首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used two protocols to determine if hypoxic ventilatory decline (HVD) involves changes in slope and/or intercept of the isocapnic HVR (hypoxic ventilatory response, expressed as the increase in VI per percentage decrease in SaO2). Isocapnia was defined as 1.5 mmHg above hyperoxic PET(CO2). HVD was recorded in protocol I during two sequential 25 min exposures to isocapnic hypoxia (85 and 75% SaO2, n=7) and in protocol II during 14 min of isocapnic hypoxia (90% SaO2, FIO2=0.13, n=15), extended to 2 h of hypoxia with CO2-uncontrolled in eight subjects. HVR was measured by the step reduction to sequentially lower levels of SaO2 in protocol I and by 3 min steps to 80% SaO2 at 8, 14 and 120 min in protocol II. The intercept of the HVR (VI predicted at SaO2=100%) decreased after 14 and 25 min in both protocols (P<0.05). Changes in slope were observed only in protocol I at SaO2=75%, suggesting that the slope of the HVR is more sensitive to depth than duration of hypoxic exposure. After 2 h of hypoxia the HVR intercept returned toward control value (P<0.05) with still no significant changes in the HVR slope. We conclude that HVD in humans involves a decrease in hyperoxic ventilatory drive that can occur without significant change in slope of the HVR. The partial reversal of the HVD after 2 h of hypoxia may reflect some components of ventilatory acclimatization to hypoxia.  相似文献   

2.
Almitrine, a peripheral chemoreceptor agonist, exerts beneficial effects on blood gases in patients with hypoxic chronic air-flow obstruction, but as these patients exhibit poor ventilatory responses to hypoxia, the mechanism for this improvement is not clear. The effect of a 100-mg dose of almitrine given orally on ventilation and the steady-state hypoxic ventilatory response (HVR) were measured in a randomized, double-blind, placebo-controlled manner in 7 patients with severe hypoxic chronic air-flow obstruction. The isocapnic HVR (delta VE/delta SaO2) was calculated from the changes in ventilation and SaO2 from breathing 60% O2 to breathing air with the addition of CO2 to maintain isocapnia (as estimated from a transcutaneous CO2 electrode). Resting ventilation while breathing air and isocapnic HVR were measured before and 3 h after almitrine or placebo. Almitrine caused no significant change in resting ventilation. There was, however, a large increase in HVR after almitrine (almitrine: -1.5 L/min/%SaO2; range, -0.5 to -3.1; control: -0.4; range, -0.3 to -1.3), but no change after placebo. Almitrine is a powerful stimulant of chemosensitivity and of the hypoxic ventilatory response in chronic hypoxemia, with potential benefit to patients with chronic air-flow obstruction in respiratory failure.  相似文献   

3.
The hypoxia of high altitude stimulates ventilation. If the resultant respiratory alkalosis inhibits the initial increase in ventilation, then with prevention of alkalosis, ventilation should rise immediately to a stable plateau. 4 subjects inspired CO2 (3.77%) from ambient air in a hypobaric chamber (PB = 440-455 Torr) during 100 h at high altitude. Ventilation (for given oxygen uptakes at rest and during exercise) increased promptly and remained stable. 4 control subjects exposed to high altitude without CO2 supplementation showed the expected progressive increases in ventilation with time. The hyperoxic CO2 ventilatory response curve shifted progressively to the left with time in the control subjects, but not in those given supplemental CO2. The latter group also failed to increase the ventilatory response to isocapnic hypoxia. Thus, CO2 supplementation at high altitude prevented the so-called "ventilatory acclimatization' from occurring. Prevention of respiratory alkalosis at high altitude probably permitted maintenance of [H+] at some central nervous system locus, thus allowing an uninhibited hypoxic stimulation of ventilation.  相似文献   

4.
Modulation of the hypoxic ventilatory response (HVR) by dopamine D(2)-receptors (D(2)-R) in the carotid body (CB) and central nervous system (CNS) are hypothesized to contribute to ventilatory acclimatization to hypoxia. We tested this with blockade of D(2)-R in the CB or CNS in conscious rats after 0, 2 and 8 days of hypoxia. On day 0, CB D(2)-R blockade significantly increased VI and frequency (fR) in hyperoxia (FI(O(2))=0.30), but not hypoxia (FI(O(2))=0.10). CNS D(2)-R blockade significantly decreased fR in hypoxia only. On day 2, neither CB nor CNS D(2)-R blockade affected VI or fR. On day 8, CB D(2)-R blockade significantly increased hypoxic VI and fR. CNS D(2)-R blockade significantly decreased hypoxic VI and fR. CB and CNS D(2)-R modulation of the HVR decreased after 2 days of hypoxia, but reappeared after 8 days. Changes in the opposing effects of CB and CNS D(2)-R on the HVR during chronic hypoxia cannot completely explain ventilatory acclimatization in rats.  相似文献   

5.
Three awake dogs with chronic tracheostomies were used to study the effects of hypoxia (12% O2) on tracheal smooth muscle tone. Pressure changes within a water-filled cuff in an isolated portion of the cervical trachea reflected changes in tracheal tone. During spontaneous ventilation, hypoxia produced hyperventilation, but no significant change in tracheal tone. If hypocapnia was prevented with inspired CO2 during hypoxia, one of three dogs increased tracheal tone, and all dogs increased ventilation beyond that measured with hypoxia alone. When the awake dogs were ventilated mechanically to prevent changes in ventilation, hypoxia always increased tracheal tone. We made independent changes in ventilation and CO2 similar to the spontaneous responses to hypoxia to test these effects on tracheal tone. When the dogs were ventilated mechanically first with 2% CO2, and then with no CO2, the resulting drop in end-tidal CO2 always decreased tone. When the tidal volume on the ventilator was increased under hyperoxic, isocapnic conditions, tracheal tone always decreased. We conclude that the normal ventilatory response to hypoxia opposes the bronchoconstrictor effect of hypoxia, resulting in no net change in tracheal smooth muscle tone.  相似文献   

6.
Isocapnic hypoxic ventilatory response (HVR) and hematological variables were measured in nine adult males (age: 29.3+/-3.4) exposed to normobaric intermittent hypoxia (IH, 2 h daily at FI(O(2))=0.13, equivalent to 3800 m altitude) for 12 days. Mean HVR significantly increased during IH, however, after reaching a peak on Day 5 (0.79+/-0.12 vs. 0.27+/-0.11 L.min(-1).%(-1) on Day 1, P<0.05), it progressively decreased toward a lower value (0.46+/-0.16 L min(-1) x %(-1) on Day 12). In contrast, the subjects showed no changes in the ventilatory data and arterial O(2)-saturation in normoxia or poikilocapnic hypoxia (PET(CO(2)) uncontrolled). Hematocrit and hemoglobin concentration did not change, but the reticulocyte count increased by Day 5 (P<0.01). Our results suggest that moderate intermittent hypoxia induces changes in ventilatory O(2)-sensitivity and triggers the hematological acclimatization by increasing the percentage of reticulocytes in the blood. Normal ventilatory acclimatization to hypoxia was, however, not observed and the mechanisms involved in the biphasic changes in HVR we observed remain to be determined.  相似文献   

7.
We tested the hypothesis that the promotion of hypoxic ventilatory responsiveness (HVR) and/or hypercapnic ventilatory responsiveness (HCVR) mostly acting on the carotid body with a changing work rate can be attributed to faster hypoxic ventilatory dynamics at the onset of exercise. Eleven subjects performed a cycling exercise with two repetitions of 6 minutes while breathing at FIO(2) = 12%. The tests began with unloaded pedaling, followed by three constant work rates of 40%, 60%, and 80% of the subject's ventilatory threshold at hypoxia. Reference data were obtained at the 80% ventilatory threshold work rate during normoxia. Using three inhaled 100% O(2) breath tests, a comparison of hypoxia and normoxia revealed an augmentation of HVR in hypoxia, which then significantly increased proportionally with the increase in work rate. In contrast, HCVR using three inhaled 10% CO(2) breath tests was unaffected by the difference in work rate at hypoxia but did exceed its level at normoxia. The decrease in the half-time of hypoxic ventilation became significant with an increase in work rates and was significantly lower than at normoxia. Using a multiregression equation, HVR was found to account for 63% of the variance of hypoxic ventilatory dynamics at the onset of exercise and HCVR for 9%. O(2) uptake on-kinetics and off-kinetics under hypoxic conditions were significantly slower than under normoxic conditions, whereas they were not altered by the changing work rates at hypoxia. These results suggest that the faster hypoxic ventilatory dynamics at the onset of exercise can be mostly attributed to the augmentation of HVR with an increase in work rates rather than to HCVR. Otherwise, O(2) uptake dynamics are affected by the lower O(2), not by the changing work rates under hypoxic conditions.  相似文献   

8.
One hypothesis concerning the origin of hypoxic ventilatory decline is that hypoxia acts centrally to depress peripheral chemoreflex loop activity. To investigate possible changes in peripheral chemoreflex loop activity during sustained, isocapnic hypoxia, the ventilatory responses to four one minute pulses of either extra hypoxia (45 Torr) or carbon dioxide (8 Torr above resting levels) were measured in man at minutes 2, 7, 12, and 17 of a 23 min isocapnic, hypoxic period (50 Torr). For hypoxia, the first pulse response (130%) was significantly greater (P less than 0.05) than the fourth response (74%). For CO2, pulse responses 2 and 3 (101 and 103%, respectively) were significantly greater (P less than 0.05) than the fourth response (91%). A central depression of peripheral chemoreflex loop activity should affect peripheral sensitivities to CO2 and hypoxia equally. Our results suggest that the peripheral sensitivity to hypoxia declined more than that to CO2, implying a peripheral chemoreceptor origin for hypoxic ventilatory decline.  相似文献   

9.
To understand the role of carotid chemoreceptor activity in the ventilatory responses to sustained hypoxia (30 min) the following measurements were made in cats anesthetized with alpha-chloralose: (1) carotid chemoreceptor and ventilatory responses to isocapnic hypoxia and to hypercapnia during hyperoxia; (2) carotid chemoreceptor responses to isocapnic hypoxia after dopamine receptor blockade; and (3) ventilatory responses to hypoxia after bilateral section of carotid sinus nerves (CSN). Transition to hypoxia (PaO2 approximately equal to 52 Torr) from hyperoxia gradually increased carotid chemoreceptor activity by ten fold and ventilation by two fold without any detectable overshoot. Termination of isocapnic hypoxia with hyperoxia (PaO2 greater than 300 Torr) at 30 min promptly restored the carotid chemoreceptor activity to prehypoxic level. Ventilation also decreased promptly, but remained above the control value. Induction of hypercapnia (from 31.8 Torr to 43.9 Torr) during hyperoxia was followed by a prompt increase in the chemoreceptor activity by four fold which subsequently diminished, and by a gradual four fold increase in ventilation. Termination of hypercapnia after 30 min was followed by a prompt return of chemoreceptor activity and by a slow return of ventilation to near control levels. Dopamine receptor blockade increased carotid chemoreceptor responsiveness to acute hypoxia but did not alter the response pattern during sustained hypoxia. After bilateral CSN section, ventilation decreased during maintained hypoxia. Thus, a stimulatory peripheral and inhibitory central effects of hypoxia could produce a biphasic ventilatory response to short-term hypoxia in the anesthetized cat with intact CSN but did not manifest it. The results suggest that the chemosensory input not only promptly stimulates ventilation but also prevents the subsequent depressant effect of hypoxia on the brain-stem respiratory mechanisms and hence presumably a biphasic ventilatory response in the anesthetized cat.  相似文献   

10.
Although cardiorespiratory complications contribute to the high morbidity/mortality of familial dysautonomia (FD), the mechanisms remain unclear. We evaluated respiratory, cardiovascular, and cerebrovascular control by monitoring ventilation, end-tidal carbon dioxide (CO2-et), oxygen saturation, RR interval, blood pressure (BP), and midcerebral artery flow velocity (MCFV) during progressive isocapnic hypoxia, progressive hyperoxic hypercapnia, and during recovery from moderate hyperventilation (to simulate changes leading to respiratory arrest) in 22 subjects with FD and 23 matched control subjects. Subjects with FD had normal ventilation, higher CO2-et, lower oxygen saturation, lower RR interval, and higher BP. MCFV was also higher but depended on the higher baseline CO2-et. In the FD group, whereas hyperoxic hypercapnia induced normal cardiovascular and ventilatory responses, progressive hypoxia resulted in blunted increases in ventilation, paradoxical decreases in RR interval and BP, and lack of MCFV increase. Hyperventilation induced a longer hypocapnia-induced apneic period (51.5 +/- 9.9 versus 11.2 +/- 5.5 seconds, p < 0.008) with profound desaturation (to 75.8 +/- 3.5%), marked BP decrease, and RR interval increase. Subjects with FD develop central depression in response to even moderate hypoxia with lack of expected change in cerebral circulation, leading to hypotension, bradycardia, hypoventilation, and potentially respiratory arrest. Higher resting BP delays occurrence of syncope during hypoxia. Therapeutic measures preventing hypoxia/hypocapnia may correct cardiovascular accidents in patients with FD.  相似文献   

11.
To investigate how the ventilatory response to isocapnic hypoxia is modified by steady-state exercise, five subjects were studied at rest and performing 70 W bicycle exercise. At rest, isocapnic hypoxia (end-tidal PO2 50 Torr) for 25 min resulted in a biphasic response: an initial increase in ventilation was followed by a subsequent decline (HVD). During exercise, an end-tidal PO2 of 55-60 Torr was used. The magnitude of the initial ventilatory response to isocapnic hypoxia was increased from a mean +/ SE of 1.43 +/- 0.323 L/min per % arterial desaturation at rest to 2.41 +/- 0.424 L/min per % during exercise (P less than 0.05), but the magnitude of the HVD was reduced from 0.851 +/- 0.149 L/min per % at rest to 0.497 +/- 0.082 L/min per % during exercise (P less than 0.05). The ratio of HVD to the acute hypoxia response was reduced from 0.696 +/- 0.124 at rest to 0.202 +/- 0.029 during exercise (P less than 0.01). We conclude that while exercise augments the ventilatory sensitivity to hypoxia, it also has a direct effect on the mechanisms by which sustained hypoxia depresses peripheral chemosensitivity.  相似文献   

12.
BACKGROUND: Short-term exposure to high-altitude hypoxia increases hypoxic ventilatory sensitivity (HVS) in healthy humans. Dopamine (DA) is the implicated neurotransmitter in carotid body (CB) chemoreceptor response, and the microenvironmental conditions in CB tissue are comparable to blood. Continuous DA infusion affected ventilation in animals and humans. Age-related oscillations in blood DA levels may influence peripheral chemoreflexes. OBJECTIVE: Hypoxic ventilatory responses (HVR) relative to blood DA concentration and its precursor, dihydroxyphenylalanine (DOPA) was measured in young and elderly men during short-term altitude adaptation. METHODS: Nine elderly climbers (group 1:61+/-1.4 years) and 7 young healthy subjects (group 2: 23+/-2 years) were tested at sea level on day 0, on day 3 after passive transport to 2,200 m, and on day 14 after climbing to 4,200 and 5,642 m. RESULTS: Sea level HVR in group 1 was 47% lower than in group 2, accompanied by higher blood DOPA (300%) and DA (37%) content. Initial DA and DOPA concentrations showed a negative correlation with initial HVR but a positive correlation with age. Passive transport to middle altitude (2,200 m) increased HVS, doubling HVR slopes in groups 1 and 2 and producing increased maximum expired minute ventilation during isocapnic rebreathing (29 and 28%, respectively). Day 3 2,200-meter blood DOPA content decreased by 22% in group 1 and increased by 300% in group 2. DA increased in both groups. CONCLUSION: The relationship between HVR and the reciprocal DA and DOPA values seen in both groups is associated with age, producing decreased DA receptor sensitivity and enhanced DA reuptake during adaptation to high altitude.  相似文献   

13.
Ventilatory acclimatization to high altitude is accompanied by increased hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses which may reflect increased carotid body chemosensitivity. Dopamine is an inhibitory neuromodulator of the carotid body and its activity may be reduced by hypoxic exposure. To determine whether decreased dopaminergic activity could account for the increased chemosensitivity of acclimatization, we examined the response to peripheral dopamine receptor (D2) blockade with domperidone on HVR and HCVR in awake cats before and after exposure to simulated altitude of 14000 ft for 2 days. During anesthesia, we also examined the effects of domperidone on carotid body responses to hypoxia and hypercapnia in acclimatized and low altitude cats. Two days' exposure to hypobaric hypoxia produced an increase in HVR and HCVR. Before acclimatization, domperidone augmented HVR and HCVR, but there was no effect after acclimatization. In anesthetized low altitude cats, domperidone increased carotid body responses to hypoxia and hypercapnia, but had no effect in acclimatized cats. These results indicate that decreased endogenous dopaminergic activity may contribute to increased ventilatory and chemoreceptor responsiveness to hypoxia and hypercapnia during hypoxic ventilatory acclimatization.  相似文献   

14.
The ventilatory responses to hypercapnia and hypoxia are reduced during sleep compared to wakefulness. However, sleep-related increases in upper airways' resistance could reduce these ventilatory responses independently of any change in the neural output to the respiratory pump muscles. It is therefore possible that respiratory chemosensitivity, per se, is unchanged by sleep. To investigate this, four healthy male subjects were mechanically ventilated to abolish spontaneous respiratory muscle activity. The response to transient isocapnic hypoxia was quantified from the magnitude of the electromyographic activity induced in the diaphragm and from the associated reduction in peak inspiratory pressure; these indicies of respiratory motor output will not be affected by any sleep-related changes in upper airways' resistance. In all individuals, the responses to hypoxia were markedly attenuated during sleep compared to wakefulness. These observations, assessing the 'neuromuscular' ventilatory response, are consistent with a sleep-related reduction in respiratory chemosensitivity that is independent of any changes that may be due to increases in upper airways' resistance.  相似文献   

15.
We tested whether the enhancement of end-expiratory activity of the diaphragm (DE) induced by acute hypoxia persists during long-lasting hypoxia and participates in the enlargement of end-expiratory lung volume (EELV). We thus measured these two parameters together with ventilation (VE) in 30 rats, either awake or anesthetized, exposed to (1) poikilocapnic hypoxia sustained for 2 or 3 h; or (2) chronic normobaric hypoxia for 7 days interrupted by short episodes of normoxia. Twelve control animals were also studied. (1) Sustained hypoxia induced a stable increase in DE, VE and EELV. (2) In awake rats, chronic hypoxia induced a transient increase in VE after 1 day of hypoxia, and an increase persisting during acute normoxia throughout the exposure. DE followed the same, although less pronounced, course as VE. In anesthetized animals, only EELV was increased in both chronic hypoxia and acute normoxia, but its enlargement in normoxia was not associated with a concomitant increase in DE. The transition from hypoxia to normoxia always induced a decrease in DE and EELV. Therefore, (1) during hypoxia sustained for 2 or 3 h, the ventilatory and diaphragmatic responses were stable; (2) during chronic hypoxia lasting 1 week, a ventilatory acclimatization was expressed by a transient increase in hypoxic VE and a hyperventilation continuing during acute normoxia; (3) EELV enlargement in chronic hypoxia was partly related to changes in DE and partly due to another mechanism possibly involving morphological adaptations.  相似文献   

16.
Sleep deprivation and the control of ventilation   总被引:7,自引:0,他引:7  
Sleep deprivation is common in acutely ill patients because of their underlying disease and can be compounded by aggressive medical care. While sleep deprivation has been shown to produce a number of psychological and physiologic events, the effects on respiration have been minimally evaluated. We therefore studied resting ventilation and ventilatory responses to hypoxia and hypercapnia before and after 24 h of sleeplessness in 13 healthy men. Hypoxic ventilatory responses (HVR) were measured during progressive isocapnic hypoxia, and hypercapnic ventilatory responses (HCVR) were measured using a rebreathing technique. Measures of resting ventilation, i.e., minute ventilation, tidal volume, arterial oxygen saturation, and end-tidal gas concentrations, did not change with short-term sleep deprivation. Both HVR and HCVR, however, decreased significantly after a single night without sleep. The mean hypoxic response decreased 29% from a slope of 1.20 +/- 0.22 (SEM) to 0.85 +/- 0.15 L/min/% saturation (p less than 0.02), and the slope of the HCVR decreased 24% from 2.07 +/- 0.17 to 1.57 +/- 0.15 L/min/mmHg PCO2 (p less than 0.01). These data indicate that ventilatory chemosensitivity may be substantially attenuated by even short-term sleep deprivation. This absence of sleep could therefore contribute to hypoventilation in acutely ill patients.  相似文献   

17.
BACKGROUND: The peripheral chemoreflex contributes to cardiovascular regulation and represents the first line of defence against hypoxia. The effects of nicotine on chemoreflex regulation in non-smoking humans are unknown. METHOD: We conducted a prospective, randomized, crossover, and placebo-controlled study in 20 male non-smokers to test the hypothesis that nicotine increases chemoreflex sensitivity. The effects of two intakes of 2 mg nicotine tabs and placebo on sympathetic nerve activity to muscle circulation (muscle sympathetic nerve activity; MSNA), minute ventilation (Ve), blood pressure and heart rate were assessed during normoxia, moderate isocapnic hypoxia, hyperoxic hypercapnia and an isometric handgrip in 10 subjects. Maximal end-expiratory apnoeas were performed at baseline and at the end of the fifth minute of hypoxia. In a second experimental setting, we studied the ventilatory response to a more marked isocapnic hypoxia in 10 other volunteers. RESULTS: Mean MSNA and Ve were not modified by nicotine during the 5 min of normoxia or moderate hypoxia. In the presence of nicotine MSNA was related to oxygen desaturation (P < 0.01). The sympathoexcitatory effects of nicotine became especially evident when apnoeas achieved oxygen saturations less than 85% (511 +/- 44% increase in MSNA after the first intake, and 436 +/- 43% increase after the second intake versus 387 +/- 56% and 338 +/- 31% with placebo, respectively, P < 0.05). Nicotine also increased the ventilatory response compared with placebo when oxygen saturation decreased to less than 85% (P < 0.05). CONCLUSION: This is the first study to demonstrate that nicotine increases peripheral chemoreflex sensitivity to large reductions in arterial oxygen content in healthy non-smokers.  相似文献   

18.
The objective was to examine whether abnormal breathing during sleep may affect regulation of ventilation after awakening in patients with obstructive sleep apnoea (OSAS). In 19 patients with OSA and 12 normal subjects we examined ventilatory responses to hypoxia (HVR) and to hypercapnia (HCVR) before and after sleep (BS and AS), and compared the changes in ventilatory responses with respiratory events during sleep. In the OSA group, the values of resting ventilation were significantly smaller in AS than those in BS and end-tidal partial pressure of CO2 in arterial blood (Pco2) (PETCO2) rose significantly from BS to AS. The slopes of the HVR or HCVR did not differ between BS and AS. However, both the response lines shifted downward and minute ventilation (VE)80 (VE at arterial oxygen saturation (Sao2) of 80%) in HVR and VE60 (VE at PETCO2 of 60 mmHg) in HCVR decreased significantly from BS to AS. The percentage changes of VE80 and VE60 were significantly correlated with mean Sao2, total sleep time below Sao2 of 90% and lowest Sao2 during sleep. However, in normal subjects we observed no circadian variation in their ventilatory responses. These data support the hypothesis that repeated episodes of nocturnal hypoxia and hypercapnia may modify the regulation of ventilation after awakening in patients with OSA.  相似文献   

19.
We investigated the mechanisms of the beneficial effect derived from progesterone therapy for sleep apnea syndrome (SAS). Nine patients with SAS were treated for 7 days with chlormadinone acetate (CMA), a respiratory stimulant known to increase not only CO2 and hypoxic chemosensitivity but also respiratory drive response for ventilatory loading. They were examined as to sleep events and ventilatory control during wakefulness before and during CMA treatment. Apnea-hypopnea index was significantly reduced from 51.1 +/- 5.7 to 43.6 +/- 8.1 episodes/h (p less than 0.05). The ratio of desaturation time with more than 4% SaO2 fall to total sleep time was diminished in seven of nine patients, and its mean value decreased from 44.9 +/- 8.6 to 28.7 +/- 8.1% (p less than 0.05). Both hypercapnic ventilatory response (HCVR) and load response during wakefulness were significantly increased, although isocapnic hypoxic ventilatory response (HVR) was not significantly enhanced by CMA. The degree of augmentation in awake load response as well as in HCVR was positively correlated with that of improvement in sleep-disordered breathing. Moreover, patients who did not show amelioration in oxygen desaturation were found to be incapable of increasing load response despite increased HCVR. We conclude that CMA therapy for sleep apnea syndrome is effective in the patients whose load response as well as respiratory control activity are augmented during wakefulness.  相似文献   

20.
Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation that occurs during sustained hypoxia. As serotonin (5-HT) has been reported to be an important modulator of respiratory output, 5-HT may also play a role in VAH. Methysergide (a broad-spectrum 5-HT antagonist), was given to awake goats (1 mg kg(-1) i.v.) 30 min prior to being exposed to 4 h of isocapnic hypoxia. Although methysergide slightly decreased arterial pH, presumably due to a non-significant increase in arterial P(CO2), it did not alter normoxic ventilation. Following methysergide, the expired minute ventilation (VE) was significantly elevated above the control (saline) response after 30 min of hypoxia, but methysergide did not otherwise alter VAH. We repeated the study in the same goats using ketanserin, a specific 5-HT2A/2C receptor antagonist (1.2 mg kg(-1) i.v.). Ketanserin had no effect on the acute hypoxic ventilatory response, or on VAH. We conclude that while 5-HT modulates the acute hypoxic ventilatory response in goats, it does not appear to act through the 5-HT2A/2C receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号