首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postmitotic cerebellar granule cells, maintained for 5 - 6 days in Dulbecco's modified essential medium supplemented with 25 mM KCl, have been studied in whole-cell recording conditions to characterize calcium currents. With 10 mM Ba2+ as the divalent charge carrier, and using a pipette solution highly buffered for Ca2+ (30 mM EGTA, 100 mM HEPES - Tris, pH 7.2), only a high-threshold voltage-activated barium current was recorded from a holding potential of -90 mV. The addition of 1 mM ATP to the pipette medium allowed stable recording for an average duration of 10 min, compatible with pharmacological studies of the barium current. Ninety-six per cent of the current was half-inactivated at low negative holding potential (-76 mV). A total block of current was obtained with 1 microM Cd2+. Sixty-three per cent of the mean current was abolished by 3 microM omega-conotoxin (omega-CgTx; Ki=10 nM for a 15 min application), but individual cells showed either full sensitivity to this toxin or incomplete sensitivity. Seventy-eight per cent of the mean current was also abolished by 10 microM nicardipine but with a higher Ki of 0.5 microM. After exposure to omega-CgTx, BAY K 8644 had no effect on the remaining current, though it was suppressed by nicardipine. No sensitivity to diltiazem, desmethoxyverapamil or flunarizine could be detected. Our major conclusion is that at least half of the channels have a mixed pharmacology, showing sensitivity to both omega-CgTx and dihydropyridine antagonists.  相似文献   

2.
Maitotoxin-induced membrane current in neuroblastoma cells   总被引:2,自引:0,他引:2  
Maitotoxin (MTX) is a potent marine toxin isolated from the toxic dinoflagellate, Gambierdiscus toxicus. We have examined the possibility of MTX activating calcium channels using cultured neuroblastoma cells (N1E-115). MTX (10 ng/ml) produced a depolarization of the membrane, which was prevented by the removal of Ca2+ from the external medium. Under voltage clamp conditions, membrane currents were recorded with 50 mM Ba2+ as a charge carrier through calcium channels. After application of MTX (1 ng/ml), an inward current necessary to hold the membrane at -90 mV increased progressively. This was followed by a gradual decrease of the transient inward Ba2+ current through type I calcium channels recorded at -30 mV which was eventually abolished. A similar tendency was observed in the long-lasting inward Ba2+ current through type II calcium channels, which was recorded at +10 mV. The MTX action was antagonized by calcium channel blockers such as verapamil (100 microM) and La3+ (1 mM). A high concentration of verapamil (500 microM) blocked both types of calcium channels persistently. After washout of verapamil but while the calcium channels were still blocked, MTX (1 ng/ml) induced a steady-state current. The MTX-induced current showed an inward-rectifying property with a reversal potential of approximately -30 mV. The results suggest that the MTX-induced current does not flow through calcium channels. Thus, MTX may create a pore in the membrane with pharmacological properties similar to those of calcium channels.  相似文献   

3.
Okada Y  Miyamoto T  Toda K 《Brain research》2003,968(2):248-255
Dopamine D2 receptors exist in the soma of rat olfactory receptor neurons. Actions of dopamine on the voltage-gated Ca(2+) channels in the neurons were investigated using the perforated whole-cell voltage-clamp. In 10 mM Ba(2+) solution, rat olfactory receptor neurons displayed the inward currents elicited by the voltage ramp (167 mV/s) and depolarizing step pulses from a holding potential of -91 mV. The inward Ba(2+) currents were greatly reduced by 10 microM nifedipine (L-type Ca(2+) channel blocker). The Ba(2+) currents were inhibited by the external application of dopamine. The IC(50) for the inhibition was about 1 microM. Quinpirole (10 microM, a D2 dopamine agonist) also inhibited the Ba(2+) currents. Quinpirole did not affect the activation and inactivation kinetics of the Ba(2+) currents. The results suggest that dopamine modulates the L-type Ca(2+) channels in rat olfactory receptor neurons via the mechanism independent of voltage.  相似文献   

4.
We have used single cell imaging of [Ca2+]i and single channel cell-attached patch clamp recording to characterise the Ca2+ channels present on the plasma membrane of retinoic acid-differentiated human neuroblastoma (SH-SY5Y) cells. Exposure to raised K+ (45 or 60 mM) for 1 min resulted in a transient rise in [Ca2+]i which was abolished by cadmium (100 microM). The amplitude of the evoked rise varied from cell to cell. Both omega-Conus toxin (500 nM) and nifedipine (10 microM) reduced, but did not abolish, the rise in [Ca2+]i whereas Bay K 8644 (3 microM) potentiated it. In single channel records both L- and N-type Ca2+ channel openings were observed during membrane depolarisations from a holding potential of -90 mV. L-type channel openings (unitary conductance 22.5 pS) were prolonged by S(+)-PN 202-791 (500 nM) and could still be evoked from a depolarised holding potential (-40 mV). N-type channel openings (unitary conductance 12.5 pS) were unaffected by the dihydropyridine agonist but were inactivated at a holding potential of -40 mV. These results indicate that, in contrast to previous observations using whole cell recording, retinoic acid-differentiated SH-SY5Y cells express both L- and N-type Ca2+ channels.  相似文献   

5.
Welch NC  Wood S  Jollimore C  Stevens K  Kelly ME  Barnes S 《Glia》2005,49(2):259-274
Muller cells mediate retinal function by stabilizing the ionic environment and signal glial network activity via calcium waves. Using whole-cell patch clamp recording, we describe a high-voltage-activated, slowly inactivating Ca channel current in isolated salamander Muller cells that has unusual pharmacological properties. The Ca channel current has an activation midpoint of approximately -8 mV and an inactivation midpoint of approximately -26 mV in 10 mM Ba2+. The time constant for inactivation is approximately 380 ms at potentials positive to zero. The current is blocked by Cd2+ with an EC50 of <100 nM. nisoldipine (10 microM) blocks approximately 50%, while nifedipine (1 microM), diltiazem (20 microM), and verapamil (50 microM) each block one-third of the current. In contrast to its typical actions, BayK 8644 blocks the current by approximately 25%. Blockers of other Ca channel subtypes were also tested: omega-agatoxin IVA (200 nM) blocked only 13% of the Ca channel current, while omega-conotoxin GVIA (1 microM) blocked 84% of the current. Immnohistochemistry supported the presence of alpha1A, alpha1B, alpha1C, and alpha1D Ca channel subunits. Mapping of dihydropyridine-binding sites with DM-BODIPY revealed a distribution of channels over the entire membrane of the Muller cell with a higher density at the apical region. Overall, these observations suggest either the presence of a mix of L- and N-type Ca channels or a single, unconventional HVA Ca channel subtype sharing L- and N-type Ca channel characteristics.  相似文献   

6.
Calcium currents in cultured rat cortical neurons   总被引:1,自引:0,他引:1  
M A Dichter  C Zona 《Brain research》1989,492(1-2):219-229
Rat neocortical neurons grown in dissociated cell culture for 4-12 weeks were studied with whole-cell patch-clamp techniques in order to characterize the calcium currents present in these cells. When voltage-dependent Na and K currents were inhibited, depolarizations from negative holding potentials induced inward currents which had 3 components: a low threshold activated, small, relatively persistent component, which was completely inactivated at holding potentials more positive then -60 mV; a higher threshold, relatively persistent component (which was not inactivated at VH = -50 mV); and a higher threshold, larger, transient component. All 3 components were reduced by removal of Ca, and blocked by Cd and Ni at appropriate concentrations. The components were differentially affected by low concentrations of Ni (500 microM), nifedipine (500 microM) and Ba (1.8 mM). Only the first two components were present in very young neurons.  相似文献   

7.
The properties of the Ca channel currents in chick skeletal muscle cells (myoballs) in culture were studied using a suction pipette technique which allows internal perfusion and voltage clamp. The Ca channel currents as carried by Ba ions were recorded, after suppression of currents through ordinary Na, K and Cl channels by absence of Na, K and Cl ions, by external TEA, by internal EGTA and by observing the Ba currents instead of the Ca currents. Two components of Ba current could be distinguished. One was present only if the myoballs were held at relatively negative holding potentials below -50 mV. This component first became detectable at clamp potentials of about -50 mV and reached a maximum between -10 and -20 mV. During long clamp steps, it became inactivated completely. The inactivation process of this component at a clamp potential of -30 mV was well fitted to a single exponential with a time constant of about -20 ms. Half-maximal steady-state inactivation was observed at -63 mV. The other component persisted even at relatively positive holding potentials above -40 mV, was observed during clamp pulses to -20 mV and above, and reached a maximum between +10 and +20 mV. This component inactivated very little; a substantial fraction of this component remained at the end of clamp pulses lasting 1 s. The inactivation process of this component at a clamp potential of -10 mV apparently followed a single exponential with a time constant of about 1 s. Half-maximal steady-state inactivation was attained at -33 mV. Both components of Ba current were blocked by Co ions, but organic Ca channel blocker D600 preferentially blocked the high-threshold, slowly inactivating component. The relationship between the current amplitude and the concentration of the external Ba ions was different between the two components. Furthermore, the two components of Ba current also differed in their developmental profile. These findings demonstrate the existence of two distinct types of Ca channels in the early stages of chick muscle cell development.  相似文献   

8.
We characterized the development and pharmacology of Ca(2+) channel currents in NGF-treated embryonic day 21 cultured rat septal cells. Using standard whole-cell voltage clamp techniques, cells were held at -80 mV and depolarized to construct current-voltage relations in conditions that eliminated Na(+) or K(+) currents. Barium (10 mM) was used as the charge carrier. Maximum current was produced when cells were depolarized to 0 or +10 mV. Recordings from 77 cells revealed that Ca(2+) channel current density increases over time in culture from nearly 0 pA/pF on day 2 in vitro (0.65+/-0.65 pA/pF) to (6.95+/-1.59 pA/pF) on days 6-8. This was followed by a period where currents became nearly 3 times more dense (21.05+/-7.16 pA/pF) at days 9-17. There was little or no evidence for low voltage activated currents. Bath application of 50-100 microM CdCl(2) abolished approximately 95% of the current. Application of 10 microM nimodipine produced a 50.5+/-3.22% reduction in current, 2 microM omega-CTx-GVIA produced a 32.4+/-7.3% reduction, and application of 4 microM omega-Aga-IVA produced a 29.5+/-5.73% reduction in current. When all three inhibitors (10 microM nimodipine, 2 microM omega-CTx-GVIA, and 4 microM omega-Aga-IVA) were applied simultaneously, a residual current remained that was 18.0+/-4.9% of the total current and was completely abolished by application of CdCl(2). This is the first report to characterize Ca(2+) channel currents in cultured embryonic septal cells. These data indicate that there is a steady increase in Ca(2+) channel expression over time in vitro, and show that like other cultured neuronal cells, septal cells express multiple Ca(2+) channel types including L, N, P/Q and R-type channels.  相似文献   

9.
It is discussed whether capsaicin, an agonist of the pain mediating TRPV1 receptor, decreases or increases voltage-activated calcium channel (VACC) currents (I(Ca(V))). I(Ca(V)) were isolated in cultured dorsal root ganglion (DRG) neurones of rats using the whole cell patch clamp method and Ba2+ as charge carrier. In large diameter neurones (>35 micorm), a concentration of 50 microM was needed to reduce I(Ca(V)) (activated by depolarizations to 0 mV) by 80%, while in small diameter neurones (< or =30 microm), the IC50 was 0.36 microM. This effect was concentration dependent with a threshold below 0.025 microM and maximal blockade (>80%) at 5 microM. The current-voltage relation was shifted to the hyperpolarized direction with an increase of the current between -40 and -10 mV and a decrease between 0 and +50 mV. Isolation of L-, N-, and T-type calcium channels resulted in differential effects when 0.1 microM capsaicin was applied. While T-type channel currents were equally reduced over the voltage range, L-type channel currents were additionally shifted to the hyperpolarized direction by 10 to 20 mV. N-type channel currents expressed either a shift (3 cells) or a reduction of the current (4 cells) or both (3 cells). Thus, capsaicin increases I(Ca(V)) at negative and decreases I(Ca(V)) at positive voltages by differentially affecting L-, N-, and T-type calcium channels. These effects of capsaicin on different VACCs in small DRG neurones, which most likely express the TRPV1 receptor, may represent another mechanism of action of the pungent substance capsaicin in addition to opening of TRPV1.  相似文献   

10.
11.
Voltage-activated Ca(2+) currents have been studied in pyramidal cells isolated enzymatically from the dorsal cochlear nuclei of 6-11-day-old Wistar rats, using whole-cell voltage-clamp. From hyperpolarized membrane potentials, the neurones exhibited a T-type Ca(2+) current on depolarizations positive to -90 mV (the maximum occurred at about -40 mV). The magnitude of the T-current varied considerably from cell to cell (-56 to -852 pA) while its steady-state inactivation was consistent (E(50)=-88.2+/-1.7 mV, s=-6. 0+/-0.4 mV). The maximum of high-voltage activated (HVA) Ca(2+) currents was observed at about -15 mV. At a membrane potential of -10 mV the L-type Ca(2+) channel blocker nifedipine (10 microM) inhibited approximately 60% of the HVA current, the N-type channel inhibitor omega-Conotoxin GVIA (2 microM) reduced the current by 25% while the P/Q-type channel blocker omega-Agatoxin IVA (200 nM) blocked a further 10%. The presence of the N- and P/Q-type Ca(2+) channels was confirmed by immunochemical methods. The metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1, 3-dicarboxylic acid (200 microM) depressed the HVA current in every cell studied (a block of approximately 7% on an average). The GABA(B) receptor agonist baclofen (100 microM) reversibly inhibited 25% of the HVA current. Simultaneous application of omega-Conotoxin GVIA and baclofen suggested that this inhibition could be attributed to the nearly complete blockade of the N-type channels. Possible physiological functions of the voltage-activated Ca(2+) currents reported in this work are discussed.  相似文献   

12.
Single-channel currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) in cell-attached patches on CA1 pyramidal neurons in the rat hippocampal slice preparation. THIP activated GABA(A) channels after a delay that was concentration-dependent and decreased by 1 microM diazepam. The currents showed outward rectification. Channels activated at depolarized 40 mV relative to the chloride reversal potential had low conductance (<40 pS) but the conductance increased with time, resulting in high-conductance channels (>40 pS). The average maximal-channel conductances for 2 and 100 microM THIP were 59 and 62 pS (-Vp = 40 mV), respectively, whereas in 2 microM THIP plus 1 microM diazepam, it was 71 pS. The results show that in hippocampal neurons THIP activates channels with characteristics similar to those of channels activated by low concentrations (0.5-5 microM ) of GABA. The increase in the inhibitory conductance with membrane depolarization permits gradation of the shunt pathway relative to the level of the excitatory input.  相似文献   

13.
S Ozawa  K Tsuzuki  M Iino  A Ogura  Y Kudo 《Brain research》1989,495(2):329-336
Voltage-dependent calcium (Ca2+) currents in cultured rat hippocampal neurons were studied with the whole-cell recording mode of the patch-clamp technique. On the basis of the voltage-dependence of activation, kinetics of inactivation and pharmacology, 3 types of Ca2+ currents were distinguished. The low-threshold Ca2+ current (Il) was activated at -60 mV, and completely inactivated during a 100-ms depolarization to -40 mV (time constant: tau = 16 +/- 1 ms). The high-threshold currents (Ih), which were activated at -20 mV, could be separated into two types. The high-threshold, fast inactivating current (Ih,f) decayed quickly during a maintained depolarization (tau = 33 +/- 3 ms at 0 mV), whereas the high-threshold, slowly inactivating current (Ih,s) decayed with a much slower time constant (tau = 505 +/- 42 ms at 0 mV). The inactivations of Ih,f and Ih,s exhibited different time- and voltage-dependencies. Nickel ions (Ni2+, 25 microM) markedly suppressed Il, but little affected Ih. Cadmium ions (Cd2+, 10 microM) almost completely suppressed Ih, but left a small amount of Il. Lanthanum ions (La3+, 10 microM) almost completely suppressed both Il and Ih. Ih,s was sensitive to block by the dihydropyridine antagonist nicardipine (10 microM).  相似文献   

14.
Heart interneurons (HN cells) in isolated ganglia of the medicinal leech were voltage-clamped with single microelectrodes. Hyperpolarizing voltage steps elicited a slow inward current (Ih), which underlies the characteristic depolarizing response of HN cells to injection of prolonged hyperpolarizing current pulses (Arbas and Calabrese, 1987a). The conductance underlying Ih begins to activate near -mV and is fully activated between -70 and -80 mV. The activation kinetics of Ih are slow and voltage dependent. The activation time constant (tau h) ranges from approximately 2 sec at -60 mV to near 700 msec at -100 mV. Ih persists in low Ca2+ (0.1 mM), 5 mM Mn2+ saline and exhibits a reversal potential of -21 +/- 5 mV. The reversal potential is shifted by altering [Na+]o or [K+]o but is unaffected by changes in [Cl-]o. Ih is blocked by extracellular Cs+ (1-5 mM) but not Ba2+ (5 mM) or TEA (25 mM). Low concentrations of Cs+ (100-200 microM) cause a partial block that exhibits strong voltage dependence. Temperature changes were also shown to affect Ih. Both the rate of activation and the steady-state amplitude of Ih are enhanced by temperature increases. HN cells are interconnected by inhibitory chemical synapses, and their normal electrical activity consists of bursts of action potentials separated by periods of inhibition. During the inhibitory phase of rhythmic bursting activity, HN cells hyperpolarize to a voltage range where Ih is activated. Block of Ih with extracellular Cs+ (4 mM) disrupted the normal bursting activity of HN cells. These results are consistent with the hypothesis that Ih contributes to escape from inhibitory inputs during normal bursting activity.  相似文献   

15.
N1E-115 mouse neuroblastoma cells have been reported to possess two types of voltage-sensitive calcium channels: Low voltage activated, rapidly inactivating T-type (type I) and high voltage activated, slowly inactivating L-type (type II). We studied the effects of acute in vitro exposure to inorganic lead on these calcium channels, using the whole-cell variant of patch clamping. Using salines with a high lead-buffering capacity, we found that both T-type and L-type channels are reversibly inhibited in a dose-dependent manner at free Pb2+ concentrations ranging from 20 nM to 14 microM. L-type channels are somewhat more sensitive to Pb2+ than T-type channels are (L-type: IC50 approx. 0.7 microM; T-type: IC50 approx. 1.3 microM). Both channels show small but significant inhibition (approx. 10%) at 20 nM free Pb2+. Pb2+ affects neither activation nor inactivation of T-type channels, but enhances inactivation of L-type channels at holding potentials around -60 to -40 mV. A peculiar phenomenon was observed in cells exposed to 2.3 microM free Pb2+. T-type channels were inhibited in all 20 cells studied. In 15 cells, L-type channels were also inhibited, but in the remaining 5 cells, current flow through L-type channels was enhanced by Pb2+ exposure.  相似文献   

16.
An important modulatory cell type, found in all molluscan feeding networks, was investigated using two-electrode voltage- and current-clamp methods. In the cerebral giant cells of Lymnaea, a transient inward Na+ current was identified with activation at -58 +/- 2 mV. It was sensitive to tetrodotoxin only in high concentrations (approximately 50% block at 100 microm), a characteristic of Na+ channels in many molluscan neurons. A much smaller low-threshold persistent Na+ current (activation at < -90 mV) was also identified. Two purely voltage-sensitive outward K+ currents were also found: (i) a transient A-current type which was activated at -59 +/- 4 mV and blocked by 4-aminopyridine; (ii) a sustained tetraethylammonium-sensitive delayed rectifier current which was activated at -47 +/- 2 mV. There was also evidence that a third, Ca2+-activated, K+ channel made a contribution to the total outward current. No inwardly rectifying currents were found. Two Ca2+ currents were characterized: (i) a transient low-voltage (-65 +/- 2 mV) activated T-type current, which was blocked in NiCl2 (2 mm) and was completely inactivated at approximately -50 mV; (ii) A sustained high voltage (-40 +/- 1 mV) activated current, which was blocked in CdCl2 (100 microm) but not in omega-conotoxin GVIA (10 microm), omega-agatoxin IVA (500 nm) or nifedipine (10 microm). This current was enhanced in Ba2+ saline. Current-clamp experiments revealed how these different current types could define the membrane potential and firing properties of the cerebral giant cells, which are important in shaping the wide-acting modulatory influence of this neuron on the rest of the feeding network.  相似文献   

17.
Hippocampal astrocytes were acutely isolated by papain treatment and mechanical trituration. Astrocytes were identified by their distinctive stellate morphology and immunocytochemical staining for glial fibrillary acidic protein. The electrophysiological properties of these cells were investigated using whole-cell voltage-clamp techniques. Three kinetically and pharmacologically distinct voltage-activated K+ currents were identified in most cells; they resembled the neuronal A-current, delayed rectifier, and inward rectifier. The activation threshold of the A-current was -40 mV with a time to peak that ranged from 10 msec at -20 mV to 6 msec at 100 mV. Steady-state inactivation was observed when the holding potential was positive to -100 mV. The current was half-inactivated at -60 mV and totally inactivated at -20 mV. The A-current was suppressed by 4-aminopyridine (4-AP). The delayed rectifier was activated by depolarizing pulses more positive than -40 mV and had a half time of activation that ranged from 18 msec at -20 mV to 10 msec at potentials more positive than 40 mV. This current did not inactivate during a 100 msec pulse and was suppressed by extracellular tetraethylammonium (TEA). An inwardly rectifying current was elicited by hyperpolarizing pulses more negative than -80 mV. This current was not blocked by extracellular TEA or 4-AP and was never observed in the presence of external Ba2+. Voltage-activated inward Na+ currents were never observed. Voltage-activated K+ channels may enhance the local K+ spatial buffering capabilities of the astrocyte syncytium when extracellular [K+] increases during neuronal activity.  相似文献   

18.
Almanza A  Vega R  Soto E 《Brain research》2003,994(2):175-180
The low voltage gain in type I hair cells implies that neurotransmitter release at their afferent synapse should be mediated by low voltage activated calcium channels, or that some peculiar mechanism should be operating in this synapse. With the patch clamp technique, we studied the characteristics of the Ca(2+) current in type I hair cells enzymatically dissociated from rat semicircular canal crista ampullaris. Calcium current in type I hair cells exhibited a slow inactivation (during 2-s depolarizing steps), was sensitive to nimodipine and was blocked by Cd(2+) and Ni(2+). This current was activated at potentials above -60 mV, had a mean half maximal activation of -36 mV, and exhibited no steady-state inactivation at holding potentials between -100 and -60 mV. This data led us to conclude that hair cell Ca(2+) current is most likely of the L type. Thus, other mechanisms participating in neurotransmitter release such as K(+) accumulation in the synaptic cleft, modulation of K(+) currents by nitric oxide, participation of a Na(+) current and possible metabotropic cascades activated by depolarization should be considered.  相似文献   

19.
Activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors in cerebellar granule cells during perforated-patch whole-cell recordings activated an inward current at negative voltages which was followed, after a delay, by the inhibition of an outward potassium current at voltages positive to -20 mV. The activated inward current was inwardly rectifying suggesting that the AMPA receptors were Ca2+-permeable. This was confirmed by direct measurements of intracellular calcium where Ca2+ rises were seen following AMPA receptor activation in Na+-free external solution. Ca2+ rises were equally large in the presence of 100 microM Cd2+ to block voltage-gated Ca2+ channels. Specific voltage-protocols, allowing selective activation of the delayed rectifier potassium current (KV) and the transient A current (KA), showed that kainate inhibited KV, but not to any great extent KA. The inhibition of KV was blocked by the AMPA receptor antagonist CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) and was no longer observed when the KV current was abolished with high concentrations of Ba2+. The responses to kainate were not altered by pre-treating the cells with pertussis toxin, suggesting that the AMPA receptor stimulation of the G-protein Gi cannot account for the effects observed. Replacing extracellular Na+ with choline did not alter the inhibition of KV by kainate, however, removing extracellular Ca2+ reduced the kainate response. The inhibition of KV by kainate was unaffected by the presence of 100 microM Cd2+. The guanylyl cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), did not alter kainate inhibition of KV. It is concluded that ion influx (particularly Ca2+ ions) through AMPA receptor channels following receptor activation leads to an inhibition of KV currents in cerebellar granule neurons.  相似文献   

20.
Rat spinal dorsal horn neurons in slice preparations perfused with Ringer solution containing 0.5-1 microM TTX and/or 10-20 mM tetraethylammonium at 29 degrees C, were studied by using a single microelectrode voltage-clamp technique. Slow persistent inward currents were recorded during depolarizing voltage commands to membrane potentials positive to about -40 mV. The inward current was depressed by removing external Ca, or by adding 0.1-0.2 mM Cd, 5 mM Co or 0.1 mM verapamil, and was increased by adding Ba or Bay-K 8644. Substance P (SP) augmented a persistent slow inward Ca-sensitive current in a dose-dependent manner. It is suggested that this effect may be instrumental in generating the SP-evoked slow depolarization, increase in membrane excitability, and the 'bursting' behavior in the immature rat dorsal horn neurons. In addition, in some neurons SP reduced the M-like current, which effect may contribute to, but not explain, generation of the SP-induced slow depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号