首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone regeneration was achieved in the 15-mm segmental defect model in the radius of rabbit by using the scaffold based on mineralized recombinant collagen for the first time. The recombinant collagen was recombinant human-like type I collagen, which was produced by cloning a partial cDNA that was reversed by mRNA from human collagen alpha1(I) and transferred to E. coli. The scaffold material nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid) (nHA/RHLC/PLA) was developed by biomimetic synthesis. Thermo gravimetric analysis, X-ray diffraction and scanning electron microscopy were applied to exhibit that the scaffold showed some features of natural bone both in main component and hierarchical microstructure. The percentages of organic phase and inorganic phase of nHA/RHLC were similar to that of natural bone. The three-dimensional porous scaffold materials mimic the microstructure of cancellous bone. In the implantation experiment, the segmental defect was healed 24 weeks after surgery, and the implanted composite was completely substituted by new bone tissue. The results of the implantation experiment were very comparable with that of the scaffold based on mineralized animal-sourced collagen. It is concluded that the scaffold based on mineralized recombinant collagen maintains the advantages of mineralized animal-sourced collagen, while avoids potential virus-dangers. The scaffold is a promising material for bone tissue engineering.  相似文献   

2.
文题释义:胶原基质矿化磷灰石:具有良好的生物相容性,不产生排斥反应,降解速度与成骨的速度相适应,其降解不会影响周围环境的pH值。该材料在微米尺度上具有互联孔洞结构,孔隙尺寸为100-500 µm,孔隙率为70%-90%,结构和成分与自体骨相似,能够更好的诱导自体骨生长,具有良好的骨修复作用,其机械耐受性、可塑性、强度接近松质骨。 新短肽P17-骨形态发生蛋白2:通过FMOC/tBu固相多肽合成法合成的具有17个氨基酸的新型活性短肽中包含磷酸化的丝氨酸及天冬氨酸,能够极好地模拟天然骨基质的促发及指导矿化的功能,在局部形成偏酸环境,促进局部的钙磷沉积、成核和生物自组装矿化。短链多肽活性位点能充分暴露并与细胞表面受体结合,生物活性更强。 背景:胶原基质矿化磷灰石材料具有仿生的化学组成及良好的生物学性能,已被用于某些骨缺损修复;新短肽P17-骨形态发生蛋白2具有良好的生物相容性和成骨诱导生物活性,因此将新短肽P17-骨形态发生蛋白2与胶原基质矿化磷灰石材料制备成复合支架材料可望提升骨修复效率和效果。 目的:探讨新型P17-骨形态发生蛋白2/胶原基质矿化磷灰石复合材料的生物活性。 方法:将兔骨髓间充质干细胞分别接种于新型P17-骨形态发生蛋白2/胶原基质矿化磷灰石复合材料与胶原基质矿化磷灰石材料上,培养3,7 d后,利用RT-PCR检测细胞碱性磷酸酶 mRNA相对表达。将新型P17-骨形态发生蛋白2/胶原基质矿化磷灰石复合材料(实验组)与胶原基质矿化磷灰石材料(对照组)分别埋置于SD大鼠皮下,植入12,35 d后进行Masson染色后组织学分析。将新型P17-骨形态发生蛋白2/胶原基质矿化磷灰石复合材料(实验组)与胶原基质矿化磷灰石材料(对照组)分别植入日本大耳白兔下颌骨箱状缺损处,植入5,15周后进行大体与X射线检查。实验经中国医科大学附属口腔医院伦理委员会批准。 结果与结论:①复合材料组培养7 d的碱性磷酸酶mRNA表达高于胶原基质矿化磷灰石组(P < 0.05);②皮下埋植实验显示两组材料和组织界面均未引起明显的急性炎症反应,植入后35 d实验组可见更多的纤维细胞与材料嵌合;③骨缺损修复实验中,大体观察显示两种材料均具有良好的骨修复能力,植入5周时缺损区已有缩小趋势,植入15周缺损表面比较平整;X射线检查显示与对照组相比,实验组缺损区缩小趋势更明显;④结果表明,新型P17-骨形态发生蛋白2/胶原基质矿化磷灰石复合支架材料具有比胶原基质矿化磷灰石更为优良的生物活性与骨缺损修复能力。 ORCID: 0000-0002-1196-5954(张雪) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

3.
目的: 4周龄SD大鼠骨髓间充质干细胞离体培养后与仿生纳米壳聚糖-胶原(nano chitosan-sodium collagen, nano-CS-COL)形成复合支架,植入SD大鼠胫骨缺损处, 比较修复节段性胫骨缺损的效果, 初步探讨治疗骨缺损的组织工程学方法。方法: 4周龄SD大鼠骨髓间充质干细胞(BMSCs) 离体培养、纯化、鉴定、扩增后在等同于细胞培养的条件下与nano-CS-COL复合培养, 制成MSCs/nano-CS-COL复合物并经电镜扫描证实复合物有细胞生长。制成同种异体SD大鼠胫骨干5mm节段性动物模型, MSCs/nano-CS-COL复合物通过手术移植入动物模型胫骨缺损处, 通过大体观察、X线放射学、组织学对比实验组与对照组、空白组骨缺损修复情况。结果: 术后6、12周实验组与实验对照组放射学检查评价新骨生成有显著差异(P<0.05) 。术后组织学检查新骨生成速度、生成量均有显著差异。实验组标本与正常组基本一致。空白对照组不能自行修复骨缺损, 最后缺损由纤维组织充填。结论: BMSCs是骨组织工程中适宜的种子细胞。Nano-CS-COL复合支架能够与SD大鼠骨髓间充质干细胞体外复合培养, 移植入异体SD大鼠后未见明显免疫排斥反应, 是可以选择的细胞载体。MSCs/nano-CS-COL复合物植入修复鼠胫骨缺损能够加速新骨形成, 修复效果明显优于单纯CS植入组。  相似文献   

4.
背景:大段骨缺损修复多以植骨为主,如果能将带血运的组织与人工骨同时植入,理论上更有利于新生组织血运建立及人工骨的爬行替代重建。 目的:观察聚乳酸-乙醇酸共聚物-磷酸三钙-骨形态发生蛋白2人工骨结合自体带血供自体肌肉移植修复大段骨缺损的效果。 方法:手术造成30 mm绵羊大段桡骨缺损,抽签随机分为3组:实验组植入聚乳酸-乙醇酸共聚物-磷酸三钙-骨形态发生蛋白2人工骨及自体带血运的屈指长肌,对照组仅植入聚乳酸-乙醇酸共聚物-磷酸三钙-骨形态发生蛋白2人工骨,空白对照组未植入任何材料。3组均以钢板固定骨缺损区,术后24周进行X射线检测及组织学观察。 结果与结论:实验组桡骨缺损处完全成骨修复,皮质骨与髓腔轮廓清晰,骨痂为较成熟板层骨;对照组骨缺损基本完全修复,但新生骨密度及髓腔轮廓清晰度及骨痂成熟度均不如实验组;空白对照组无有效骨痂形成,缺损区被大量纤维组织填充。说明聚乳酸-乙醇酸共聚物-磷酸三钙-骨形态发生蛋白2人工骨结合自体带血供肌肉移植能够很好修复绵羊桡骨30 mm的大段骨缺损。  相似文献   

5.
阮蔷  赵刚  郭睿  肖月  李超 《中国组织工程研究》2016,20(38):5657-5663
BACKGROUND: Bone tissue transplantation or osteogenic material filling is after used for bone defect repair. To remove autologous bone tissues can lead to additional damage and secondary deformity, therefore, it is extremely urgent to search for a new osteogenic material. OBJECTIVE: To construct the porous β-tricalcium phosphate (β-TCP)/collagen scaffold modified with human bone morphogenetic protein 2 (hBMP2) gene, and to observe its effects on differentiation of MC3T3-E1 cell lines. METHODS: The porous β-TCP/collagen scaffold modified with hBMP2 gene was prepared. Then in vitro culture system of MC3T3-E1 cell lines with composite scaffold was established. There were scaffold and plate groups, and each group was divided into two subgroups according to the different concentrations of plasmid. Samples were collected and observed morphologically by scanning electron microscope and light microscope after complex culture. After 1, 3, 7 and 14 days of induction, calcium nodules were observed through alizarin red staining, the cell cycle was detected by real-time PCR, and expressions of α I-chain collagen type I gene, Osterix and bone sialoprotein were observed. RESULTS AND CONCLUSION: The number of cells adhered, differentated and distributed on the composite scaffold was significantly higher than that of the single scaffold (P < 0.05). Alizarin red staining and real-time PCR detection showed that the osteogenesis ability of MC3T3-E1 cell lines in the scaffold group was stronger than that in the plate group. To conclude, the porous β-TCP/collagen scaffold modified with hBMP2 gene is an appropriate candidate for bone defect repair.  相似文献   

6.
Scaffolds for bone tissue engineering should provide an osteoconductive surface to promote the ingrowth of new bone after implantation into bone defects. This may be achieved by hydroxyapatite loading of distinct scaffold biomaterials. Herein, we analyzed the in vitro and in vivo properties of a novel nanosize hydroxyapatite particles/poly(ester-urethane) (nHA/PU) composite scaffold which was prepared by a salt leaching–phase inverse process. Microtomography, scanning electron microscopy and X-ray spectroscopy analyses demonstrated the capability of the material processing to create a three-dimensional porous PU scaffold with nHA on the surface. Compared to nHA-free PU scaffolds (control), this modified scaffold type induced a significant increase in in vitro adsorption of model proteins. In vivo analysis of the inflammatory and angiogenic host tissue response to implanted nHA/PU scaffolds in the dorsal skinfold chamber model indicated that the incorporation of nHA particles into the scaffold material did not affect biocompatibility and vascularization when compared to control scaffolds. Thus, nHA/PU composite scaffolds represent a promising new type of scaffold for bone tissue engineering, combining the flexible material properties of PU with the advantage of an osteoconductive surface.  相似文献   

7.
Transplantation of osteogenic cells with a suitable matrix is one strategy for engineering bone tissue. Three-dimensional distribution and growth of cells within the porous scaffold are of clinical significance for the repair of large bony defects. A nano-HAp/collagen (nHAC) composite that mimics the natural bone both in composition and microstructure to some extent was employed as a matrix for the tissue engineering of bone. A porous nHAC composite was produced in sheet form and convolved to be a three-dimensional scaffold. Using organ culture techniques and the convolving method, we have developed three-dimensional osteogenic cells/nHAC constructs in vitro. Scanning electron microscopic and histological examination has demonstrated the development of the cells/material complex. Spindle-shaped cells migrating out of bone fragments continuously proliferated and migrated throughout the network of the coil. The porous nHAC scaffold provided a microenvironment resembling that seen in vivo, and cells within the composite eventually acquired a tridimensional polygonal shape. In addition, new bone matrix was synthesized at the interface of bone fragments and the composite.  相似文献   

8.
Yoon SJ  Park KS  Kim MS  Rhee JM  Khang G  Lee HB 《Tissue engineering》2007,13(5):1125-1133
Calcitriol (1,25(OH)2D3)-loaded porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds prepared by solvent casting/salt leaching method were used to repair a 1.5 cm diaphyseal segmental bone defect as a fully absorbable osteogenic biomaterial. The in vitro release of sulforhodamine B (SRB) from PLGA scaffold was measured using spectrophotometer, considering SRB as a model drug. The SRB released from SRB-incorporated PLGA scaffold during 3 months was with relatively low initial burst. The calcitriol-loaded PLGA scaffolds with or without marrow stromal cells (MSCs) were implanted in a critical-sized intercalated bone defect in rabbit femur. Defects were assessed by radiographs until 9 weeks. The bony union of the defect was observed only in the calcitriol-loaded groups. RT-PCR results indicated that MSCs, which were seeded into calcitriol-loaded scaffold, expressed an increased level of alkaline phosphatase, osteonectin, and type I collagen mRNA at day 10. After 2 and 4 weeks, the implanted scaffolds were evaluated by histology. New osteoid matrix and direct calcium deposits were more evident in calcitriol/PLGA/MSC group. Three-dimensional computed tomography and frontal tomographic images of repaired femur showed that normal femur anatomy had been restored with cortical bone with no implanted PLGA remnants at 20 weeks. It can be concluded that the porous calcitriol-loaded PLGA scaffold combined with MSCs may be a novel method for repairing the large loaded bone defect.  相似文献   

9.
A new composite scaffold containing type I collagen, hyaluronan, and fibrin was prepared with and without autologous chondrocytes and implanted into a rabbit femoral trochlea. The biophysical properties of the composite scaffold were similar to native cartilage. The macroscopic, histological, and immunohistochemical analysis of the regenerated tissue from cell-seeded scaffolds was performed 6 weeks after the implantation and predominantly showed formation of hyaline cartilage accompanied by production of glycosaminoglycans and type II collagen with minor fibro-cartilage production. Implanted scaffolds without cells healed predominantly as fibro-cartilage, although glycosaminoglycans and type II collagen, which form hyaline cartilage, were also observed. On the other hand, fibro-cartilage or fibrous tissue or both were only formed in the defects without scaffold. The new composite scaffold containing collagen type I, hyaluronan, and fibrin, seeded with autologous chondrocytes and implanted into rabbit femoral trochlea, was found to be highly effective in cartilage repair after only 6 weeks. The new composite scaffold can therefore enhance cartilage regeneration of osteochondral defects, by the supporting of the hyaline cartilage formation.  相似文献   

10.
背景:组织工程β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸支架材料具有良好的生物相容性。 目的:评估骨髓基质细胞与β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸复合体修复兔桡骨大段骨缺损成骨的效果。 方法:取新西兰大白兔40只,建立桡骨双侧大段骨缺损模型,其中35只右侧植入自体骨髓基质细胞与β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸复合物作为实验组,左侧植入β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸支架材料作为对照组;另5只作为空白对照不作任何处理。植入后4,8,12,16周拍摄X射线片观察骨缺损修复情况。 结果与结论:实验组术后2周可见缺损处有散在的、少量模糊状骨痂生成,术后4周可见明显骨生成影像,成云雾状,均匀分布在骨缺损区,术后8周整个缺损区均可见骨痂生成,成骨现象更加明显,部分髓腔已通,术后12~16周,缺损区已完全被新生骨组织充填,骨髓腔已完全再通,修复区较正常桡骨细,骨缺损修复效果明显优于对照组与空白对照组(P < 0.01)。说明自体骨髓基质细胞与β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸复合移植可较完全修复大节段骨缺损。  相似文献   

11.
Huang X  Yang D  Yan W  Shi Z  Feng J  Gao Y  Weng W  Yan S 《Biomaterials》2007,28(20):3091-3100
A novel amorphous calcium phosphate (ACP)/poly(L-lactic acid) (PLLA) material, which can experience morphological variations in the microstructure is supposed to be a suitable candidate as scaffold for cartilage tissue-engineering. The purpose of this study was to evaluate the efficacy of this scaffold combined with basic fibroblast growth factor (bFGF) to repair articular cartilage defects in a rabbit model. Forty-two osteochondral defects created in the femoral condyles were (a) left untreated, (b) treated by PLLA combined with bFGF, or (c) ACP/PLLA loaded with bFGF. The treatment of PLLA incorporated with bFGF improved defect filling compared with that left untreated, while the regenerated tissue was mainly fibrocartilage and showed little bone formation with only a small amount of collagen type II (Col II) and no aggrecan gene message measured. When implanted with ACP/PLLA and bFGF, most of the defects were filled with a well-established layer of cartilage tissue with abundance of cartilaginous extracellular matrix accumulation observed. Positive immunohistochemical staining of Col II was observed. High levels of Col II and aggrecan message were also detected by RT-PCR. These results indicate the feasibility of using the combination of ACP/PLLA with bFGF for cartilage repair.  相似文献   

12.
背景:骨髓间充质干细胞发挥成骨作用需要支架材料的辅助,一方面支架材料不仅可将细胞运载至骨缺损区域,另一方面还可作为新骨生长的框架结构。胶原-壳聚糖复合材料是骨组织工程较为理想的支架材料之一,同时其具有骨诱导性,比常规支架材料更优越的成骨能力。骨搬移技术在临床上在修复长段骨缺损方面已得到广泛应用,但也存在成骨慢、外固定时间长、骨不连等缺憾。如何进一步加快骨形成速度,减少并发症发生,已成当前亟待解决的问题。实验假设:骨髓间充质干细胞复合胶原-壳聚糖支架移植能提高胫骨缺损骨搬移修复效果。 方法/设计:随机对照动物实验。分为体外和体内实验两部分。体外实验中取月龄一两个月的新西兰大白兔股骨骨髓,提取骨髓间充质干细胞,培养至第3代,将细胞悬液滴于胶原-壳聚糖支架材料,构建骨髓间充质干细胞复合胶原-壳聚糖支架。体内实验选用24只三四月龄新西兰大白兔,被随机分配接受如下干预:骨搬移、支架植入、骨搬移联合支架植入。研究的主要观察指标为植入材料与骨缺损界面的生长情况、X射线检测的缺损区骨修复情况、苏木精-伊红染色及扫描电镜观察缺损区成骨情况、免疫组织化学染色检测成骨区Ⅰ型胶原蛋白的表达情况、扫描电子显微镜观察移植材料与宿主骨的界面键合情况、超微结构及新骨的生成。 讨论:实验结果将有助于确定对骨缺损进行骨搬移治疗过程中,应用骨髓间充质干细胞复合胶原-壳聚糖支架移植促进骨缺损再生修复效果的可行性。 实验方案获基金支持情况:获辽宁省科学技术计划项目资助(2012225019)。 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程  相似文献   

13.
背景:骨髓间充质干细胞具有向多种间质细胞谱系分化的能力,且支架材料的性能对骨缺损的修复有重要影响。 目的:观察聚左旋乳酸/壳聚糖纳米纤维三维多孔支架复合骨髓间充质干细胞治疗骨缺损。 方法:对骨缺损模型兔分别采用空白植入、髂后上棘自体松质骨移植、聚左旋乳酸/壳聚糖纳米纤维多孔支架移植和复合了骨髓间充质干细胞的聚左旋乳酸/壳聚糖纳米纤维多孔支架移植修复缺损部位。 结果与结论:至移植12周,移植复合了骨髓间充质干细胞的聚左旋乳酸/壳聚糖纳米纤维多孔支架的实验兔的缺损处有骨组织生成,支架材料降解,已完成缺损修复,其修复情况接近松质骨组;髂后上棘自体松质骨移植的实验兔的缺损修复完好,新形成的骨组织较规则;只植入聚左旋乳酸/壳聚糖纳米纤维多孔支架的实验兔有少量骨组织形成,材料部分降解;空白植入的实验兔缺损处无新生骨组织生成,主要由纤维结缔组织填充。说明新型的生物支架材料聚左旋乳酸/壳聚糖纳米纤维三维多孔支架与来源于新西兰大白兔的骨髓间充质干细胞复合培养后,植入同种异体兔股骨髁缺损处,使骨缺损的修复速度加快,表现为较好的体内诱导成骨的作用。  相似文献   

14.
As reported previously, a porous composite of uncalcined hydroxyapatite (u-HA) and poly-DL-lactide (PDLLA) showed excellent osteoconductivity and biodegradability as a bone substitute in rabbit model. In this study, to investigate the usefulness of this composite as a scaffold loaded with cells, we estimated whether this material showed osteogenesis on implantation to extraosseous site. On loading with syngeneic bone marrow cells and implantation into rat dorsal subcutaneous tissue, osteogenesis with enchondral ossification was seen both on and in the material at 3 weeks after implantation. The osteogenesis in the u-HA/PDLLA had progressed, and newly formed bone tissue was found in the material by 6 weeks. To investigate the osteoinductive properties of the material, we implanted this porous composite material into extraosseous canine dorsal muscle. At 8 weeks, osteogenesis was seen in the pores of the material. Newly formed bone could be observed adjacent to the material. In addition, cuboidal osteoblasts adjacent to the newly formed bone were evident. Neither cartilage nor chondrocytes were found. These results might indicate that the material induced osteogenesis by intramembranous ossification. Conversely, similar porous PDLLA did not induce osteogenesis during the observation period. Therefore, porous HA/PDLLA, which has osteoconductive and osteoinductive properties, might be a useful material for use as a bone substitute and cellular scaffold.  相似文献   

15.
背景:目前骨组织工程常用的支架材料主要有无机材料、有机高分子材料及天然衍生材料等,上述材料各有优缺点,为了充分发挥各类材料的优势,弥补其不足,目前多采用联合材料制备复合支架。 目的:制备新型仿生支架材料骨形态发生蛋白7多肽/壳聚糖/纳米羟基磷灰石/胶原,并观察其对骨髓间充质干细胞增殖、黏附及分化的影响。 方法:制备壳聚糖/纳米羟基磷灰石/胶原复合支架材料,扫描电镜观察支架材料表面微观形貌;采用真空吸附法将骨形态发生蛋白7多肽与支架材料复合,高效液相色谱仪检测骨形态发生蛋白7多肽在体外的释放规律;将骨髓间充质干细胞接种到复合骨形态发生蛋白7多肽的仿生支架材料上,以未复合多肽的支架材料作为对照,检测支架材料表面细胞增殖、黏附率、生长形态及碱性磷酸酶活性。 结果与结论:壳聚糖/纳米羟基磷灰石/胶原支架材料呈多孔状,孔径10~100 µm;骨形态发生蛋白7多肽可以从支架材料中缓慢释出;在复合多肽的仿生支架材料表面,骨髓间充质干细胞的黏附及向成骨细胞方向分化能力均明显强于对照组(P < 0.05),而增殖能力与对照组差异无显著性意义(P > 0.05)。说明新型仿生支架材料骨形态发生蛋白7多肽/壳聚糖/纳米羟基磷灰石/胶原是一种理想的骨组织工程支架材料,具有良好的细胞相容性。  相似文献   

16.
背景:丝素蛋白/羟基磷灰石是细胞立体培养的良好支架,是临床常用的骨缺损修复材料,具有良好的生物相容性。脂肪干细胞具有向骨及软骨细胞分化的潜能,适合骨软骨缺损修复。 目的:观察转化生长因子β1和胰岛素样生长因子1联合成软骨诱导脂肪干细胞与丝素蛋白/羟基磷灰石复合后修复兔关节软骨及软骨下骨缺损的效果。 方法:取新西兰大白兔56只,2只用于传代培养脂肪间充质干细胞,以3×109 L-1浓度接种到丝素蛋白/羟基磷灰石。其余54只新西兰大白兔,在股骨髁间制备软骨缺损模型,随机分为细胞复合材料组、单纯材料组和空白对照组,细胞复合材料组植入复合脂肪间充质干细胞的丝素蛋白/羟基磷灰石;单纯材料组植入丝素蛋白/羟基磷灰石;空白对照组不作任何植入。从大体、影像学、组织学观察比较缺损的修复情况。 结果与结论:12周时大体观察、CT、磁共振和组织学检查细胞材料复合组软骨及软骨下骨缺损区完全被软骨组织修复,修复组织与周围软骨色泽相近,支架材料基本吸收,未见明显退变和白细胞浸润,所有标本均未见丝素蛋白残留。单纯材料组缺损区缩小、部分修复,且呈纤维软骨样修复。空白对照组缺损无明显修复。提示复合脂肪间充质干细胞的丝素蛋白/羟基磷灰石修复兔关节软骨及软骨下骨缺损能力优于单纯丝素蛋白/羟基磷灰石材料。丝素蛋白/羟基磷灰石复合脂肪间充质干细胞可形成透明软骨修复动物膝关节全层软骨缺损,重建关节的解剖结构和功能,可作为新型骨软骨组织工程支架。  相似文献   

17.
Li X  Feng Q  Liu X  Dong W  Cui F 《Biomaterials》2006,27(9):1917-1923
Tissue engineering is an increasingly popular method for repairing bone defects. However, repair of bone defects over 30 mm using tissue-engineering methods is a difficult clinical problem. In this study, we used a goat shank model to evaluate the bone-regenerating efficacy of a novel nano-hydroxyapatite/collagen/PLLA (nHACP) composite reinforced by chitin fibres. Forty adult male goats with 40 mm defects in shank at the same anatomic site were divided into four groups. The first group was the control, where nothing was implanted in the defect (defect group). The other three groups were implanted with porous pure PLLA, nHACP and nHACP reinforced by chitin fibres, respectively. Bone growth in each group was evaluated by radiography, histology, bone mineral density and mechanical strength, once every 5 weeks for 15 weeks. The results indicated that nHACP implants, both with and without chitin fibres, are better for repairing the defects than pure PLLA. However, only the reinforced implants showed nearly perfect recovery in 15 weeks after operation. So, the reinforced scaffold might be a candidate for bone tissue repair.  相似文献   

18.
The capacity to deliver, temporally, bioactive growth factors in combination with appropriate progenitor and stem cells to sites of tissue regeneration promoting angiogenesis and osteogenesis offers therapeutic opportunities in regenerative medicine. We have examined the bone regenerative potential of encapsulated vascular endothelial growth factor (VEGF(165)) biodegradable poly(DL-lactic acid) (PLA) scaffolds created using supercritical CO(2) fluid technology to encapsulate and release solvent-sensitive and thermolabile growth factors in combination with human bone marrow stromal cells (HBMSC) implanted in a mouse femur segmental defect (5 mm) for 4 weeks. HBMSC seeded on VEGF encapsulated PLA scaffolds showed significant bone regeneration in the femur segmental defect compared to the scaffold alone and scaffold seeded with HBMSC as analysed by indices of increased bone volume (BV mm(3)), trabecular number (Tb.N/mm) and reduced trabecular separation (Tb.Sp.mm) in the defect region using micro-computed tomography. Histological examination confirmed significant new bone matrix in the HBMSC seeded VEGF encapsulated scaffold group as evidenced by Sirius red/alcian blue and Goldner's trichrome staining and type I collagen immunocytochemistry expression in comparison to the other groups. These studies demonstrate the ability to deliver, temporally, a combination of VEGF released from scaffolds with seeded HBMSC to sites of bone defects, results in enhanced regeneration of a bone defect.  相似文献   

19.
Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.  相似文献   

20.
目的 以丝素蛋白/壳聚糖支架为载体将骨碎补总黄酮应用于兔软骨损伤局部,观察修复效果,为临床提供实验数据。方法 制备丝素蛋白/壳聚糖支架、骨碎补总黄酮缓释微球与负载骨碎补总黄酮缓释微球的丝素蛋白/壳聚糖支架,扫描电子显微镜下观察支架形貌,同时检测该支架的体外缓释能力。24只新西兰大白兔随机分3组,利用电钻在股骨滑车部位构建直径3.5 mm、深1.5 mm的软骨损伤模型,空白组软骨缺损处不植入任何材料,对照组植入单纯的丝素蛋白/壳聚糖支架,实验组植入负载骨碎补总黄酮缓释微球的丝素蛋白/壳聚糖支架,术后12周、24周行标本大体与组织学观察,RT-PCR检测修复组织Sox-9、II型胶原与聚集蛋白聚糖mRNA的表达量,Western blot检测软骨缺损部位II型胶原蛋白表达,分析软骨修复效果。结果 丝素蛋白/壳聚糖支架具有良好的三维孔隙结构,孔洞之间相互联通;制备的载药微球表面较光滑,为较规则的圆球形;载药微球均匀分散于丝素蛋白/壳聚糖支架基质中。丝素蛋白/壳聚糖支架可在体外持续稳定地释放骨碎补总黄酮,实验组软骨损伤修复效果优于对照组,对应的ICRS评分与Wakitani组织学评分高于对照组...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号