurements was 1.5 nM. Dissociation of [3H]desloratadine from the human histamine H(1) receptor was slow, with only 37% of the binding reversed at 6 h in the presence of 5 microM unlabeled desloratadine. Seventeen histamine H(1)-receptor antagonists were evaluated in competition-binding studies. Desloratadine had a K(i) of 0.9+/-0.1 nM in these competition studies. In CHO-H(1) cells, histamine stimulation resulted in a concentration-dependent increase in [Ca(2+)](i) with an EC(50) of 170+/-30 nM. After a 90-min preincubation with desloratadine, the histamine-stimulated increase in [Ca(2+)](i) was shifted to the right, with a depression of the maximal response at higher concentrations of antagonist. The apparent K(b) value was 0.2+/-0.14 nM with a slope of 1.6+/-0.1. The slow dissociation from the receptor and noncompetitive antagonism suggests that desloratadine may be a pseudoirreversible antagonist of the human histamine H(1) receptor. The mechanism of desloratadine antagonism of the human histamine H(1) receptor may help to explain the high potency and 24-h duration of action observed in clinical studies.  相似文献   

17.
The presence of functional cannabinoid CB2 receptors in the CNS has provoked considerable controversy over the past few years. Formerly considered as an exclusively peripheral receptor, it is now accepted that it is also present in limited amounts and distinct locations in the brain of several animal species, including humans. Furthermore, the inducible nature of these receptors under neuroinflammatory conditions, in contrast to CB1, makes them attractive targets for the development of novel therapeutic approaches. In fact, the undesired psychoactive effects caused by CB1 activation have largely limited the clinical use of cannabinoid-related compounds that act on these receptors. In this review some recent findings on the antiinflammatory properties of CB2 receptors are presented, as well as new perspectives that have been obtained based on studies of human postmortem brain samples. In addition, various working hypotheses are also proposed and discussed.  相似文献   

18.

Aim:

To characterize the biological profiles of MJ08, a novel selective CB1 receptor antagonist.

Methods:

Radioligand binding assays were performed using rat brain and spleen membrane preparations. CB1 and CB2 receptor redistribution and intracellular Ca2+ ([Ca2+]i) assays were performed with IN CELL Analyzer. Inverse agonism was studied using intracellular cAMP assays, and in guinea-pig ileum and mouse vas deferens smooth muscle preparations. In vivo pharmacologic profile was assessed in diet-induced obesity (DIO) mice.

Results:

In radioligand binding assay, MJ08 selectively antagonized CB1 receptor (IC50=99.9 nmol/L). In EGFP-CB1_U2OS cells, its IC50 value against CB1 receptor activation was 30.23 nmol/L (SR141716A: 32.16 nmol/L). WIN 55,212-2 (1 μmol/L) increased [Ca2+]i in the primary cultured hippocampal neuronal cells and decreased cAMP accumulation in CHO-hCB1 cells. MJ08 (10 nmol/L–10 μmol/L) blocked both the WIN 55,212-2-induced effects. Furthermore, MJ08 reversed the inhibition of electrically evoked twitches of mouse vas deferens by WIN 55,212-2 (pA2=10.29±1.05). MJ08 and SR141716A both showed an inverse agonism activity by markedly promoting the contraction force and frequency of guinea pig ileum muscle. MJ08 significantly increased the cAMP level in CHO-hCB1 cells with an EC50 value of 78.6 nmol/L, which was lower than the EC50 value for SR141716A (159.2 nmol/L). Besides the more potent pharmacological effects of cannabinoid CB1 receptor antagonism in DIO mice, such as reducing food intake, decreasing body weight, and ameliorating dyslipidemia, MJ08 (10 mg/kg) unexpectedly raised the fasted blood glucose in vivo.

Conclusion:

MJ08 is a novel, potent and selective CB1 receptor antagonist/inverse agonist with potent bioactive responses in vitro and in vivo that may be useful for disclosure the versatile nature of CB1 receptors.  相似文献   

19.

BACKGROUND AND PURPOSE

Endocannabinoids in the midbrain periaqueductal grey (PAG) modulate nociception and unconditioned stress-induced analgesia; however, their role in fear-conditioned analgesia (FCA) has not been examined. The present study examined the role of the endocannabinoid system in the dorsolateral (dl) PAG in formalin-evoked nociceptive behaviour, conditioned fear and FCA in rats.

EXPERIMENTAL APPROACH

Rats received intra-dlPAG administration of the CB1 receptor antagonist/inverse agonist rimonabant, or vehicle, before re-exposure to a context paired 24 h previously with foot shock. Formalin-evoked nociceptive behaviour and fear-related behaviours (freezing and 22 kHz ultrasonic vocalization) were assessed. In a separate cohort, levels of endocannabinoids [2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamide (anandamide; AEA)] and the related N-acylethanolamines (NAEs) [N-palmitoyl ethanolamide (PEA) and N-oleoyl ethanolamide (OEA)] were measured in dlPAG tissue following re-exposure to conditioned context in the presence or absence of formalin-evoked nociceptive tone.

KEY RESULTS

Re-exposure of rats to the context previously associated with foot shock resulted in FCA. Intra-dlPAG administration of rimonabant significantly attenuated FCA and fear-related behaviours expressed in the presence of nociceptive tone. Conditioned fear without formalin-evoked nociceptive tone was associated with increased levels of 2-AG, AEA, PEA and OEA in the dlPAG. FCA was specifically associated with an increase in AEA levels in the dlPAG.

CONCLUSIONS AND IMPLICATIONS

Conditioned fear to context mobilises endocannabinoids and NAEs in the dlPAG. These data support a role for endocannabinoids in the dlPAG in mediating the potent suppression of pain responding which occurs during exposure to conditioned aversive contexts.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

20.

BACKGROUND AND PURPOSE

Both CB1 and CB2 cannabinoid receptors have been shown to play a role in bone metabolism. Crucially, previous studies have focussed on the effects of cannabinoid ligands in murine bone cells. This study aimed to investigate the effects of cannabinoids on human bone cells in vitro.

EXPERIMENTAL APPROACH

Quantitative RT-PCR was used to determine expression of cannabinoid receptors and liquid chromatography-electrospray ionization tandem mass spectrometry was used to determine the presence of endocannabinoids in human bone cells. The effect of cannabinoids on human osteoclast formation, polarization and resorption was determined by assessing the number of cells expressing αvβ3 or with F-actin rings, or measurement of resorption area.

KEY RESULTS

Human osteoclasts express both CB1 and CB2 receptors. CB2 expression was significantly higher in human monocytes compared to differentiated osteoclasts. Furthermore, the differentiation of human osteoclasts from monocytes was associated with a reduction in 2-AG levels and an increase in anandamide (AEA) levels. Treatment of osteoclasts with LPS significantly increased levels of AEA. Nanomolar concentrations of AEA and the synthetic agonists CP 55 940 and JWH015 stimulated human osteoclast polarization and resorption; these effects were attenuated in the presence of CB1 and/or CB2 antagonists.

CONCLUSIONS AND IMPLICATIONS

Low concentrations of cannabinoids activate human osteoclasts in vitro. There is a dynamic regulation of the expression of the CB2 receptor and the production of the endocannabinoids during the differentiation of human bone cells. These data suggest that small molecules modulating the endocannabinoid system could be important therapeutics in human bone disease.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号